
HAL Id: lirmm-01170968
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01170968v1

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YOC, A new strategy for pairwise alignment of collinear
genomes

Raluca Uricaru, Célia Michotey, Hélène Chiapello, Eric Rivals

To cite this version:
Raluca Uricaru, Célia Michotey, Hélène Chiapello, Eric Rivals. YOC, A new strategy for pairwise
alignment of collinear genomes. BMC Bioinformatics, 2015, 16 (1), pp.16:111. �10.1186/s12859-015-
0530-3�. �lirmm-01170968�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01170968v1
https://hal.archives-ouvertes.fr


Uricaru et al. BMC Bioinformatics  (2015) 16:111 
DOI 10.1186/s12859-015-0530-3
METHODOLOGY ARTICLE Open Access
YOC, A new strategy for pairwise alignment of
collinear genomes
Raluca Uricaru1,2,5*, Célia Michotey3, Hélène Chiapello3,4 and Eric Rivals5*
Abstract

Background: Comparing and aligning genomes is a key step in analyzing closely related genomes. Despite the
development of many genome aligners in the last 15 years, the problem is not yet fully resolved, even when
aligning closely related bacterial genomes of the same species. In addition, no procedures are available to assess
the quality of genome alignments or to compare genome aligners.

Results: We designed an original method for pairwise genome alignment, named YOC, which employs a highly
sensitive similarity detection method together with a recent collinear chaining strategy that allows overlaps. YOC
improves the reliability of collinear genome alignments, while preserving or even improving sensitivity. We also
propose an original qualitative evaluation criterion for measuring the relevance of genome alignments. We used this
criterion to compare and benchmark YOC with five recent genome aligners on large bacterial genome datasets, and
showed it is suitable for identifying the specificities and the potential flaws of their underlying strategies.

Conclusions: The YOC prototype is available at https://github.com/ruricaru/YOC. It has several advantages over
existing genome aligners: (1) it is based on a simplified two phase alignment strategy, (2) it is easy to parameterize,
(3) it produces reliable genome alignments, which are easier to analyze and to use.

Keywords: Comparative genomics, Whole genome alignment, Pairwise alignment, Anchor-based strategy, Collinear
fragment chaining, Bacterial genomes
Background
The huge number of genomes sequenced every day makes
the development of effective comparison and alignment
tools ever more urgent. Indeed, many microbiological
applications rely directly on genome alignments, for
instance micro-diversity and phylogenomic analysis of
bacterial strains [1], assembly and annotation procedures
for datasets of closely-related genomes [2] or prediction of
maintenance motifs in non-model species [3]. Despite
many efforts in this field and the availability of numerous
genome aligners, some of which were specially de-
signed for bacterial genomes (e.g., MGA [4], MAUVE [5],
ProgressiveMAUVE [6], MUGSY [7], MAGIC [8]) and
others that target more complex genomes (e.g., MUMmer
[9], GRIMM-Synteny [10], CHAINNET [11], PipMaker
[12]), none is yet completely satisfactory. Because genomes
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are subjected to a variety of complex mutational processes
and rearrangements (substitutions, insertions/deletions,
inversions, duplications, translocations, etc.), whole
genome alignment (WGA) is a complex task that requires
dedicated strategies.
Classical WGA tools use a four phases, anchor-based

strategy (see Figure 1) consisting of:

� Similarity detection (P1): computes pairs of genomic
regions sharing sequence similarity, usually short,
exact (or nearly exact) matches, e.g. MUMs, MEMs.
These pairs of regions represent potential portions
of the alignment.

� Chaining (P2): selects a maximal subset of
non-overlapping matches (computed in P1) that
form the backbone of the alignment, i.e. the anchors;
the maximization criterion depends mostly on length
and similarity. As the set of anchors can be ordered
according to their genomic positions, it represents a
chain: collinear if the relative order of the anchors is
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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Figure 1 Schematic description of two whole genome alignment strategies: the classical anchor strategy and the YOC strategy. The
anchor-based strategy includes 4 phases, which are usually followed by a post-processing step to filter the erroneous parts of the produced
alignments (mainly related to the P4 “last chance alignment phase”). YOC method includes only two phases and does not require a
post-processing step.
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the same on both genomes and otherwise
non-collinear.

� Recursion (P3): any two facing regions located
between adjacent anchors on each genome are
considered as smaller sequences and are aligned
with the same procedure, i.e. by applying the first
two phases (P1 + P2) recursively with adapted
parameters, and complete the backbone with a
second, complementary set of anchors.

� “Last chance alignment” (P4): uses classical
alignment tools (e.g., ClustalW [13]) to compute
global alignments between as yet unaligned facing
regions. Alignments are performed and incorporated
in the WGA based on different criteria depending
on the aligner, for example, the difference in length
between the two regions with MGA [4].

These four phases can be clearly identified in aligners
targeting bacterial genomes, like MGA [4], which uses
exact matches and a collinear chaining algorithm, LAGAN
[14] (which is meant to deal with more divergent but still
collinear sequences), which uses local alignments, collinear
chaining and a dynamic programming alignment stage in
the fourth phase, MAUVE [5] and ProgressiveMAUVE [6],
which work with nearly exact matches and use a heuristic
that produces a non-collinear chain. MUMmer (NUCmer)
[9], which can deal with rearranged but slightly divergent
genomes, implements a variation of this strategy, i.e.
it uses exact matches that are clustered together in order
to produce a non-collinear chain, but does not implement
the fourth phase (‘last chance alignment’ phase).
MAGIC is a highly sophisticated method that can be
divided (in a very schematic manner) in two non-
trivial phases, anchoring and non-collinear chaining,
each of which is composed of numerous refinement
stages [8]. Normally, MAGIC uses annotated genes
as anchors, but can use any type of anchors as input.
In the case of eukaryotic genomes, WGA tools freely
adapt this strategy and generally use local alignments
as anchors, which are ungapped (as in CHAINNET [11])
or gapped (for GRIMM-Synteny [10], PipMaker [12]),
followed by clustering strategies, which are different from
the chaining notion as they produce possibly overlapping
clusters (and thus they do not give a true WGA). Given
that here we specifically address whole genome alignment
in bacteria, such methods are beyond the scope of the
present paper.
The application of several whole genome aligners to

large bacterial genome datasets [15,16] leads to three
major observations:

� The tuning of parameters is a critical and complex
step with many whole genome aligners. Two sets of
parameters, even if they only differ slightly, can
produce considerably different genome alignments.
The choice of ad-hoc parameter settings is
complicated and time consuming and depends on
both the scientific question and the genomes under
consideration (their number and sizes, their
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evolutionary distance, the presence or not of
rearrangements).

� Most anchor-based methods suffer from flaws that
lead to erroneous alignment of unrelated sequences.
MAUVE alignment segment is an example of an
alignment segment computed in the “last chance
alignment” phase of MAUVE [5] for two P. marinus
strains. In this alignment, regions with matching
pairs of nucleotides are in the minority, thus it is
clear that the two aligned sequences are unrelated.
Such misalignments are possible for any aligner
employing a “last chance alignment” phase if no
proper inspection of the alignments is done in
the end. Consequently, post-processing of the
genome alignments is often required for these
aligners.

� It is challenging and time-consuming to compare
and evaluate the relevance of genome alignment
results. This makes choosing the most appropriate
tool for a given species or genome sample difficult.

