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Abstract. Despite crucial recent advances, the problem of frequent itemset min
ing is still facing major challenges. This is particularly the case when: i) the min
ing process must be massively distributed and,; ii) the minimum supjbint S up)

is very low. In this paper, we study the effectiveness and leverageecific data
placement strategies for improving parallel frequent itemset miningMPper-
formance in MapReduce, a highly distributed computation frameworloftey-

ing a clever data placement and an optimal organization of the extraction alg
rithms, we show that the itemset discovery effectiveness does notdepignd

on the deployed algorithms. We propose ODPR (Optimal Data-ProcéstioRe
ship), a solution for fast mining of frequent itemsets in MapReduce n@aihod
allows discovering itemsets from massive datasets, where standatidrs®ftrom

the literature do not scale. Indeed, in a massively distributed envirantherar-
rangement of both the data and the different processes can makieliaé jgb
either completely inoperative or very effective. Our proposal has levaluated
using real-world data sets and the results illustrate a significant scaletaipexb
with very low MinSup, which confirms the effectiveness of our approach.

1 Introduction

With the availability of inexpensive storage and the prggrhat has been made in data
capture technology, several organizations have set uplasgg databases, known as
Big Data. This includes different data types, such as bssioe scientific data[1], and
the trend in data proliferation is expected to grow, in galtr with the progress in
networking technology. The manipulation and processinthe$e massive data have
opened up new challenges in data mining [2]. In particulagdient itemset mining
(FIM) algorithms have shown several flaws and deficienciesnvprocessing large
amounts of data. The problem of mining huge amounts of dateisly related to the
memory restrictions as well as the principles and logic hel#IM algorithms them-
selves|[3].

In order to overcome the above issues and restrictions imnmiarge databases,
several efficient solutions have been proposed. The masifisent solution required
to rebuild and design FIM algorithms in a parallel manneyirg on a specific program-
ming model such as MapReducé [4]. MapReduce is one of the popstlar solutions

* This work has been partially supported by the Inria Project Lab Hemera.
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for big data processin@][5], in particular due to its autdmatanagement of parallel
execution in clusters of commodity machines. Initially posed in[[6], it has gained in-
creasing popularity, as shown by the tremendous succesadufdib [ 7], an open-source
implementation.

The idea behind MapReduce is simple and elegant. Given art filp, and two
map and reduce functions, each MapReduce job is executawimain phases. In the
first phase, called map, the input data is divided into a sepbfs, and each split is
processed by a map task in a given worker node. These tasksthppmap function
on every key-value pair of their split and generate a set t@frinediate pairs. In the
second phase, called reduce, all the values of each int@tadey are grouped and
assigned to a reduce task. Reduce tasks are also assigneiké&y machines and apply
the reduce function on the created groups to produce therégalts.

Although MapReduce refers as an efficient setting for FIMlangentations, most
of parallel frequent itemset mining (PFIM) algorithms hdreught same regular is-
sues and challenges of their sequential implementatiamrsinstance, invoking such
best PFIM algorithm with very low minimum suppoi(inSup) could exceed avail-
able memory. Unfortunately, dealing with massive data@gpsto terabytes of data)
implies working with very low supports since data varietyéss item frequencies.
Furthermore, if we consider a FIM algorithm which relies onaadidate generation
principle, its parallel version would remain carrying thee issues as in its sequen-
tial one. Therefore, covering the problem of FIM algorithdoes not only involve the
distribution of computations over data, but also shoule tiako account other factors.

