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Abstract. Despite crucial recent advances, the problem of frequent itemset min-
ing is still facing major challenges. This is particularly the case when: i) the min-
ing process must be massively distributed and; ii) the minimum support (MinSup)
is very low. In this paper, we study the effectiveness and leverage of specific data
placement strategies for improving parallel frequent itemset mining (PFIM) per-
formance in MapReduce, a highly distributed computation framework. Byoffer-
ing a clever data placement and an optimal organization of the extraction algo-
rithms, we show that the itemset discovery effectiveness does not onlydepend
on the deployed algorithms. We propose ODPR (Optimal Data-Process Relation-
ship), a solution for fast mining of frequent itemsets in MapReduce. Ourmethod
allows discovering itemsets from massive datasets, where standard solutions from
the literature do not scale. Indeed, in a massively distributed environment, the ar-
rangement of both the data and the different processes can make the global job
either completely inoperative or very effective. Our proposal has been evaluated
using real-world data sets and the results illustrate a significant scale-up obtained
with very lowMinSup, which confirms the effectiveness of our approach.

1 Introduction

With the availability of inexpensive storage and the progress that has been made in data
capture technology, several organizations have set up verylarge databases, known as
Big Data. This includes different data types, such as business or scientific data [1], and
the trend in data proliferation is expected to grow, in particular with the progress in
networking technology. The manipulation and processing ofthese massive data have
opened up new challenges in data mining [2]. In particular, frequent itemset mining
(FIM) algorithms have shown several flaws and deficiencies when processing large
amounts of data. The problem of mining huge amounts of data ismainly related to the
memory restrictions as well as the principles and logic behind FIM algorithms them-
selves [3].

In order to overcome the above issues and restrictions in mining large databases,
several efficient solutions have been proposed. The most significant solution required
to rebuild and design FIM algorithms in a parallel manner relying on a specific program-
ming model such as MapReduce [4]. MapReduce is one of the mostpopular solutions
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for big data processing [5], in particular due to its automatic management of parallel
execution in clusters of commodity machines. Initially proposed in [6], it has gained in-
creasing popularity, as shown by the tremendous success of Hadoop [7], an open-source
implementation.

The idea behind MapReduce is simple and elegant. Given an input file, and two
map and reduce functions, each MapReduce job is executed in two main phases. In the
first phase, called map, the input data is divided into a set ofsplits, and each split is
processed by a map task in a given worker node. These tasks apply the map function
on every key-value pair of their split and generate a set of intermediate pairs. In the
second phase, called reduce, all the values of each intermediate key are grouped and
assigned to a reduce task. Reduce tasks are also assigned to worker machines and apply
the reduce function on the created groups to produce the finalresults.

Although MapReduce refers as an efficient setting for FIM implementations, most
of parallel frequent itemset mining (PFIM) algorithms havebrought same regular is-
sues and challenges of their sequential implementations. For instance, invoking such
best PFIM algorithm with very low minimum support (MinSup) could exceed avail-
able memory. Unfortunately, dealing with massive datasets(up to terabytes of data)
implies working with very low supports since data variety lowers item frequencies.
Furthermore, if we consider a FIM algorithm which relies on acandidate generation
principle, its parallel version would remain carrying the same issues as in its sequen-
tial one. Therefore, covering the problem of FIM algorithmsdoes not only involve the
distribution of computations over data, but also should take into account other factors.

Interestingly and to the best of our knowledge, there has been no focus on study-
ing data placement strategies for improving PFIM algorithms in MapReduce. However,
as we highlight in this work, the data placement strategies have significant impacts on
PFIM performance. In this work, we identify, investigate and elucidate the fundamental
role of using such efficient strategies for improving PFIM inMapReduce. In partic-
ular, we take advantage of two data placement strategies: Random Transaction Data
Placement (RTDP) and Similar Transaction Data Placement (STDP). In the context of
RTDP, we use a random placement of data on a distributed computational environment
without any data constraints, to be consumed by a particularPFIM algorithm. How-
ever, in STDP, we use a similarity-based placement for distributing the data around the
nodes in the distributed environment. By leveraging the data placement strategies, we
propose ODPR (Optimal Data-Process Relationship), a new solution for optimizing the
global extraction process. Our solution takes advantage ofthe best combination of data
placement techniques and the extraction algorithm.