MAUVE alignment segment
The following segment was extracted from a MAUVE
alignment of two P. marinus strains, with the start and
end positions in the two sequences. The 137 length seg-
ment was included by MAUVE in the P4 “last chance
alignment phase”, and it is is part of the final alignment,
even though it is obvious that it aligns two unrelated
sequences.
Considering these observations, in 2001, W. Miller

[17] pointed out the development of dedicated methods
to assess the quality of genome alignments as one of the
crucial needs in comparative genomics. Thirteen years
later this problem remains open and, given the recent
efforts deployed for the Alignathon [18] competition,
more popular than ever. Assessing the quality of a whole
genome alignment is indeed a particularly difficult task,
even in the simpler case of pairwise alignment. The first
reason is that the real alignment is unknown and hence,
exact measurement of its correctness is impossible.
Secondly, alignment tools involve complex algorithms,
which are often based on heuristic optimizations, and
appropriate score functions are therefore needed to
assess their quality. The third difficulty is the large
quantity of data.
In recent years, the abovementioned issues were the

subject of intensive studies and seve
ral approaches have been proposed to bypass these limi-
tations. Two different types of approaches are possible,
see [19] for a comprehensive review. The first one con-
sists in approximating the accuracy/correctness of the
alignment. This kind of approach generally requires the
use of external data such as gene annotation data [20,21]
or simulated data [5,22]. The second approach consists in
evaluating the reliability and/or the level of confidence of
the resulting alignments. Such approaches are rooted in a
wide range of technical foundations and include
bootstrap-like strategies [23] or probabilistic models [24].
Aligning closely related bacterial genomes (for instance

strains of the same species) should be one of the simplest
cases for genome aligners, since the genomes are of
moderate size (generally 1 to 6 Mb) and divergence times
are short. Nevertheless, we observed that even in such
cases, some WGA tools fail to capture more divergent
regions, which are left out of the alignment, or conversely,
tend to include wrong alignments of unrelated regions
that need to be filtered out in a post-processing step
[15,16]. With the aim of addressing this issue, we designed
a more sensitive method for the similarity detection phase
and a strategy to avoid the inclusion of badly aligned
regions. We implemented this strategy in a new whole
genome aligner named YOC, designed for robust pairwise
alignment of collinear bacterial genomes. YOC provides
several improvements: the strategy is simplified compared
to other anchor-based tools and little parameter tuning is
needed. Moreover, its sensitivity makes it possible to
align more distantly related bacterial genomes. We
also analyzed the quality and the reliability of the
resulting alignments, which were extensively evaluated
on several bacterial datasets. To this end, we introduce a
quantitative criterion, GRA-FIL, based on the GRAPe soft-
ware [25], and applied it to benchmark several tools. We
show that this criterion measures efficiently the unreliable
parts of the alignments, thus enabling rapid comparison of
the performances of different genome aligners.

Methods
The YOC alignment method
Let us start with some considerations about the four
phases, anchor-based strategy. First, “the last chance
alignment” phase can obviously introduce unreliable
alignment regions since it does not check whether the
sequences it aligns are related. We propose to eliminate
this phase. Second, the successive phases of similarity
detection and chaining (P1, P2, P3) make parameter
tuning difficult. However, these phases were justified by
the use of short, exact (or nearly exact) matches as initial
anchors, and are required to compensate for their lower
capacity to capture more divergent regions. This choice
also explains the low genome coverage of the resulting
alignments on some very closely related but divergent
genome pairs, like for instance in the endosymbiotic
species Buchnera aphidicola.
To address this issue we propose to replace short

matches (few dozen nucleotides) with local alignments
(several hundred to several thousand nucleotides), as
initial similarities. This choice has two advantages: it
solves the observed lack of sensitivity and avoids the
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recursion phase, thereby considerably simplifying par-
ameter tuning. For these reasons, our new strategy
includes only two phases: similarity detection (P1) and
chaining (P2) (see Figure 1).

Phase 1: Similarity detection
The similarity detection phase (P1) is mainly responsible
for the sensitivity of anchor-based methods, since the
chaining phase only discards potential anchors. Therefore,
the use of misfit similarity regions (short exact or nearly
exact matches) explains the low coverage of the align-
ments even for related and similar pairs of genomes.
Based on this observation, we propose to use spaced-seed
local alignments in the first phase of the anchor-based
strategy, as they are capable of detecting larger similarity
regions that are more likely to make biological sense. We
chose YASS [26], a seed-and-extend method, to generate
these local alignments. Indeed, seed-and-extend methods
are more suitable for divergent sequences, as they find
significant similarity between sequences where short
matches fail. YASS is a DNA pairwise local alignment tool
based on an efficient and sensitive filtering algorithm that
uses a flexible hit criterion to identify groups of seeds.
Compared to the classical heuristic alignment tools
(e.g., BLAST-like), which require an exactly matching
k-mer, YASS uses the spaced seeds [27] technique,
which increases sensitivity without losing specificity.
The use of spaced seeds and local alignments (mostly
BLAST-like) is not entirely new in the WGA field: e.g.,
MAUVE and ProgressiveMAUVE use inexact but ungapped
matches as anchors, GRIMM-Synteny [10], PipMaker
[12], LAGAN [14] and LASTZ [28], which use BLAST-
like local alignments, while MAGIC [8] can be run with
YASS local alignments.
A spaced seed is a pattern of #s and _s in which a

# indicates an alignment position where a match is
needed for the seed to have a hit, while a position
with _ can be a match or a mismatch. An additional
symbol @ can be used to denote matches or particular
mismatches that correspond to transitions (purine to pur-
ine, or pyrimidine to pyrimidine). For instance #_#__# is a
spaced seed of length 6 and weight 3, which will
match an alignment window containing MdMddM where
M denotes a match and d a difference. With this notation,
a contiguous seed of length 6 has a pattern of ######. The
main advantage of spaced vs contiguous seeds is the inde-
pendence of their hits. Obviously, if a contiguous seed hits
at say position i, it will very likely hit at position (i + 1),
since the windows starting at these positions already share
five of the six required matches. The pattern of a spaced
seed forces the hits to be spread out along the alignment
and thus be more independent of one another. Provided
one looks for alignments longer than the seed length, the
probability to get at least one hit is higher for a spaced
than for a contiguous seed of equal weight [29]. This
explains why spaced seeds improve sensitivity without
losing specificity. This efficiency can be further enhanced
by combining several spaced seeds, even if optimally
spaced seeds are hard to design [30,31].
For YASS, a transition constrained seed model is

used that capitalizes on the statistical properties of
real genomic sequences. Comparative experiments
have shown that, with the same degree of selectivity
and a shorter running time, YASS is more sensitive than
traditional approaches like Gapped-BLAST. Indeed, YASS
detects similarities that cover about twice the overall
length of those found by Gapped-BLAST, while keeping
only local alignments with E-values below 10−6 [26]. For
our similarity detection phase, YASS was set up with a
commonly used pair of spaced seeds that were specifically
optimized for the comparison of bacterial genomes:
“#@_##_##_#__@_###, #_##@___##___#___#@#_#"
(see reference [30] for more details on the design of
sets of spaced seeds), and with the default E-value
threshold of 10, which is intended to cope with divergence,
regardless of how high it is.