Interestingly and to the best of our knowledge, there has beefocus on study-
ing data placement strategies for improving PFIM algorghimMapReduce. However,
as we highlight in this work, the data placement strategée® fsignificant impacts on
PFIM performance. In this work, we identify, investigatelaiucidate the fundamental
role of using such efficient strategies for improving PFIMNIapReduce. In partic-
ular, we take advantage of two data placement strategigsdd®a Transaction Data
Placement (RTDP) and Similar Transaction Data PlaceméridP$. In the context of
RTDP, we use a random placement of data on a distributed damigmal environment
without any data constraints, to be consumed by a parti®faM algorithm. How-
ever, in STDP, we use a similarity-based placement foridiging the data around the
nodes in the distributed environment. By leveraging the ¢d&icement strategies, we
propose ODPR (Optimal Data-Process Relationship), a nesticofor optimizing the
global extraction process. Our solution takes advantagigedfest combination of data
placement techniques and the extraction algorithm.

We have evaluated the performance of our solution througieraxents over
ClueWeb and Wikipedia datasets (the whole set of Wikipediales in English). Our
results show that a careful management of the parallel psesealong with adequate
data placement, can dramatically improve the performandenzake a big difference
between an inoperative and a successful extraction.

The rest of this paper is organized as follows. Sedfion 2sgareoverview of FIM
problem and Sectidn 3 gives the necessary background on éthwe and some basic
FIM algorithms. In Sectiofi]4, we propose our techniques ¢ ggacement for an
efficient execution of PFIM algorithms. Sectidn 5 report®anexperimental validation
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over synthetic and real-world data sets. Sedfion 6 dissustated work, and Sectidh 7
concludes.

2 Problem Definition

The problem of frequent itemset mining has been initiallggmsed in([8], and then
numerous algorithms have been proposed to solve it. Herelom éhe notations used

in [8].

Itemset: Let I = {i1, o, ..., i, } be a set of literals calledterns. An Itemset X is
a set of items frond, i.e. X C I. Thesize of the itemsetX is the number of items
in it.

Transaction: A transactionT is a set of elements such thA&tC I andT # 0.
A transaction!” supports the iterx: € I if € T. A transactionl’ supports the
itemset X C I ifit supports any item: € X,i.e. X CT.

Database:A databaséD is a set of transactions.

Support: The support of theitemset X in the databas® is the number of trans-
actionsT' € D that containX.

Frequent Itemset: An itemset X C Iis frequent in D if its support is equal or
higher than a{/inSup) threshold.

The goal of FIM is as follows: given a databaBeand a user defined minimum
supportMinSup, return all frequent itemsets iD.

Example 1.Let us consider databagewith 4 transactions as shown in Table 2. With a
minimum support o8, there will be no frequent items (and no frequent itemsetih a
minimum support o, there will be 6 frequents itemseféa), (b), (e), (f), (ab), (ef)}.

TID|Transaction
Ty a,b,c
Ts a, b, d
Ts e f,g
Ty d, e, f

Table 1.Database D

In this paper, we consider the specific problem of PFIM, wihkeedata set is dis-
tributed over a set of computation nodes. We consider Map&=ds a programming
framework to illustrate our approach, but we believe thatmoposal would allow to
obtain good performance results in other parallel fram&s/two.

3 Requirements

In this section, we first describe briefly MapReduce and itskimg principles. Then, we
introduce some basic FIM algorithmic principles which we irsour PFIM algorithms.
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3.1 MapReduce and job execution

Each MapReduce job includes two functions: map and redumreeXecuting the job,
we need a master node for coordinating the job executionsanma worker nodes for
executing the map and reduce tasks. When a MapReduce jobnstidby a user to
the cluster, after checking the input parameters, e.gutiapd output directories, the
input splits (blocks) are computed. The number of input splits can beopailized, but
typically there is one split for each 64MB of data. The looatof these splits and some
information about the job are submitted to the master. Thetenareates a job object
with all the necessary information, including the map arduoe tasks to be executed.
One map task is created per input split.

When a worker node, say, becomes idle, the master tries to assign a task to it.
The map tasks are scheduled using a locality-aware stratégsg, if there is a map
task whose input data is kept an then the scheduler assigns that tasktdf there is
no such task, the scheduler tries to assign a task whosesdatthe same rack as (if
any). Otherwise, it chooses any task.