We have evaluated the performance of our solution through experiments over
ClueWeb and Wikipedia datasets (the whole set of Wikipedia articles in English). Our
results show that a careful management of the parallel processes along with adequate
data placement, can dramatically improve the performance and make a big difference
between an inoperative and a successful extraction.

The rest of this paper is organized as follows. Section 2 gives an overview of FIM
problem and Section 3 gives the necessary background on MapReduce and some basic
FIM algorithms. In Section 4, we propose our techniques of data placement for an
efficient execution of PFIM algorithms. Section 5 reports onour experimental validation
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over synthetic and real-world data sets. Section 6 discusses related work, and Section 7
concludes.

2 Problem Definition

The problem of frequent itemset mining has been initially proposed in [8], and then
numerous algorithms have been proposed to solve it. Here we adopt the notations used
in [8].

Itemset: Let I = {i1, i2, ..., in} be a set of literals calleditems. An Itemset X is
a set of items fromI, i.e.X ⊆ I. Thesize of the itemsetX is the number of items
in it.
Transaction: A transactionT is a set of elements such thatT ⊆ I andT 6= ∅.
A transactionT supports the itemx ∈ I if x ∈ T . A transactionT supports the
itemset X ⊆ I if it supports any itemx ∈ X, i.e.X ⊆ T .
Database:A databaseD is a set of transactions.
Support: Thesupport of theitemset X in the databaseD is the number of trans-
actionsT ∈ D that containX.
Frequent Itemset:An itemset X ⊆ I is frequent in D if its support is equal or
higher than a (MinSup) threshold.

The goal of FIM is as follows: given a databaseD and a user defined minimum
supportMinSup, return all frequent itemsets inD.

Example 1.Let us consider databaseD with 4 transactions as shown in Table 2. With a
minimum support of3, there will be no frequent items (and no frequent itemsets).With a
minimum support of2, there will be 6 frequents itemsets:{(a), (b), (e), (f), (ab), (ef)}.

TID Transaction
T1 a, b, c
T2 a, b, d
T3 e, f, g
T4 d, e, f

Table 1.Database D

In this paper, we consider the specific problem of PFIM, wherethe data set is dis-
tributed over a set of computation nodes. We consider MapReduce as a programming
framework to illustrate our approach, but we believe that our proposal would allow to
obtain good performance results in other parallel frameworks too.

3 Requirements

In this section, we first describe briefly MapReduce and its working principles. Then, we
introduce some basic FIM algorithmic principles which we use in our PFIM algorithms.
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3.1 MapReduce and job execution

Each MapReduce job includes two functions: map and reduce. For executing the job,
we need a master node for coordinating the job execution, andsome worker nodes for
executing the map and reduce tasks. When a MapReduce job is submitted by a user to
the cluster, after checking the input parameters, e.g., input and output directories, the
input splits(blocks) are computed. The number of input splits can be personalized, but
typically there is one split for each 64MB of data. The location of these splits and some
information about the job are submitted to the master. The master creates a job object
with all the necessary information, including the map and reduce tasks to be executed.
One map task is created per input split.

When a worker node, sayw, becomes idle, the master tries to assign a task to it.
The map tasks are scheduled using a locality-aware strategy. Thus, if there is a map
task whose input data is kept onw, then the scheduler assigns that task tow. If there is
no such task, the scheduler tries to assign a task whose data is in the same rack asw (if
any). Otherwise, it chooses any task.

Each map task reads its corresponding input split, applies the map function on each
input pair and generatesintermediate key-valuepairs, which are firstly maintained in a
buffer in main memory. When the content of the buffer reaches athreshold (by default
80% of its size), the buffered data is stored on the disk in a file called spill. Once the map
task is completed, the master is notified about the location of the generated intermediate
key-values.

In the reduce phase, each intermediate key is assigned to oneof the reduce workers.
Each reduce worker retrieves the values corresponding to its assigned keys from all the
map workers, and merges them using an external merge-sort. Then, it groups pairs with
the same key and calls the reduce function on the corresponding values. This function
will generate the final output results. When, all tasks of a jobare completed successfully,
the client is notified by the master.