Phase 2: Chaining
Chaining algorithms seek to optimize several criteria,
among which the total length of the chained fragments
(i.e. similarities computed during the first phase: MEMs,
MUMs, short local alignments, gene pairs, etc.), the dis-
tances between them, and the degree of rearrangement
(for methods that deal with rearrangements) [5,6,32-34].
In the case of collinear chaining (neither translocations,
nor inversions allowed), on which we focus in this paper,
chaining methods generally maximize the total length
of the chained fragments: given the set of n shared
genomic intervals, i.e. fragments, the Maximum Weighted
Chain (MWC) problem is solved in O (n log n) time by
dynamic programming, when overlaps between adjacent
fragments are forbidden [32,33].
In [35], we argued that the difficulty of using local align-

ments is that the chances that two adjacent fragments
overlap are much higher than with short matches. At that
point, we observed that such overlaps are commonly due
to randomness, to methodological reasons during the
fragment computation phase, or to biological phenomena,
like tandem repeats. To avoid discarding relevant frag-
ments in the chaining phase, it is useful to allow overlap-
ping of adjacent fragments. Strategies for dealing with
overlaps include accepting fixed, maximum length
overlaps and trimming them (like in MAUVE and
ProgressiveMAUVE) and segment match refinement
(like in [36,37]). However, overlaps vary in size from
extremely small to extremely large. Indeed, randomness
and methodological problems are mostly responsible for
short overlaps, while tandem repeats generate longer



Figure 2 A segment extracted from a MAUVE alignment of two
P. marinus strains, with the start and end positions in the two
sequences. The 137 length segment was included by MAUVE in the
P4 “last chance alignment phase”, when comparing two P. marinus
strains. Therefore, the segment is part of the final alignment, even
though it is obvious that it aligns two unrelated sequences.
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overlaps. Thus, accepting overlaps regardless of the
fragment lengths is not the right solution. To get
round this limitation, we extended the classical framework
of the MWC in [35], by authorizing overlaps between
fragments in the computed chain. We formalized the
Maximum Weighted Chain with Proportional Length
Overlap problem, where overlaps are proportional to the
length of adjacent fragments. We also introduced the first
algorithm to solve this problem (which takes quad-
ratic time as a function of the number of fragments)
and implemented it in a tool called OverlapChainer
(OC). The algorithm is based on a box representation
of a trapezoid graph [38], with an adaptation of the
sweep line paradigm to this problem. In [35], the OC
tool was tested on real data and compared to classical
chainers with respect to simple quantitative measures,
and its robustness was proved with respect to its only
parameter, the overlap ratio (default value = 10%). In
YOC, the tool presented here, we rely on OverlapChainer
(OC) for the chaining phase. Our goal here is to prove the
efficacy of this type of strategy when combined with
spaced-seed local alignments in WGA, and to analyze the
quality of the alignment results it produces.
To summarize, unlike classical WGA tools designed

for similar genomes (like MGA, MUMmer (NUCmer),
MAUVE, LAGAN, ProgressiveMAUVE), YOC focuses
on almost collinear, highly divergent pairwise WGA, and
simplifies the anchor based strategy by implementing
only the first two phases (see Figure 1), without any
refinement steps like realignment, filtering, or recursive
alignment. Although a similar, simplified, two-phase
strategy is already used in MUMmer [9], the solution
is not entirely satisfactory. Its fragment computation phase
is not appropriate for this simplified strategy because of its
poor sensitivity (as it is based on exact matches).
The YOC strategy can be described as follows. Phase

(1): YOC enhances the similarity detection phase by
computing local alignments with YASS [26]; and phase
(2): it chains the local alignments using a recent chaining
algorithm, OverlapChainer (OC) [35]. As it relies on YASS,
a pairwise local aligner, and OC, a collinear chaining
method, YOC is designed for the alignment of collinear
regions of genome pairs. However, it can be considered
as an intermediate alignment strategy (between collinear
aligners and aligners dealing with rearrangements), as it
makes it possible to include locally inversed regions in the
alignment (see Figure 2 for an example), meaning
homologous DNA segments located on the forward
strand in one genome, and on the reverse strand in the
other. This is due to a straightforward transformation of
YASS fragments before the chain is computed, namely
switching the coordinates of the inversed fragments to
make them collinear. Figure 2 shows the different cases
our chaining procedure can handle and the ones it cannot.
Genome datasets
Dataset 1 – 174 collinear pairs of bacterial genomes
We considered all collinear pairs of bacterial strains of the
same species (based on the species name), with complete
genomes like in release 5 of the MOSAIC database ([16],
http://genome.jouy.inra.fr/mosaic). This dataset includes
174 pairs of genomes (see Additional file 1 for a complete
list) that are considered to be collinear as (according to
the criteria described in [16]), they do not include either
inversions or translocations exceeding 20 kb in length.

Dataset 2–69 pairs of genomes in the Lactobacillus genus
and in the Bacillus cereus species
We performed detailed analysis of genome alignments for
14 pairs of genomes of the Lactobacillus genus and 55 pairs
of genomes of the Bacillus cereus species. These species
were chosen because they mainly include collinear ge-
nomes (without rearrangements like inversions and translo-
cations, according to the same criterion as in dataset 1) but
in some cases, are nevertheless difficult to align due to high
levels of divergence, even at the intra-species level.
Nineteen complete genomes of the Lactobacillus genus

were extracted from Genome Reviews release 128 (2011),
which included eight species with at least two complete
genomes of two different strains. Fourteen intra-species
pairwise genome alignments were produced and analyzed
in detail in this study. See Additional file 2 for a complete
list of these pairs of genomes.
Bacillus cereus is a gram-positive aerobic or faculta-

tive anaerobic spore-forming bacterium, part of the

http://genome.jouy.inra.fr/mosaic


Uricaru et al. BMC Bioinformatics  (2015) 16:111 Page 6 of 16
firmicutes group. Its chromosomes exhibit a high level
of synteny and protein similarity with limited differ-
ences in gene content [39]. Eleven complete genomes of
B. cereus were extracted from Genome Reviews release
128 (2011) and 55 pairwise genomes alignments were pro-
duced and analyzed in detail in this study. See Additional
file 3 for a complete list of these pairs of genomes.

Dataset 3–21 collinear pairs exhibiting increasing genomic
divergence
To examine the performance of WGA alignment tools
with respect to the divergence rate, we selected 21
collinear pairs of genomes from the datasets used in a
publication that introduced a measure of genome diver-
gence called MUMi [40] (see Supplementary files 1 and 2
(http://jb.asm.org/content/191/1/91/suppl/DC1) of [40]).
From the original datasets, only unique pairs without
major rearrangements were used (pairs that do not
include either inversions or translocations, according to
the criteria described in [16]). Dataset 3 was composed of
21 genome pairs from 10 different bacterial species,
exhibiting MUMi genomic distances ranging from
0.01 (very close pairs) to 0.97 (highly divergent pairs). See
Additional file 4 for a complete list of these pairs.

Dataset 4 - Lactococcus lactis case study
Lactococcus lactis is a gram-positive bacterium extensively
used in the production of buttermilk and cheese. It
includes two sub-species: L. lactis subsp. lactis and L.
lactis subsp. cremoris. As a case study, we analyzed the
results obtained with several genome aligners on the pair
composed of L. lactis subsp. lactis, IL1403 strain genome
(AE005176_GR) and L. lactis subsp. cremoris, SK11 strain
genome (CP000425_GR), which is also part of Dataset 3.
To facilitate interpretation, we used the MOSAIC data-
base to analyze and visualize the aligned regions [16] pay-
ing particular attention to their biological relevance.