Each map task reads its corresponding input split, apgiiestap function on each
input pair and generatastermediate key-valugairs, which are firstly maintained in a
buffer in main memory. When the content of the buffer reachiesesshold (by default
80% of its size), the buffered data is stored on the disk ireacilled spill. Once the map
task is completed, the master is notified about the locatitimogenerated intermediate
key-values.

In the reduce phase, each intermediate key is assigned tf tiiereduce workers.
Each reduce worker retrieves the values corresponding ss#igned keys from all the
map workers, and merges them using an external merge-$&en,  groups pairs with
the same key and calls the reduce function on the corresppndiues. This function
will generate the final output results. When, all tasks of agjebcompleted successfully,
the client is notified by the master.

During the execution of a job, there may be idle nodes, pddity in the reduce
phase. In Hadoop, these nodes may be usesdeculativaask execution, which con-
sists in replicating the execution of incomplete slow taskfose nodes. When one of
the replicated tasks gets complete, its results are kepthenest of copies are stopped
and their results discarded.

3.2 PFIM

One of the primordial FIM algorithms is Apriori[8]. This agthm starts mining the

databasé by figuring out frequent items of size one, ay. Then, builds the potential
frequent itemsets of size two, by joining items inL, . The algorithm tests theupport

of eachC; elementinD, and returns a list of frequent itemsédts. The mining process
is carried out until there is no more frequent itemsebinThe main drawback of Apri-

oriis the size of intermediate itemsets that need to be gésdrActually, with itemsets
having a maximum length of, Apriori needs to compute generation of candidates,
each being supersets of the previous frequent itemsetsalliyghe number of interme-

diate itemsets grows follows a normal distribution accegdio the generation number.
In other words, the number of candidates reaches its higlmbar in the middle of
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the process. A straightforward implementation of this &t in MapReduce is very
easy since each database scan is replaced by a MapReduce g@ndlidate support
counting. However, the performances are very bad mainlaume intermediate data
have to be communicated to each mapper.

In the context of investigating PFIM in MapReduce and theatfof data placement
strategies, we need to briefly describe the SON [9] algorittei simplifies the mining
process by dividing the FIM problem into two steps, and thikes it very suitable for
being used in MapReduce. The steps of SON are as following:

Step 1: It divides the input databasé into |[P| = n chunks where

P = {p1,p2,...,pn}. Then, it mines each data chunk in the memory, based on

alocal MinSup and given FIM algorithm. Thus, the first step of SON algoritism
devoted to determine a list of local frequent itemsétg'().

Step 2:Based on the first step, the algorithm filters the list.dfI by comparing

them against the entire databd3eusing aglobal MinSup. Then, it returns a list
of global frequent itemset&:(#') which is a subset of. F'I.

As stated in the first step of SON, a specific FIM algorithm carapplied to mine
each data chunk. In this work, we have implemented and teliffedent algorithms for
this step. The first one is Apriori as described above. Therstone is CDARI[10],
which relies on the following mining principle:

Step 1: The algorithm divides the databage into |P| = n data partitions,
P = {p1,p2,...,pi,..-pn }- Each partitionp; in P only holds transactions whose
length isi, where the length of a transaction is the number of items in it

Step 2: Then, CDAR starts mining the data partitions according &mgaction
lengths in decreasing order. A transaction in each partiiccounts for an item-
set. If a transactiofi” is frequent in partitiorp;; then, it will be stored in a list
of frequent itemsetd., otherwise, CDAR store%’ in a temporary data structure
Temp. Then, after checking the frequency of &lin p; 1, CDAR generatessub-
sets of allT’ in Temp and adds them to partition;. The same mining process is
carried out until visiting all partitiong; C D. Before, counting theupport of a
transactioni’, CDAR checks its inclusion i, and if it is included, then CDAR
does not considér, as it is already i which is considered as frequent.