During the execution of a job, there may be idle nodes, particularly in the reduce
phase. In Hadoop, these nodes may be used forspeculativetask execution, which con-
sists in replicating the execution of incomplete slow tasksin those nodes. When one of
the replicated tasks gets complete, its results are kept andthe rest of copies are stopped
and their results discarded.

3.2 PFIM

One of the primordial FIM algorithms is Apriori [8]. This algorithm starts mining the
databaseD by figuring out frequent items of size one, sayL1. Then, builds the potential
frequent itemsets of size twoC2 by joining items inL1. The algorithm tests thesupport
of eachC2 element inD, and returns a list of frequent itemsetsL2. The mining process
is carried out until there is no more frequent itemset inD. The main drawback of Apri-
ori is the size of intermediate itemsets that need to be generated. Actually, with itemsets
having a maximum length ofn, Apriori needs to computen generation of candidates,
each being supersets of the previous frequent itemsets. Usually, the number of interme-
diate itemsets grows follows a normal distribution according to the generation number.
In other words, the number of candidates reaches its higher number in the middle of



Fast Mining of Frequent Itemsets in MapReduce 5

the process. A straightforward implementation of this algorithm in MapReduce is very
easy since each database scan is replaced by a MapReduce job for candidate support
counting. However, the performances are very bad mainly because intermediate data
have to be communicated to each mapper.

In the context of investigating PFIM in MapReduce and the effect of data placement
strategies, we need to briefly describe the SON [9] algorithmthat simplifies the mining
process by dividing the FIM problem into two steps, and this makes it very suitable for
being used in MapReduce. The steps of SON are as following:

Step 1: It divides the input databaseD into |P | = n chunks where
P = {p1, p2, ..., pn}. Then, it mines each data chunk in the memory, based on
a localMinSup and given FIM algorithm. Thus, the first step of SON algorithmis
devoted to determine a list of local frequent itemsets (LFI).
Step 2:Based on the first step, the algorithm filters the list ofLFI by comparing
them against the entire databaseD using aglobalMinSup. Then, it returns a list
of global frequent itemsets (GFI) which is a subset ofLFI.

As stated in the first step of SON, a specific FIM algorithm can be applied to mine
each data chunk. In this work, we have implemented and testeddifferent algorithms for
this step. The first one is Apriori as described above. The second one is CDAR [10],
which relies on the following mining principle:

Step 1: The algorithm divides the databaseD into |P | = n data partitions,
P = {p1, p2, ..., pi, ...pn}. Each partitionpi in P only holds transactions whose
length isi, where the length of a transaction is the number of items in it.
Step 2: Then, CDAR starts mining the data partitions according to transaction
lengths in decreasing order. A transaction in each partition accounts for an item-
set. If a transactionT is frequent in partitionpi+1 then, it will be stored in a list
of frequent itemsetsL, otherwise, CDAR storesT in a temporary data structure
Temp. Then, after checking the frequency of allT in pi+1, CDAR generatesi sub-
sets of allT in Temp and adds them to partitionpi. The same mining process is
carried out until visiting all partitionspi ⊂ D. Before, counting thesupport of a
transactionT , CDAR checks its inclusion inL, and if it is included, then CDAR
does not considerT , as it is already inL which is considered as frequent.

4 Optimal Data-Process Relationship

Let us now introduce our PFIM architecture, called ParallelTwo Steps (P2S), which
is designed for data mining in MapReduce. From the mining point of view, P2S is
inspired from SON algorithm [9]. The main reason behind opting SON as a reference
to P2S is that a parallel version of the former algorithm doesnot require costly overhead
between mappers and reducers. However, as illustrated by our experiments in Section 5,
a straightforward implementation of SON in MapReduce wouldnot be the best solution
for our research problem. Therefore, with P2S, we propose new solutions for PFIM
mining, within the "two steps" architecture.
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The principle of P2S is drawn from the following observation. Dividing a database
D into n partitionsp1, p2, ..., pn, where∪pi = D, i = 1...n

GFI ⊆ ∪LFI (1)

whereGFI denotes global frequent itemsets andLFI refers to local frequent item-
sets. This particular design allows it to be easily parallelized in two teps as follow:

Job 1: Each mapper takes a data split, and performs particular FIM algorithm.
Then, it emits a list of local frequent itemsets to the reducer
Job 2: Takes an entire databaseD as input, and filters the global frequent itemsets
from the list of local frequent itemsets. Then, it writes thefinal results to the reducer.