Benchmarking
In this section we detail the evaluation procedure used
on the bacterial datasets presented above, with six
Table 1 Genome aligner version and parameters

Version Program/Parameters

MUMmer 3.22 ’nucmer’ (parameters’–max

MGA mgadist-2003-03-18 ’mkvtree’ (parameters’-dna
-always –clustalw)’

LAGAN 1.1 with default parameters

MAUVE 2.3.1 with default parameters ex

ProgressiveMAUVE 2.3.1 with default parameters ex

YOC 1.0 with default parameters : f
(parameter ‘overlap ratio’ :
genome aligners, including YOC. The resulting align-
ments were analyzed with respect to several qualitative
and quantitative criteria described below.

Genome aligners
Six genome aligners, all based on the anchoring strategy,
were compared on the previously described genome
datasets; two state-of-the-art aligners, MGA [4] and
LAGAN [14], clearly target collinear genomes, three
others, MAUVE [5], ProgressiveMAUVE [6] and
MUMmer [9] are able to align either rearranged or
collinear genomes whatever their type of rearrangements,
while our new method, YOC, aligns pairs of collinear
genomes (possibly including locally inversed segments
but no translocated segments). To facilitate the compari-
son of the results, we used the XMFA alignment format
produced by MAUVE and ProgressiveMAUVE aligners
(for description, see http://darlinglab.org/mauve/user-
guide/files.html) and wrote dedicated Perl scripts to
transform the output of genome aligners that do not
produce results in this format. Software versions and
parameters are listed in Table 1. Despite numerous ef-
forts, for practical reasons we were unable to include
MAGIC in our benchmark, and thus we compared YOC
to the published results of MAGIC on a dataset extracted
from [8].

Quality criteria of genome alignments
Several quantitative and qualitative criteria were used to
compare genome alignments produced by different tools
(classically used in genome alignment):

� the number of aligned segments, which represents a
measure of the fragmentation of the genome alignment,

� the length of the alignment expressed as the number
of aligned positions,

� the number of identical residues in the alignment,
which is the only value that is easy to compare and
analyze between aligners,

� the mean coverage of the alignment, a classical
criterion defined as the mean proportion of non-gap
gap = 500 –coords’); delta-filter (options’-q -r -o 0’) and’show-aligns’.

-lcp -suf -tis -indexname’) and’mga.128seqs’ (parameters’-l 50 20 -gl 3000

cept for’–weight = 5000’ and’–output-alignment’ for XMFA file output

cept for’–output-alignment’ option for XMFA file output

or ‘YASS’ (parameter ‘E-value threshold’: 10) and for Overlap Chainer
10%).

http://jb.asm.org/content/191/1/91/suppl/DC1
http://darlinglab.org/mauve/user-guide/files.html
http://darlinglab.org/mauve/user-guide/files.html
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characters aligned in each genome, i.e. mean
between the matches +mismatches in the aligned
regions of genome 1 and 2, divided by the size of
the genome 1, respectively 2,

� the percentage of identities in the alignment, defined
as the number of aligned identical residues in the
alignment divided by the length of the alignment,

� the percentage of gaps in the alignment defined as
the number of gap positions in the alignment
divided by the length of the alignment,

� the percentage of mismatches in the alignment
defined as the number of aligned non identical
residues in the alignment divided by the length of
the alignment.

An original quality criterion, named GRA-FIL, was
defined based on a filtration procedure consisting in
post-processing raw alignments with the GRAPe [25]
software. GRAPe is a probabilistic genome aligner capable
of quantifying the uncertainty of each position of the
alignment with a posterior probability. GRAPe was
applied on each pairwise genome alignment obtained by
each aligner with the aim of filtering the parts of the
alignments that are suspected to be spurious and
incorrectly aligned. In order to cope with the lengths
of the sequences (as GRAPe is too slow to be systematically
applied at large scale), we partitioned the alignments in
adjacent, 500 position length blocks, and used GRAPe to
realign every such short region. The procedure consists in
eliminating (filtering) blocks that have at least half of their
positions with a posterior probability of being incorrectly
aligned greater than 0.95 (i.e. regions that are predicted by
GRAPe to be unalignable or to be part of insertions
and gaps). Using this procedure, for each alignment,
we computed the length of the regions filtered with
GRAPe (as the number of aligned positions or as the
percentage of the alignment length), a criterion we named
GRA-FIL, which is a precise indicator of the proportion of
low-quality regions in a genome alignment. The GRA-FIL
procedure is very similar to the one used in the
Alignathon competition, which is based on another
probabilistic aligner, PSAR [41].
Finally, we defined a criterion of biological relevance

based on the analysis of orthologous gene positions in the
aligned regions. The orthologous genes were extracted
from the OMA database [42]. We measured the number
of known orthologous genes entirely included in the same
aligned segment, the number of orthologous genes
entirely included in unaligned regions, and the number of
these genes that overlap the two types of segments. The
underlying assumption is that the most accurate and
biologically relevant alignment is the one including a
maximum number of orthologous genes (assumed to
be vertically inherited) in the same aligned segments.
Results
Below we summarize and discuss the results we obtained
with our two-phase anchor based strategy, YOC
(described in Section “The YOC alignment method” and
Figure 1), compared to five classical anchor based tools on
the three datasets described above. The comparisons
were conducted based on the criteria defined in Section
“Quality criteria of genome alignments”. To this we add a
comparison of YOC results with MAGIC results on a
dataset extracted from [8] (see subsection “Magic dataset
case study”).
On Dataset 1, we observed high variability of the overall

quantitative results obtained with the different tools, e.g.
the difference between the mean coverage obtained with
MGA and that obtained with MAUVE ranged from −24%
to 2% (meaning that there is at least one pair of genomes
for which MGA’s mean coverage is 24% below that of
MAUVE, and at least one pair for which MGA’s coverage
exceeds that of MAUVE by 2%).
Given that similar tools yield such different outputs,

results cannot be directly used, and judging the best
alignment tool for a given pair becomes extremely difficult.
Indeed, the results depend to a great extent on the profile
of the genomes: their divergence rate, as well as whether or
not they are collinear. Moreover, quantitative results alone
are not enough to judge the quality of an alignment.
To address this question, we further examined the
quality of the alignments using the GRA-FIL criterion
described in the previous section.

Global quality of genome aligners (Dataset 1)
The results obtained with four tools: MGA, LAGAN,
MAUVE and YOC, in terms of mean coverage before
and after filtering with the GRA-FIL criterion are listed
in Table 2 for the 174 pairs of genomes in Dataset 1 (see
Additional file 1 for more details). As can be seen in
Table 2, the mean coverages ranged from 74% to 100%
for MGA, MAUVE and YOC, while LAGAN achieved
100% mean coverage each time. However, when we look
at the mean coverages after filtering with the GRA-FIL
criterion, we observe that, taking MAUVE for example, in
some cases coverage drops to 58%. Indeed, if we analyze
the mean coverage that was lost by filtering, we deduce
that MGA, LAGAN and MAUVE can produce important
quantities of spurious alignments: up to 13% of the align-
ments were filtered for MGA, respectively 21% for
LAGAN and 35% for MAUVE. LAGAN’s results can be
explained by the fact that it leaves no regions unaligned,
regardless of their similarity (in the final phase, it aligns
every remaining pair of unaligned regions with a dynamic
programing alignment procedure). MAUVE also forces
the alignment of unrelated sequences and its authors are
aware of the problem, which is discussed in [20], and was
claimed to be solved in ProgressiveMAUVE [6] (which