4 Optimal Data-Process Relationship

Let us now introduce our PFIM architecture, called Pardllgb Steps (P2S), which
is designed for data mining in MapReduce. From the miningnpof view, P2S is
inspired from SON algorithni [9]. The main reason behindmgp®ON as a reference
to P2S is that a parallel version of the former algorithm dusgequire costly overhead
between mappers and reducers. However, as illustratedrixpariments in Sectidd 5,
a straightforward implementation of SON in MapReduce wadtbe the best solution
for our research problem. Therefore, with P2S, we propose swutions for PFIM
mining, within the "two steps" architecture.
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The principle of P2S is drawn from the following observati®ividing a database
D into n partitionspy, pa, ..., pn, WhereUp; = D, i = 1..n

GFI CULFI 1)

whereG F'I denotes global frequent itemsets dnkl/ refers to local frequent item-
sets. This particular design allows it to be easily parakel in two teps as follow:

Job 1: Each mapper takes a data split, and performs particular F¢jdrighm.
Then, it emits a list of local frequent itemsets to the reduce

Job 2: Takes an entire databaskas input, and filters the global frequent itemsets
from the list of local frequent itemsets. Then, it writesfimal results to the reducer.

P2S thus divides the mining process into two steps and usedivtiding principle
mentioned above. As one may observe from its pseudo-coden by Algorithm[1,
P2S is very well suited for MapReduce.

Algorithm 1: P2S

Input: DatabaseD and MinSup o

Output: Frequent ltemsets

/IMap Task 1

map( key:Null : K1, value = Whole Data Split)); )
- Determine a locaMinSup ls from V; based ord
- Perform a complete FIM algorithm d# usingls
emit (key: local frequent itemsetyalue: Null)

a B W N P

6 //Reduce Task 1
7 reduce(key:local frequent itemsetist(values) )
8 | emit (key,Null)

9 /IMap Task 2

10 Read the list of local frequent itemsets from Haddop Distributed CadhEonce
11 map( key:line offset: K1, value = Database LineV; )

12 if anitemseti € LFI and: C V; then

13 L key <1

14 emit (key:i, value: 1)

15 //Reduce Task 2
16 reduce(key:i, list(values) )

17 sum <— 0 while values.hasNext() do
18 L sum+ = values.next().get()

19 if sum >= § then

20 L emit (key:i, value: Null)

The first MapReduce job of P2S consists of applying specifit &jorithm at each
mapper based on a local minimum supp@uical MinSup), where the latter is com-
puted at each mapper based@rinSup § percentage and the number of transactions
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of the split being processed. At this stage of P2S, the jobugien performance mainly
depends on a particular data placement strategy (i.e. RDBFPDP). This step is done
only once and the resulting placement remains the same velidtes new parameters
given to the mining procese.g. MinSup ¢, local FIM algorithm, etc.). Then P2S de-
termines a list of local frequent itemsetd”/. This list includes the local results of
all data splits found by all mappers. The second step of P2S t deduce a global
frequent itemse@: F'I. This step is carried out relying on a second MapReduce ijpb. |
order to deduce & F'I list, P2S filters thd. F'I list by performing a global test of each
local frequent itemset. At this step, each mapper reads threcést of local frequent
itemset stored in Hadoop Distributed Cache. Then, each endpkes a transaction at
a time and checks the inclusion of its itemsets in the lisheflbcal frequent itemset.
Thus, at this map phase of P2S algorithm, each mapper etisall frequent itemsets
with their complete occurrences in the whole databasek@e.itemset, value: 1). The
reducer of the second P2S step, simply computes the sum obth values of each
key (i.e. local frequent itemset) by iterating over the ealist of each key. Then, the
reducer compares the number of occurrences of each logakineitemset td/inSup

6, if it is greater or equal t@, then, the local frequent itemset is considered as a global
frequent itemset and it will be written to the Hadoop disitéd file system. Otherwise,
the reducer discards the key (i.e. local frequent itemset).