P2S thus divides the mining process into two steps and uses the dividing principle
mentioned above. As one may observe from its pseudo-code, given by Algorithm 1,
P2S is very well suited for MapReduce.

Algorithm 1: P2S
Input : DatabaseD andMinSup δ

Output : Frequent Itemsets
1 //Map Task 1
2 map( key:Null : K1, value = Whole Data Split:V1 )
3 - Determine a localMinSup ls from V1 based onδ
4 - Perform a complete FIM algorithm onV1 usingls
5 emit (key: local frequent itemset,value: Null)

6 //Reduce Task 1
7 reduce(key:local frequent itemset, list(values) )
8 emit (key,Null)

9 //Map Task 2
10 Read the list of local frequent itemsets from Haddop Distributed CacheLFI once
11 map( key:line offset: K1, value = Database Line:V1 )
12 if an itemseti ∈ LFI andi ⊆ V1 then
13 key ← i

14 emit (key:i, value: 1)

15 //Reduce Task 2
16 reduce(key:i, list(values) )
17 sum← 0 while values.hasNext() do
18 sum+ = values.next().get()

19 if sum >= δ then
20 emit (key:i, value: Null)

The first MapReduce job of P2S consists of applying specific FIM algorithm at each
mapper based on a local minimum support(localMinSup), where the latter is com-
puted at each mapper based onMinSup δ percentage and the number of transactions
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of the split being processed. At this stage of P2S, the job execution performance mainly
depends on a particular data placement strategy (i.e. RDTP or STDP). This step is done
only once and the resulting placement remains the same whatever the new parameters
given to the mining process (e.g.MinSup δ, local FIM algorithm, etc.). Then P2S de-
termines a list of local frequent itemsetsLFI. This list includes the local results of
all data splits found by all mappers. The second step of P2S aims to deduce a global
frequent itemsetGFI. This step is carried out relying on a second MapReduce job. In
order to deduce aGFI list, P2S filters theLFI list by performing a global test of each
local frequent itemset. At this step, each mapper reads oncethe list of local frequent
itemset stored in Hadoop Distributed Cache. Then, each mapper takes a transaction at
a time and checks the inclusion of its itemsets in the list of the local frequent itemset.
Thus, at this map phase of P2S algorithm, each mapper emits all local frequent itemsets
with their complete occurrences in the whole database (i.e.key: itemset, value: 1). The
reducer of the second P2S step, simply computes the sum of thecount values of each
key (i.e. local frequent itemset) by iterating over the value list of each key. Then, the
reducer compares the number of occurrences of each local frequent itemset toMinSup

δ, if it is greater or equal toδ, then, the local frequent itemset is considered as a global
frequent itemset and it will be written to the Hadoop distributed file system. Otherwise,
the reducer discards the key (i.e. local frequent itemset).

Theoretically, based on the inner design principles of P2S algorithm, different data
placements would have significant impacts on its performance behavior. In particular,
the performance of P2S algorithm at its first MapReduce job, and specifically at the
mapper phase, strongly depends on RDTP or STDP used techniques. That is due to the
sensitivity of the FIM algorithm being used at the mappers towards its input data.

The goal of this paper is to provide the best combination of both data placement
and local algorithm choice in the proposed architecture. InSection 4.1, we develop two
data placement strategies and explain more their role in theoverall performances.

4.1 Data Placement Strategies

The performance of PFIM algorithms in MapReduce may strongly depend on the distri-
bution of the data among the workers. In order to illustrate this issue, consider an exam-
ple of a PFIM algorithm which is based on a candidate generation approach. Suppose
that most of the workload including candidate generation isbeing done on the mappers.
In this case, the data split or partition that holds most lengthy frequent itemsets would
take more execution time. In the worst case, the job given to that specific mapper would
not complete, making the global extraction process impossible. Thus, despite the fairly
automatic data distribution by Hadoop, the computation would depend on the design
logic of PFIM algorithm in MapReduce.