Table 2 Evaluation of the quality of the alignment results produced by four genome aligners on 174 collinear pairs of
bacterial genomes

Raw coverage (%) Coverage after GRAPe filtering (%) GRA-FIL criterion (%)

Average Min Max Average Min Max Average Min Max

MGA 91.5% 74% 99% 89% 70% 99% 2.5% 0% 13%

LAGAN 100% 100% 100% 95% 79% 100% 5% 0% 21%

MAUVE 95.2% 78% 100% 92.8% 58% 99% 2.4% 0% 35%

YOC 93.3% 74% 100% 92.5% 72% 100% 0.8% 0% 4%

Values correspond to the average, the minimum and the maximum alignment coverages before and after applying the GRA-FIL filtering procedure, as well as the
average, the minimum and the maximum for the GRA-FIL criterion (i.e., the percentage of likely erroneous alignment positions). Full results are given in Additional file 1.
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includes a post-alignment filtration step). Finally, YOC
clearly exhibits the lowest levels of alignment filtered by
GRAPe (with up to 4% filtered and 0.8% on average). To
conclude, all four phases, anchor-based tools that do not
post-filter their alignments include incorrectly aligned
regions in their output. In contrast, with only two phases,
YOC considerably reduces the need for filtration.

Assessment of the reliability of intra-species pairwise
genome alignments (Dataset 2)
Based on the preliminary results listed in Table 2, we
decided to compare five genome aligners, MGA, MUMmer
(NUCmer), MAUVE, ProgressiveMAUVE and YOC, using
the intra-species pairs of genomes from Dataset 2.
Given that MUMmer (NUCmer) uses exact matches
(unique or not) and that it does not include the ‘last
chance alignment phase’, the length of its alignment
can serve as a lower bound of the number of alignable
positions. Clearly, the GRAPe filtration should only affect
its results marginally. Two sub-datasets of the Dataset 2
were extensively analyzed, the results are listed in Tables 3
and 4 (see Additional files 2 and 3 for more details).
Table 3 presents the results regarding the alignment
quality before and after filtration of alignments with
the GRAPe procedure. These results indicate that the
genome aligners can be grouped in three categories:

1) MUMmer (NUCmer) produced almost perfect
alignments (99.9% of identity for Lactobacillus,
92.3% for Bacillus cereus) of limited length: on
average 2.0 Mb for Lactobacillus (mean coverage:
76.6%) and 3.6 Mb for Bacillus cereus (mean
coverage: 69.4%). NUCMER alignments are split into
a large number of aligned segments (108 aligned
segments for Lactobacillus and 621 for Bacillus
cereus). As expected, the filtration procedure has
almost no effect on NUCMER alignments.

2) MAUVE and ProgressiveMAUVE yielded the
longest alignments (on average 2.9 million positions
for Lactobacillus and 6.0 million positions for
Bacillus cereus, i.e. 100% coverage) including only a
few long segments (respectively 2/1 on average with
MAUVE/ProgressiveMAUVE in Lactobacillus, and
3/33 with MAUVE/ProgressiveMAUVE in Bacillus
cereus). Very long segments suggest that large
genomic regions are orthologous and well
conserved. However, we observed that: (i) the
percentage identity of the alignments was quite low
especially in B. cereus (mean: 65%), (ii) the filtration
by GRAPe considerably shortens their alignment
and splits them into numerous segments. Indeed,
after filtration, their mean alignment lengths
dropped to 2.4 million positions for Lactobacillus
(mean coverage: 91%), and to 4.4 million positions
(mean coverage 83% with MAUVE) or
4.2 million positions (mean coverage 81% with
ProgressiveMAUVE) for Bacillus cereus.

3) MGA and YOC behaved differently: filtration had a
moderate effect in terms of alignment length or
number of alignment segments. The original
alignment lengths of 2.3 or 2.4 (MGA and YOC
respectively) were reduced to 2.2 million positions
for Lactobacillus (around 82% of mean coverage
with MGA and 89% of mean coverage with YOC).
The results for the Bacillus cereus group were similar
with the two aligners, with a length after filtration of
around 4.2 million positions (around 80 and 81% of
mean coverage with MGA and YOC) and a high
percentage identity (around 90% on average). Note
that the number of identities with all the aligners
remained almost the same after filtration, suggesting
that solid regions of the alignment are kept and that
removed regions had much lower levels of identities.
Moreover, after filtration, the alignment lengths
obtained with MAUVE and ProgressiveMAUVE
were equal to those produced with YOC.

Table 4 summarizes the amount of alignment filtered by

GRAPe with each aligner and all genome pairs of both
datasets and confirms these results. It turns out that the
average amount of positions filtered by the GRAPe proced-
ure (GRA-FIL) is very high in both MAUVE (449.655 posi-
tions = 8.31% for Lactobacillus and 1.664.114 positions =
22.45% for Bacillus cereus) and ProgressiveMAUVE



Table 3 Quality of raw and filtered genome alignments produced by five genome aligners according to classical
quality measures

Lactobacillus 14 intra-species alignments

Mean number of segments
before filtering

Mean alignment length
[Cov] before filtering

Mean number of identities
[%id] before filtering

NUCMER 108 2 010 305 [76.6] 1 985 563 [99.9]

MGA 33 2 267 771 [83] 2 155 141 [95.2]

MAUVE 2 2 895 734 [100] 2 389 905 [83.7]

PMAUVE 3 2 898 388 [99.7] 2 376 004 [83.1]

YOC 70 2 427 113 [90.8] 2 338 377 [96.2]

Mean number of segments after
filtering

Mean alignment length [Cov] after
filtering

Mean number of identities [%id] after
filtering

NUCMER 108 2 010 302 [76.6] 1 985 561 [99.9]

MGA 91 2 190 409 [81.6] 2 146 901 [98.0]

MAUVE 134 2 446 079 [91.7] 2 370 060 [96.8]

PMAUVE 111 2 419 589 [91] 2 365 075 [97.7]

YOC 109 2 368 669 [88.7] 2 328 734 [98.2]

Bacillus cereus 55 intra-species alignments

Mean number of segments
before filtering

Mean alignment length [Cov]
before filtering

Mean number of identities [%id]
before filtering

NUCMER 621 3 624 990 [69.4] 3 371 181 [92.3]

MGA 132 4 544 305 [83.5] 3 827 363 [83.4]

MAUVE 1 6 082 756 [100] 3 963 239 [65.5]

PMAUVE 33 6 043 087 [100] 3 869 392 [64.3]

YOC 313 4 448 646 [83.4] 3 907 562 [87.1]

Mean number of segments
after filtering

Mean alignment length [Cov]
after filtering

Mean number of identities [%id]
after filtering

NUCMER 621 3 624 978 [69.4] 3 371 172 [92.3]

MGA 418 4 186 007 [79.8] 3 790 894 [89.7]

MAUVE 564 4 418 643 [83.3] 3 884 906 [87.0]

PMAUVE 522 4 269 387 [81.2] 3 824 790 [88.7]

YOC 470 4 266 745 [81.5] 3 887 006 [90.3]