Theoretically, based on the inner design principles of Hg@8réhm, different data
placements would have significant impacts on its perforradoghavior. In particular,
the performance of P2S algorithm at its first MapReduce jol, specifically at the
mapper phase, strongly depends on RDTP or STDP used teelsnifjoat is due to the
sensitivity of the FIM algorithm being used at the mappeveatals its input data.

The goal of this paper is to provide the best combination a¢h laata placement
and local algorithm choice in the proposed architectur&datiorf 4.1L, we develop two
data placement strategies and explain more their role inwbeall performances.

4.1 Data Placement Strategies

The performance of PFIM algorithms in MapReduce may stiypdgpend on the distri-
bution of the data among the workers. In order to illustrate issue, consider an exam-
ple of a PFIM algorithm which is based on a candidate ger@ratpproach. Suppose
that most of the workload including candidate generatidreiag done on the mappers.
In this case, the data split or partition that holds mostflepdrequent itemsets would
take more execution time. In the worst case, the job givehabdpecific mapper would
not complete, making the global extraction process impbssi hus, despite the fairly
automatic data distribution by Hadoop, the computation ld@epend on the design
logic of PFIM algorithm in MapReduce.

Actually, in general, FIM algorithms are highly susceptilbd the data sets nature.
Consider, for instance, the Apriori algorithm. If the iteststo be extracted are very
long, it will be difficult for this algorithm to perform the évaction. And in case of very
long itemsets, it is even impossible. This is due to the faat Apriori has to enumer-
ate each subset of each itemset. The longer the final itethseiarger the number of
subsets (actually, the number of subsets grows exponghtidbw let us consider Job
1, mentionned above. If a mapper happens to contain a subgettluat will lead to
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lengthy local frequent itemsets, then it will be the botek of the whole process and
might even not be able to complete. Such a case would comgedime global process.

On the other hand, let us consider the same mapper, corgateimsets with the
same size, and apply the CDAR algorithm to it. Then CDAR waaltidly converge
since it is best suited for long itemsets. Actually, the viegkprinciple of CDAR is to
first extract the longest patterns and try to find frequensstghthat have not been dis-
covered yet. Intuitively, grouping similar transactionsraappers, and applying meth-
ods that perform best for long itemsets seems to be the beisecThis is why a place-
ment strategy, along with the most appropriate algorithroutd dramatically improve
the performances of the whole process.

From the observations above, we claim that optimal perfaces depend on a par-
ticular care of massive distribution requirements andattaristics, calling for particu-
lar data placement strategies. Therefore, in order to hgoste efficiency of some data
sensitive PFIM algorithms, P2S uses different data placemsigategies such &&im-
ilar Transaction Data Placement (STDRhd Random Transaction Data Placement
(RTDP) as presented in the rest of this section.

RTDP Strategy RTDP technique merely refers to a random process for chgbsinch

of transactions from a database Thus, using RTDP strategy, the database is divided
into n data partitions, po, ..., p, WhereUp; = D, i = 1...n. This data placement
strategy does not rely on any constraint for placing suclthwf transactions in same
partitionp.

STDP Strategy Unlike RTDP data placement strategy, STDP relies on thesjplm of
similarity between chosen transactions. Each bucket afaitmansactions is mapped
to the same partitiop. Therefore, the databageis split inton partitions andup;, = D,
1= 1..n.

In STDP, each data split would be more homogeneous, unlikecélse of using
RDTP. More precisely, by creating partitions that contamilar transactions, we in-
crease the chance that each partition will contain freqgloead itemset of high length.

4.2 Data Partitioning

In STDP, data partitioning using similarities is a compleglgem. A clustering algo-
rithm may seem appropriate for this task. However, we prepagaph data partitioning
mechanism that will allow a fast execution of this step, #saio existing efficient algo-
rithms for graphs partitioning such as Min-Cut[11]. In tlildwing, we describe how
transaction data can be transformed into graph data fogdioh partitioning.