Actually, in general, FIM algorithms are highly susceptible to the data sets nature.
Consider, for instance, the Apriori algorithm. If the itemsets to be extracted are very
long, it will be difficult for this algorithm to perform the extraction. And in case of very
long itemsets, it is even impossible. This is due to the fact that Apriori has to enumer-
ate each subset of each itemset. The longer the final itemset,the larger the number of
subsets (actually, the number of subsets grows exponentially). Now let us consider Job
1, mentionned above. If a mapper happens to contain a subset of D that will lead to
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lengthy local frequent itemsets, then it will be the bottleneck of the whole process and
might even not be able to complete. Such a case would compromise the global process.

On the other hand, let us consider the same mapper, containing itemsets with the
same size, and apply the CDAR algorithm to it. Then CDAR wouldrapidly converge
since it is best suited for long itemsets. Actually, the working principle of CDAR is to
first extract the longest patterns and try to find frequent subsets that have not been dis-
covered yet. Intuitively, grouping similar transactions on mappers, and applying meth-
ods that perform best for long itemsets seems to be the best choice. This is why a place-
ment strategy, along with the most appropriate algorithm, should dramatically improve
the performances of the whole process.

From the observations above, we claim that optimal performances depend on a par-
ticular care of massive distribution requirements and characteristics, calling for particu-
lar data placement strategies. Therefore, in order to boostup the efficiency of some data
sensitive PFIM algorithms, P2S uses different data placement strategies such asSim-
ilar Transaction Data Placement (STDP)and Random Transaction Data Placement
(RTDP), as presented in the rest of this section.

RTDP Strategy RTDP technique merely refers to a random process for choosing bunch
of transactions from a databaseD. Thus, using RTDP strategy, the database is divided
into n data partitionsp1, p2, ..., pn where∪pi = D, i = 1...n. This data placement
strategy does not rely on any constraint for placing such bunch of transactions in same
partitionp.

STDP Strategy Unlike RTDP data placement strategy, STDP relies on the principle of
similarity between chosen transactions. Each bucket of similar transactions is mapped
to the same partitionp. Therefore, the databaseD is split inton partitions and∪pi = D,
i = 1...n.

In STDP, each data split would be more homogeneous, unlike the case of using
RDTP. More precisely, by creating partitions that contain similar transactions, we in-
crease the chance that each partition will contain frequentlocal itemset of high length.

4.2 Data Partitioning

In STDP, data partitioning using similarities is a complex problem. A clustering algo-
rithm may seem appropriate for this task. However, we propose a graph data partitioning
mechanism that will allow a fast execution of this step, thanks to existing efficient algo-
rithms for graphs partitioning such as Min-Cut [11]. In the following, we describe how
transaction data can be transformed into graph data for doing such partitioning.

– First, for each uniqueitem in D, we determine the list of transactionsL that contain
it. Let D′ be the set of all transaction listsL.

– Second, we presentD′ as a graphG = (V,E), whereV denotes a set of vertices
andE is a set of edges. Each transactionT ∈ D refers to a vertexvi ∈ G where
i = 1...n. The weightw of an edge that connects a pair of verticesp = (vi, vj) in
G equals to the number of common items between the transactions representingvi
andvj .
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– Then, after building the graphG, a Min-Cut algorithm is applied in order to parti-
tionD′.

In the above approach, the similarity of two transactions isconsidered as the number
of their common items, i.e. the size of their intersection. In order to illustrate our graph
partitioning technique, let us consider a simple example asfollows.

Example 2.Let us considerD, the database from Table 2. We start by mapping each
item inD to its transactions holder. As illustrated in the table of figure 4.2,T1 andT2

have2 common itims, likewise,T3 andT4 have2 common items, while the intersection
of T2 andT3 is one. The intersection of transactions inD′ refers to the weight of their
edges. In order to partitionD′, we first build a graphG from D′ as shown in Figure
4.2. Then, the algorithm Min-Cut finds a minimum cut inG (red line in Figure 5),
which refers to the minimum capacity inG. In our example, we created two partitions:
Partition1 =< T1, T2 > andPartition2 =< T3, T4 >.

TID Transaction
T1 a, b, c
T2 a, b, e
T3 e, f, g
T4 d, e, f

Fig. 1.Transactions of a database (left) & Graph representation of the database (right)

We have used a particular graph partitioning tool namely PaToH [12] in order to
generate data partitions. The reason behind opting for Patoh lies in its set of configurable
properties, e.g. the number of partitions and the partitionload balance factor.