Part 1 of the table corresponds to the 14 intra-species pairwise genome alignments of the Lactobacillus genus. Part 2 of the table corresponds to the 55 intra-species
pairwise genome alignments of the Bacillus cereus species. The software compared are: MUMmer (NUCmer), MGA, MAUVE, ProgressiveMAUVE (PMAUVE) and YOC. Values
correspond to classical quality criteria (mean number of segments, mean alignment length, mean alignment coverage [Cov], mean number of identities and mean percent-
age of identities [%id]) before and after the GRAPe filtration procedure described in Section “Quality criteria”. Full results are given in Additional files 2 and 3.
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(478.799 positions = 8.66% for Lactobacillus and 1.773.700
positions = 24.70% for Bacillus cereus), compared with
MGA (1.47% and 7.63% for Lactobacillus and Bacillus ce-
reus respectively) and YOC (1.27% and 4.50% for Lactoba-
cillus and Bacillus cereus respectively). With Bacillus
cereus, an average of 22%, resp. 25%, of the MAUVE/Pro-
gressiveMAUVE alignments were considered unreliable
and removed by GRA-FIL, which filtered only 4.5% of
YOC alignments. Surprisingly, the filtration ratio for Pro-
gressiveMAUVE was high despite the fact that Progressi-
veMAUVE already includes a quality filtering step.
To summarize, based on the GRA-FIL quality criterion,

the results in Tables 3 and 4 suggest that MAUVE and
ProgressiveMAUVE extend their alignments by including
regions of questionable similarity, while in only two phases,
YOC produces the most reliable alignments of all. More-
over, according to its coverage of alignments and the num-
ber of identities, YOC directly outputs alignments similar
to those obtained with MAUVE and ProgressiveMAUVE
after filtration with GRAPe. It is also interesting to note an
unexpected result: ProgressiveMAUVE does not systemat-
ically produce better results than MAUVE. This may be
due to the fact that ProgressiveMAUVE was designed and
tuned for the alignment of multiple genomes.

Aligner performances with respect to the genome
divergence (Dataset 3)
The way of life of a bacterium may affect the rapidity at
which its genome diverges within a species. This raises
an important question: how does the divergence level of



Table 4 Quality of genome alignments produced by five genome aligners according to our new qualitative criterion

GRA-FIL average (in number of pos. and [%]) GRA-FIL minimum (in number of pos.) GRA-FIL maximum (in number of pos.)

Lactobacillus 14 intra-species alignments

NUCMER 2 [0.00%] 0 5

MGA 77 362 [1.47%] 59 157 619

MAUVE 449 655 [8.31%] 0 802 632

PMAUVE 478 799 [8.66%] 0 866 011

YOC 58 445 [1.27%] 0 125 821

Bacillus cereus 55 intra-species alignments

NUCMER 10 [0.00%] 0 158

MGA 358 298 [7.63%] 143 412 436 054

MAUVE 1 664 114 [22.45%] 592 079 2 950 027

PMAUVE 1 773 700 [24.70%] 666 595 3 390 532

YOC 181 900 [4.5%] 71 851 262 813

Part 1 of the table corresponds to the 14 intra-species pairwise genome alignments of the Lactobacillus genus. Part 2 of the table corresponds to the 55
intra-species pairwise genome alignments of the Bacillus cereus species. The software compared are: MUMmer (NUCmer), MGA, MAUVE, ProgressiveMAUVE
(PMAUVE) and YOC. The values in the table correspond to the average, the maximum and the minimum results using the GRA-FIL criterion, i.e. the number and
the percentage of the likely erroneous alignment positions that were filtered by the GRAPe filtration procedure described in Section “Quality criteria”. Full results
are given in Additional files 2 and 3.
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a genome pair impact the performance of WGA? Using
a dataset for which the divergence level was previously
measured at the intra-species level [40], we applied four
WGA tools and compared them using four criteria.
Results are shown in Figure 3 (see Additional file 4
for more details): coverage (Figure 3a), percentage of
identities (Figure 3b), percentage of gaps (Figure 3c), and
percentage of mismatches (Figure 3d) of the alignments.
Results in Figure 3a indicate that increasing levels of
divergence have little effect on alignment coverage.
MAUVE and ProgressiveMAUVE had the highest
coverage values, close to 100%, regardless of the genome
divergence levels. A slightly linear decrease of MUMER/
YOC coverages was observed with an increase in the level
of divergence. YOC coverages were between those of
MAUVE/ProgressiveMAUVE and MUMmer. Figure 3b
shows that increasing the level of divergence mainly
affected the alignment mean percentage of identity for all
four tools (which decreases linearly), but had more drastic
effects on MAUVE and ProgressiveMAUVE alignments
than on YOC and MUMmer alignments. To better
understand the origin of this result, we computed the
percentage of gaps (Figure 3c) and the percentage of
mismatches (Figure 3d) of the aligned regions. Results
indicate that with all four tools, the number of mis-
matches increases with the divergence rate (Figure 3d).
But more surprisingly, MAUVE and ProgressiveMAUVE
alignments included high rates of gap positions, which
reached 40% of the alignment, even for moderate levels of
divergence (divergence > 0.2, according to MUMi values).
This phenomenom was not observed in either MUMmer,
or in YOC alignments, for which the proportion of gaps
remained low, regardless of the divergence rate. To
summarize, taken together, these results indicate that
YOC offers a good compromise between coverage and
the percentage of identity, at any divergence rate.
Finally, Figure 4, shows the results of the analysis of the

effects of divergence on the computational ressources
(time and memory) for each of the four tools. As one
can see in Figure 4, there does not appear to be any
correlation between divergence and the use of com-
putational resources in any of the tools. While YOC’s
needs in terms of time may exceed those of the other
approaches, in terms of memory its needs are generally
lower. The high running times of YOC are explained
by the way YASS is used, namely with an E-value of
10, in order to avoid any filtering before the chaining
phase and to make it possible to detect similarity
even in extremely divergent regions. Due to this tuning,
YASS can produce up to several hundred thousand
fragments (especially in close genomes with numerous
repeated regions), thus the time needed to process
these fragments may be high but remains within rea-
sonable limits.
Lactococcus lactis case study (Dataset 4)
Table 5 and Figure 5 show the results of a detailed ana-
lysis of three genome alignments produced by MAUVE,
ProgressiveMAUVE and YOC on two Lactococcus lactis
genomes, which were post-processed by filtering the
low quality alignment regions (with more than 20
consecutive gaps) and the weakly conserved regions
(with less than 76% of identity). The filtered alignments,



Figure 3 Schematic representation of the OC chaining procedure, depicting the cases OC can deal with and the ones it cannot. Overlap
Chaining (OC) fragment chaining procedure illustrated schematically with a dotplot on an example composed of ten fragments (i.e., segments
around the diagonal of the dotplot and their projections on the two axis), among which seven fragments were taken in the chain (i.e., dark blue,
light blue, dotted blue and violet ones). The main chaining cases are summarized in the figure in four ellipses, namely: (a) a simple case
represented by the two dark blue, collinear, non-overlapping fragments (classical chaining case) plus a local inversion (represented by the violet
fragment), which becomes collinear after inversion with OC, and thus it is taken in the chain; (b) a translocation depicted by two red fragments:
due to the collinearity constraints, only one fragment among the two can be taken in the chain, thus the algorithm prefers the “strongest” one,
i.e. the dotted blue; (c) three overlapping fragments, among which only two are accepted in the chain (the light blue ones) as they overlap on
less than 10% of their respective length; the red fragment is discarded as its overlaps are above the accepted threshold; (d) a double inversion
represented by two inversed fragments from which only one can be taken in the chain (the violet one); by inversing the two fragments, OC
generates a translocation-like situation, and thus it can only consider one fragment among the two.
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i.e. backbone alignments, for each of the three tools
were incorporated in the Mosaic database [16] to facilitate
the comparison. When analyzing the genome alignments
we refer to two types of regions that partition the
compared bacterial genomes: backbone segments (i.e.
regions conserved in both genomes) and variable segments
(i.e. regions that are either specific to or variable in one
of the aligned genomes) [16]. The backbone alignment is
composed of all the aligned backbone segments taken
together.
The measures of the reliability of the backbone