— First, for each uniqué&em in D, we determine the list of transactiohghat contain
it. Let D’ be the set of all transaction lists

— Second, we preset?’ as a graplG = (V, E), whereV denotes a set of vertices
and E is a set of edges. Each transactibre D refers to a vertex; € G where
i = 1...n. The weightw of an edge that connects a pair of vertiges: (v;,v;) in
G equals to the number of common items between the transacgpnesenting;
andv;.
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— Then, after building the grapf¥, a Min-Cut algorithm is applied in order to parti-
tion D’.

In the above approach, the similarity of two transactiom®issidered as the number
of their common items, i.e. the size of their intersectionotder to illustrate our graph
partitioning technique, let us consider a simple examplelisys.

Example 2.Let us consideD, the database from Tallé 2. We start by mapping each
item in D to its transactions holder. As illustrated in the table ofifej4.2,7, and7,
have2 common itims, likewise]s andT, have2 common items, while the intersection
of T, andT3; is one. The intersection of transactions/n refers to the weight of their
edges. In order to partitio®’, we first build a graptG from D’ as shown in Figure
[42. Then, the algorithm Min-Cut finds a minimum cutGh (red line in Figuredb),
which refers to the minimum capacity (. In our example, we created two partitions:
Partition; =< T1,T» > andPartitions =< T3, Ty >.

TID|Transactioh ®—2>

Ty a, b, c ’ cut
Ty a, b e

Ts e f,g

Fig. 1. Transactions of a database (left) & Graph representation of the daté@izgs)

We have used a particular graph partitioning tool namelyoPg[IL2] in order to
generate data partitions. The reason behind opting fohfiain its set of configurable
properties, e.g. the number of partitions and the partithad balance factor.

Based on the architecture of P2S and the data placemermgitsive have devel-
opped and efficiently designed two FIM mining algorithmsniddy Parallel Two Steps
CDAR (P2SC) and Parallel Two Steps Apriori (P2SA) dependimthe itemset mining
algorithm implemented for itemset mining on the mappemafirst step of P2S. These
two algorithms are highly data-sensitive PFIM algorithms.

For instance, if we consider P2SC as a P2S algorithm with S3ttdeegy, its per-
formance would not be the same as we feed it with RDTP. Becalgag on STDP,
each split of data fed to such a mapper holds similar traiwses;tthus, there is less gen-
eration of transaction subsets. These expectations pomdgo the intuition given in
subsectiof 4]1. The impact of different data placementiesties will be better observed
and illustrated through out experimental results as shovaectiorib.

As shown by our experimental results in Secfidn 5, P2S hangive best perfor-
mance when instanciated with CDAR along with STDP strategy.
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5 Experiments

To assess the performance of our proposed mining approadnestigate the impact
of different data placement strategies, we have done ansxeeexperimental evalua-
tion. In Sectio 511, we depict our experimental setup, arfskictio 5.2 we investigate
and discuss the results of our experiments.

5.1 Experimental Setup

We implemented our P2S principle and data placement siesteg top of Hadoop-
MapReduce, using Java programming language. As miningitiigts on the mappers,
we implemented Apriori as well as CDAR. For comparison wiBPPFGrowth [13], we
adopted the default implementation provided in the Mah@d} fnachine learning li-
brary (Version 0.7). We denote by P2Sx-R and P2Sx-S the usaré¥2S principle with
STPD (P2Sx-S) or RTPD (P2Sx-R) strategy for data placemémgre local frequent
itemsets are extracted by means of the 'x’ algorithm. Farimse, P2SA-S means that
P2S is executed on data arranged according to STPD stratiélgyipriori executed on
the mappers for extracting local frequent itemsets. MRidpis the straightforward
implementation of Apriori in MapReduce (one job for eachg#énof candidates, and
database scans for support counting are replaced by MapRéalos). PApriori does
not use any particular data placement strategy. To this wadust opted to test the
algorithm with a RTDP data placement strategy for a comparsake. Eventually, the
instance of P2S architecture with Apriori exploited fordbfrequent itemset mining on
the mappers and data arranged according to the RTPD stiadsdgp be considered as
a straightforward implementation of SON. Therefore, wesider this version of P2S
being the original version of SON in our experiments.