Based on the architecture of P2S and the data placement strategies we have devel-
opped and efficiently designed two FIM mining algorithms. Namely Parallel Two Steps
CDAR (P2SC) and Parallel Two Steps Apriori (P2SA) dependingon the itemset mining
algorithm implemented for itemset mining on the mapper, in the first step of P2S. These
two algorithms are highly data-sensitive PFIM algorithms.

For instance, if we consider P2SC as a P2S algorithm with STDPstrategy, its per-
formance would not be the same as we feed it with RDTP. Becauserelying on STDP,
each split of data fed to such a mapper holds similar transactions, thus, there is less gen-
eration of transaction subsets. These expectations correspond to the intuition given in
subsection 4.1. The impact of different data placement strategies will be better observed
and illustrated through out experimental results as shown in section 5.

As shown by our experimental results in Section 5, P2S has given the best perfor-
mance when instanciated with CDAR along with STDP strategy.
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5 Experiments

To assess the performance of our proposed mining approach and investigate the impact
of different data placement strategies, we have done an extensive experimental evalua-
tion. In Section 5.1, we depict our experimental setup, and in Section 5.2 we investigate
and discuss the results of our experiments.

5.1 Experimental Setup

We implemented our P2S principle and data placement strategies on top of Hadoop-
MapReduce, using Java programming language. As mining algorithms on the mappers,
we implemented Apriori as well as CDAR. For comparison with PFP-Growth [13], we
adopted the default implementation provided in the Mahout [14] machine learning li-
brary (Version 0.7). We denote by P2Sx-R and P2Sx-S the use ofour P2S principle with
STPD (P2Sx-S) or RTPD (P2Sx-R) strategy for data placement,where local frequent
itemsets are extracted by means of the ’x’ algorithm. For instance, P2SA-S means that
P2S is executed on data arranged according to STPD strategy,with Apriori executed on
the mappers for extracting local frequent itemsets. MR-Apriori is the straightforward
implementation of Apriori in MapReduce (one job for each length of candidates, and
database scans for support counting are replaced by MapReduce jobs). PApriori does
not use any particular data placement strategy. To this end,we just opted to test the
algorithm with a RTDP data placement strategy for a comparison sake. Eventually, the
instance of P2S architecture with Apriori exploited for local frequent itemset mining on
the mappers and data arranged according to the RTPD strategyhas to be considered as
a straightforward implementation of SON. Therefore, we consider this version of P2S
being the original version of SON in our experiments.

We carry out all our experiments based on the Grid5000 [15] platform, which is
a platform for large scale data processing. We have used a cluster of16 and48 ma-
chines respectively for Wikipedia and ClueWeb data set experiments. Each machine
is equipped with Linux operating system,64 Gigabytes of main memory, Intel Xeon
X3440 4 core CPUs, and320 Gigabytes SATAII hard disk.

To better evaluate the performance of ODPR and the impact of data placement
strategies, we used two real-world datasets. The first one isthe2014 English wikipedia
articles [16] having a total size of49 Gigabytes, and composed of 5 millions articles.
The second one is a sample of ClueWeb English dataset [17] with size of240 Giga-
bytes and having228 millions articles. For each dataset we performed a data cleaning
task, by removing all English stop words from all articles and obtained a dataset where
each article accounts for a transaction (where items are thecorresponding words in the
article) to each invoked PFIM algorithm in our experiments.

We performed our experiments by varying theMinSup parameter value for each
algorithm along with particular data placement strategy. We evaluate each algorithm
based on its response time, in particular, whenMinSup is very low.



Fast Mining of Frequent Itemsets in MapReduce 11

5.2 Performance Results
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Fig. 2.All algorithms executed on the whole set of Wikipedia articles in English

Figures 2 and 3 report our results on the whole set of Wikipedia articles in English.
Figures 2 gives a complete view on algorithms performances for a support varying
from 0.12% to 0.01%. We see that MR-Apriori runtime grows exponentially, and gets
quickly very high compared to other presented PFIM algorithms. In particular, this ex-
ponential runtime growth reaches its highest value with0.04% threshold. Below this
threshold, MR-Apriori needs more resources (e.g. memory) than what exists in our
tested machines, so it is impossible to extract frequent patterns with this algorithm. An-
other interesting observation is that P2SA-S, i.e. the two step algorithm that use Apriori
as a local mining solution, is worse that MR-Apriori. This isan important result, since it
confirms that a bad choice of data-process relationship compromises a complete analyt-
ics process and makes it inoperative. Let us now consider theset of four algorithms that
scale. The less effective are PFPGrowth and P2SA-R. It is interesting to see that two
very different algorithmic schemes (PFPGrowth is based on the pattern tree principle
and P2SA-R is a two steps principle with Apriori as a local mining solution with no
specific care to data placement) have similar performances.The main difference being
that PFPGrowth exceeds the available memory below0.02%. Eventually, P2SC-R and
ODPR give the best performances, with an advantage for ODPR.