alignments obtained using the basic indicators (number of
segments, mean coverage and percentage of identity)
differed considerably between the three aligners: MAUVE
tended to produce a highly fragmented (3121 segments)
and low-coverage (64% mean coverage) but a highly
conserved backbone (89% identity), the results of
ProgressiveMAUVE were intermediate, with a less
fragmented backbone (759 segments), medium coverage
(77%) and good percentage of identity (86%). YOC pro-
duced the best results, with few segments (165), high
coverage (79%) and a good percentage of identity (85%).
The biological relevance of the three alignment back-

bones was evaluated by analyzing the position of the
orthologous genes in the backbone segments. The re-
sults in Table 5 indicate that 92% of the orthologous
genes are correctly included in the YOC backbone, com-
pared to only 27% in the MAUVE backbone. Indeed, in
MAUVE, 68% of the orthologs are split between aligned
and unaligned regions (i.e., backbone and variable



Figure 4 Comparison of MUMmer (NUCmer), MAUVE, ProgressiveMAUVE and YOC alignments on 21 pairs of genomes of increasing
divergence. Plots represent alignment mean coverage (a), percentage of identity (b), percentage of gaps (c), and percentage of mismatches
(d), with respect to genome divergences measured with MUMi values (X-axis). Linear (a, b, d) and logarithmic (c) regression curves are plotted
together with raw values for the 21 aligned genome pairs. Full results are given in Additional file 4.
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segments). ProgressiveMAUVE produced quite good re-
sults, with 85% of the orthologous genes completely and
correctly included in the backbone segments. Even
though in terms of the total number of orthologous po-
sitions included in the alignment backbone (this means
taking into account orthologs that overlap both back-
bone and variable segments) ProgressiveMAUVE ob-
tained better scores than YOC (97.4% compared to
95.2%), the corresponding ProgressiveMAUVE backbone
segments tended to hatch the orthologous genes and
were less relevant from a biological viewpoint. This
phenomenon is clearly illustrated in Figure 5, which
shows the backbones of MAUVE, ProgressiveMAUVE,
and YOC. The backbones of the first two are split in
smaller segments than that of YOC. Indeed, most ortho-
logs do not fit in one segment in MAUVE and Progressi-
veMAUVE alignments, while they do in those of YOC.

MAGIC dataset case study
As we were unable to run MAGIC, we applied YOC on
a bacterial set used to assess MAGIC’s performance in
[8] (i.e., the 12 pairs of genomes listed in Tables three



Table 5 Lactococcus lactis case study

MAUVE ProgressiveMAUVE YOC

Lactococcus lactis IL1403 compared to SK11

#Backbone segments 3121 759 165

Mean coverage 64% 77% 79%

Backbone identity% 89% 86% 85%

#included orthologs 370 [27%] 1 173 [85%] 1 287 [92%]

#overlapping orthologs 957 [69%] 193 [14%] 33 [2%]

#excluded orthologs 68 29 75

Orthologs coverage 82.9% 97.4% 95.2%

Basic indicators and biological relevance of three genome alignments
(post-processed into backbone segments) produced by MAUVE,
ProgressiveMAUVE and YOC for the comparison of two Lactococcus lactis
genomes: the subsp. lactis. IL1403 strain genome and the subsp. cremoris. strain
SK11 genome. The criteria are the number of backbone segments (#Backbone
segments), the mean coverage of the backbone (Mean coverage), the percentage
of identity of the backbone (Backbone identity%), the number of orthologs
included in the backbone (#included orthologs), overlapping the backbone
(#overlapping orthologs) and excluded from the backbone (#excluded orthologs),
and the orthologous cumulative length coverage in the backbone (Orthologs
coverage) The orthologous genes were extracted from the OMA database [42].
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and six of MAGIC paper [8]). MAGIC’s raw results on this
dataset were extracted as such from [8] and correspond to
the number and the coverage of Reordered Free (RF)
segments obtained from curated pairs of orthologs refined
in a multi-step pre-processing phase and iteratively
post-processed in a clustering phase. We compared these
values to YOC raw fragment number and coverage. Our
results showed lower performances by YOC for 11 out of
Figure 5 Comparative time and memory performances on Dataset 3,
MUMmer (NUCmer), MAUVE and ProgressiveMAUVE, on Dataset 3, YOC pre
case), regardless of the divergence level (computed with MUMi distance m
computational measures of any of the four tools.
the 12 pairs (YOC coverage: 15 to 84%, MAGIC/RF
coverage: 34 to 99%). But interestingly, for one of the
12 pairs (Buchnera aphidicola), YOC’s performance was
better according to the alignment coverage (YOC: 98-99%,
MAGIC/RF: 93%). Even though the results are not entirely
comparable between the two tools and the dataset clearly
does not fit YOC’s application area (11 among the 12 pairs
are highly rearranged), they confirm YOC’s ability to align
highly divergent genomes. Indeed, MAGIC is a versatile
and sophisticated tool that, unlike YOC, appears to
be perfectly adapted to dealing with rearrangements
(as we observed in 11 out of the 12 pairs). Nonetheless, on
the Buchnera aphidicola pair, which is highly divergent
but rearrangement free, YOC showed a clear advantage
over MAGIC with respect to coverage. For complete
results see the Additional file 5.

Discussion
In this paper, we present a new tool for pairwise alignment
of collinear genomes, called YOC, which includes only two
phases of the classical four phase anchor-based strategy:
the first for detecting local alignments as potential anchors
and the second to chain the similarities that will form the
alignment. This simplified algorithm leaves out recursion
and avoids the "last chance alignment” phase.
We compared and benchmarked YOC with several

well-known whole genome aligners on a priori easy
cases: pairwise alignments of bacterial genomes of the
same species. To evaluate the impact of the “last chance
with respect to increasing divergence levels. Compared to
sents higher running times but lower memory needs (except for one
easure). Indeed the divergence level does not seem to affect the
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alignment” phase, we use GRAPe to filter out unreliable
parts of the alignments on several datasets. We observed
that MGA, MAUVE and ProgressiveMAUVE, which all
include the third and fourth phases of the anchor-based
strategy, yielded alignments with high genome coverage,
but of which a considerable proportion was detected as
being unreliable. On average, of all B. cereus pairs, 20%
of ProgressiveMAUVE’s alignment was filtered out. After
filtration of these regions, the percentages of identity of
the original and final alignments were almost the same,
strongly suggesting that regions filtered by GRAPe are
of poor quality and should be removed. It also turns out
that after filtration, these alignments exhibited the same
coverages as those output by YOC. In contrast, alignments
computed with YOC were much less altered by filtration,
e.g. only 4.5% on average over all B. cereus cases. This
conclusion was corroborated on Dataset 3, which revealed
MAUVE’s and ProgressiveMAUVE’s tendency to include
an increasing number of mismatches and gaps for
higher divergence levels, compared to YOC, which
offers a good compromise between coverage and per-
centage of identities.
This is in favor of the simpler, two phases, strategy

implemented in YOC. Recursion is avoided by the use of
more sensitive local alignments. YOC does less work but
achieves similar levels of coverage and identity to a sophis-
ticated aligner like ProgressiveMAUVE. Moreover, it
captures the pairs of regions that can be reliably aligned.
This was confirmed by looking at the positions of ortholo-
gous genes in the alignment backbones of L. lactis
genomes. YOC alignments were those that included the
largest numbers of complete orthologs in the aligned
regions. Finally, its alignments comprised fewer segments
than those of MGA, MAUVE, or ProgressiveMAUVE.
YOC uses YASS, a highly sensitive local alignment

software in phase one, and OverlapChainer, a chaining
algorithm allowing for proportional overlaps between
the anchors in phase two. Both procedures are relatively
fast, use little memory and have few parameters to tune.
Although it is not the ultimate genome aligner, we
argue that in practice, YOC combines important
advantages:

1) Simplicity of the algorithm: only similarity detection
and chaining are performed, which avoids including
badly aligned regions.