We carry out all our experiments based on the Grid5000 [1&ffgim, which is
a platform for large scale data processing. We have usedsteclaf16 and 48 ma-
chines respectively for Wikipedia and ClueWeb data set ixmats. Each machine
is equipped with Linux operating systeity Gigabytes of main memory, Intel Xeon
X'3440 4 core CPUs, and20 Gigabytes SATA/I hard disk.

To better evaluate the performance of ODPR and the impacatf placement
strategies, we used two real-world datasets. The first aifre )14 English wikipedia
articles [16] having a total size af) Gigabytes, and composed of 5 millions articles.
The second one is a sample of ClueWeb English dataskt [1/]side of240 Giga-
bytes and having28 millions articles. For each dataset we performed a dataitiga
task, by removing all English stop words from all articlesl aitained a dataset where
each article accounts for a transaction (where items aredatresponding words in the
article) to each invoked PFIM algorithm in our experiments.

We performed our experiments by varying th&inSup parameter value for each
algorithm along with particular data placement strategg &/aluate each algorithm
based on its response time, in particular, wiéin Sup is very low.
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5.2 Performance Results

I P2SA-S —=— PFPGrowth
2000 ——>¢—  MR-Apriori P2SC-R A
— % SON —e— ODPR
1500 o ]
@
[0}
£ 1000 X 1
|_
i X
500

0.12 0.1 0.08 0.06 0.04 0.02 0.01

Support

Fig. 2. All algorithms executed on the whole set of Wikipedia articles in English

Figured 2 and13 report our results on the whole set of Wikipeudicles in English.
Figures[2 gives a complete view on algorithms performanoesa fsupport varying
from 0.12% to 0.01%. We see that MR-Apriori runtime grows exponentially, antsge
quickly very high compared to other presented PFIM algarghin particular, this ex-
ponential runtime growth reaches its highest value Wwitht% threshold. Below this
threshold, MR-Apriori needs more resources (e.g. memdrgih twhat exists in our
tested machines, so it is impossible to extract frequemé et with this algorithm. An-
other interesting observation is that P2SA-S, i.e. the twp algorithm that use Apriori
as a local mining solution, is worse that MR-Apriori. Thigisimportant result, since it
confirms that a bad choice of data-process relationship cmmipes a complete analyt-
ics process and makes it inoperative. Let us now considesathef four algorithms that
scale. The less effective are PFPGrowth and P2SA-R. It édsting to see that two
very different algorithmic schemes (PFPGrowth is basedherpiattern tree principle
and P2SA-R is a two steps principle with Apriori as a local imjnsolution with no
specific care to data placement) have similar performafidesmain difference being
that PFPGrowth exceeds the available memory b&l®2%. Eventually, P2SC-R and
ODPR give the best performances, with an advantage for ODPR.

Figure[3 focuses on the differences between the three tigwithat scale in Fig-
ure[2. The first observation is that P2SA-R is not able to pl®@vesults below.008%.
Regarding the algorithms based on the principle of P2S, websaerve a very good per-
formance for ODPR thanks to its optimization between dath@ocess relationship.
These results illustrate the advantage of using a two stépsie where an adequate
data placement favors similarity between transactiond,the local mining algorithm
does better on long frequent itemsets.
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Fig. 3. A focus on algorithms that scale on Wikipedia articles in English

In Figure[4, similar experiments have been conducted on theVzeb dataset. We
observe that the same order between all algorithms is keptpared to Figurds 2 and
[B. There are two bunches of algorithms. One, made of P2SAdSMrApriori which
cannot reasonably applied to this dataset, whatever thenmim support. In the other
bunch, we see that PFPGrowth suffers from the same limitais could be observed
on the Wikipedia dataset in Figuré 2, and it follows a behathat is very similar to
that of P2SA-R, until it becomes impossible to execute.
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Fig. 4. Experiments on ClueWeb data
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On the other hand, P2SC-R and ODPR are the two best solutitile, ODPR is
the optimal combination of data placement and algorithmaghor local extraction,
provinding the best relationship between data and process.

6 Related Work

In data mining literature, several efforts have been madmpwove the performance
of FIM algorithms [18], [19], [20]. However, due to the treid the explosive data
growth, an efficient parallel design of FIM algorithms hasibéighly required. There
have been many solutions proposed to design most of FIM ithigus in a parallel

manner([9], [13].

FP-Growth algorithm[20] has shown an efficient scale-up parad to other FIM
algorithms, it has been worth to come up with a parallel wersif FP-Growth[[1B] (i.e.
PFP-Growth). Even though, PFP-Growth is distinguishalitle is fast mining process,
it has several drawbacks. In particular, with very I&WinSup, PFP-Growth may run
out of memory as illustrated by our experiments in SedfioRP&ma algorithm[21],
uses an approximation in order to determine the list of feeqitemsets. It has shown
better running time and scale-up than PFP-Growth. Howéveoes not determine an
exhaustive list of frequent itemsets, instead, it only agpnates them.

A parallel version of Apriori algorithm proposed inl [2] reggsn MapReduce jobs,
in order to determine frequent itemsets of sizélowever, the algorithm is not efficient
because it requires multiple database scans.

In order to overcome conventional FIM issues and limits,\&htechnique, namely
CDAR has been proposed in[10]. This algorithm uses a top dapproach in order
to determine the list of frequent itemsets. It avoids theegation of candidates and
renders the mining process more simple by dividing the de@linto groups of trans-
actions. Although, CDAR algorithm [10] has shown an effitigerformance behavior,
yet, there has been no proposed parallel version of it.

Another FIM technique, called SON, has been proposedlinyBjch consists of
dividing the database inte partitions. The mining process starts by searching the loca
frequent itemsets in each partition independently. Thiea,algorithm compares the
whole list of local frequent itemsets against the entir@blase to figure out a final list
of global frequent itemsets. In this work, we inspired by S@hd proposed an efficient
MapReduce PFIM technique that leverages data placematggits for optimizing the
mining process. Indeed, in order to come up with efficientisohs, we have focused
on the data placement as fundamental and essential mirgtay fa MapReduce.

In [22], the authors proposed an algorithm for partitionitega stream databases in
which the data can be appended continuously. In the caserpflyeamic databases,
instead of PatoH tool which we used in this paper for graptitaring, we can use
the approach proposed [n]22] to perform the STDP partitigrifficiently and quickly
after arrival of each new data to the database.
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7 Conclusion

We have identified the impact of the relationship betweea gitcement and process
organization in a massively distributed environment susapReduce for frequent
itemset mining. This relationship has not been investijdtefore this work, despite
crucial consequences on the extraction time responsegmdjdhe discovery to be done
with very low minimum support. Such ability to use very lowebkhold is mandatory
when dealing with Big Data and particularly hundreds of ®igas like we have done
in our experiments. Our results show that a careful manageofeprocesses, along
with adequate data placement, may dramatically improviopaances and make the
difference between an inoperative and a successful exinact

This work opens interesting research avenues for PFIM insively distributed
environments. In general, we would like to deeply invegdgalarger number of algo-
rithms and the impact of data placement on them. More spaltyfithere are two main
factors we want to study. Firstly, we need to better identifhat algorithms can be im-
plemented in MapReduce while avoiding to execute a largebeuiof jobs (because the
larger the number of jobs, the worse the response time).rfélgcave want to explore
data placement alternatives to the ones proposed in thexpap
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