2) Simplicity of use: as the spaced seeds are already
optimized for bacterial genomes, YOC only requires
the tuning of two parameters: (i) the E-value threshold
for YASS, the higher the better if the goal is to ensure
high sensitivity regardless of the level of divergence,
and (ii) the overlap ratio for the chaining algorithm
even though, as shown in [35], OC results are highly
robust with respect to this parameter. MGA, MAUVE,
and ProgressiveMAUVE include additional parameters
linked to the four phases strategy, for instance the
lengths of the matches that are used in the first and
the third phases (P1 and P3) are critical. Moreover,
the parameters of MAUVE/ProgressiveMAUVE need
to be adjusted to the level of nucleotide divergence
among the genomes to be aligned, even at the
intra-species level. Therefore MGA and MAUVE/
ProgressiveMAUVE are difficult to incorporate in
large-scale automated studies. The use of local
alignments selected on their E-value makes YOC
relatively independent of this problem. Evidence for
this is the higher coverages achieved with YOC on
more divergent species like L. lactis.

3) Simpler genome alignment result: the dramatically
lower number of alignment segments and,
consequently, an increase in their size compared to
concurrent aligners (see L. lactis case study). Indeed,
it is not trivial to examine, to check, or to use an
alignment split into a large number of segments.

These features make YOC simpler and easier to use and
to parameterize.
In addition to YOC, we provide a large benchmark

of several genome aligners and introduce an original
criterion, GRA-FIL, to evaluate the quality of a genome
alignment. The filtration procedure we developed makes
it possible to obtain a high-quality alignment backbone as
a result of the post-processing of the raw alignments.
Concerning limitations, YOC does not deal with com-

plex rearrangements, e.g. translocations, is designed for
pairwise alignment only, and lacks a user graphic interface
to visualize the results. Not dealing with translocations
limits its use to collinear genomes, thus mainly (but not
restricted to) bacteria, on which we have focused in this
paper. Indeed, although less numerous than bacterial
genomes, collinear eukaryotic genomes (or collinear parts
of genomes) can also be compared with YOC, as the size
of the genomes is not a direct limitation of the method.
Unfortunately, extending the framework to deal with
rearrangements means moving to a NP-complete prob-
lem, which becomes even more complex when propor-
tional overlaps between fragments are accepted. In this
context, multiple alignment is yet another layer to add
to the complexity of the task, which seems premature
given that pairwise alignment is not yet completely
solved. Regarding the lack of a graphic interface, several
tools like ACT [43], Artemis [44], GBrowse [45] or
MOSAIC [16], propose adaptable graphical viewers
that can be used with YOC.
Finally, our study identified several difficulties in com-

paring WGA tools. Some criteria are indeed difficult to
compare. For example, the number of aligned segments,
a measure of the alignment fragmentation, is not directly
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comparable between MAUVE, ProgressiveMAUVE and
the other genome aligners: for MUMmer (NUCmer),
MAUVE and ProgressiveMAUVE it represents the num-
ber of Locally Collinear Blocks (LCBs) in the alignments,
i.e. roughly the number of inversions and translocations;
for MGA and YOC, it is the number of segments
that are interrupted by insertions/deletions and local
inversions (for YOC only). Consequently, we still need
dedicated resources, like the Mosaic database [16], to
incorporate and compare genome alignments according
to unified criteria.

Conclusion
YOC is an efficient and sensitive new alignment software,
which is easy to use and fast. It produces reliable pairwise
bacterial genome alignments using a simpler strategy than
most existing tools.

Additional files

Additional file 1: Full results for Dataset 1, including 174 pairs of
collinear genomes (45 bacterial species) aligned with YOC, MGA,
MAUVE and LAGAN. Columns show accession numbers (Ident), length
of the alignment in kb (Len), mean coverage in % (Cov%), mean percentage
of identity (Id%), mean coverage in % after GRAPe filtering (CovF%), and
mean percentage of identity after GRAPe filtering (IdF%) for YOC, MGA,
MAUVE and LAGAN alignments.

Additional file 2: Full results for Dataset 2, on the subset
containing 14 pairs of genomes of the Lactobacillus genus, aligned
with NUCMER, MGA, MAUVE, ProgressiveMAUVE and YOC. Columns
describe each genome (accession number, length, species/strain name) and
all the indicators used: number of segments (Segments), length of the
alignment (AlignLength, in number of positions), mean coverage (COV, in %),
number of identities (Ident in number of nucleotides) and mean percentage
of identity (mean %id) for NUCMER, MGA, MAUVE, ProgressiveMAUVE
(PMAUVE) and YOC alignments before (raw) and after GRAPe filtering.

Additional file 3: Full results for Dataset 2, on the subset
containing 55 pairs of genomes of the Bacillus cereus species,
aligned with NUCMER, MGA, MAUVE, ProgressiveMAUVE and YOC.
Columns describe each genome (accession number, length, species/
strain name) and all the indicators used: number of segments (Segments),
length of the alignment (AlignLength, in number of positions), mean
coverage (COV, in %), number of identities (Ident in number of nucleotides)
and mean percentage of identity (mean %id) for NUCMER, MGA, MAUVE,
ProgressiveMAUVE (PMAUVE) and YOC alignments before (raw) and after
GRAPe filtering.

Additional file 4: Full results for Dataset 3, including 21 collinear
pairs exhibiting increasing genomic divergence, aligned with YOC,
MUMmer (NUCmer), MAUVE and ProgressiveMAUVE. Columns
describe each genome (species/strain name, accession number, length),
MUMi distance values, mean coverage of the alignment, percentage of
identities of the alignment (%ident), percentage of gaps in the alignment
(%gapAlignt), percentage of mismatches in the alignment (%mismatch
alignt) for MUMmer, MAUVE, ProgressiveMAUVE (PMAUVE) and YOC.

Additional file 5: Comparison of YOC and MAGIC results on 12
bacterial genome pairs. The dataset was extracted from [8] and
includes ten genome pairs corresponding to Table three of [8] and two
distantly related bacteria pairs (Chlamydia and Bacillus) obtained from
Table six of [8]. Columns give the type of pairs, the species name, the
number of aligned segments produced by YOC, the number of Reorder
Free (RF) segments produced by MAGIC and coverage as a percentage of
the genome length (computed on the fragments that are part of the
chain for YOC, and on the RF segments for MAGIC).
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