Figure 3 focuses on the differences between the three algorithms that scale in Fig-
ure 2. The first observation is that P2SA-R is not able to provide results below0.008%.
Regarding the algorithms based on the principle of P2S, we can observe a very good per-
formance for ODPR thanks to its optimization between data and process relationship.
These results illustrate the advantage of using a two steps principle where an adequate
data placement favors similarity between transactions, and the local mining algorithm
does better on long frequent itemsets.
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In Figure 4, similar experiments have been conducted on the ClueWeb dataset. We
observe that the same order between all algorithms is kept, compared to Figures 2 and
3. There are two bunches of algorithms. One, made of P2SA-S and MR-Apriori which
cannot reasonably applied to this dataset, whatever the minimum support. In the other
bunch, we see that PFPGrowth suffers from the same limitations as could be observed
on the Wikipedia dataset in Figure 2, and it follows a behavior that is very similar to
that of P2SA-R, until it becomes impossible to execute.
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On the other hand, P2SC-R and ODPR are the two best solutions,while ODPR is
the optimal combination of data placement and algorithm choice for local extraction,
provinding the best relationship between data and process.

6 Related Work

In data mining literature, several efforts have been made toimprove the performance
of FIM algorithms [18], [19], [20]. However, due to the trendof the explosive data
growth, an efficient parallel design of FIM algorithms has been highly required. There
have been many solutions proposed to design most of FIM algorithms in a parallel
manner [9], [13].

FP-Growth algorithm [20] has shown an efficient scale-up compared to other FIM
algorithms, it has been worth to come up with a parallel version of FP-Growth [13] (i.e.
PFP-Growth). Even though, PFP-Growth is distinguishable with its fast mining process,
it has several drawbacks. In particular, with very lowMinSup, PFP-Growth may run
out of memory as illustrated by our experiments in Section 5.Parma algorithm [21],
uses an approximation in order to determine the list of frequent itemsets. It has shown
better running time and scale-up than PFP-Growth. However,it does not determine an
exhaustive list of frequent itemsets, instead, it only approximates them.

A parallel version of Apriori algorithm proposed in [2] requiresn MapReduce jobs,
in order to determine frequent itemsets of sizen. However, the algorithm is not efficient
because it requires multiple database scans.

In order to overcome conventional FIM issues and limits, a novel technique, namely
CDAR has been proposed in [10]. This algorithm uses a top downapproach in order
to determine the list of frequent itemsets. It avoids the generation of candidates and
renders the mining process more simple by dividing the database into groups of trans-
actions. Although, CDAR algorithm [10] has shown an efficient performance behavior,
yet, there has been no proposed parallel version of it.

Another FIM technique, called SON, has been proposed in [9],which consists of
dividing the database inton partitions. The mining process starts by searching the local
frequent itemsets in each partition independently. Then, the algorithm compares the
whole list of local frequent itemsets against the entire database to figure out a final list
of global frequent itemsets. In this work, we inspired by SON, and proposed an efficient
MapReduce PFIM technique that leverages data placement strategies for optimizing the
mining process. Indeed, in order to come up with efficient solutions, we have focused
on the data placement as fundamental and essential mining factor in MapReduce.

In [22], the authors proposed an algorithm for partitioningdata stream databases in
which the data can be appended continuously. In the case of very dynamic databases,
instead of PatoH tool which we used in this paper for graph partitioning, we can use
the approach proposed in [22] to perform the STDP partitioning efficiently and quickly
after arrival of each new data to the database.
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7 Conclusion

We have identified the impact of the relationship between data placement and process
organization in a massively distributed environment such as MapReduce for frequent
itemset mining. This relationship has not been investigated before this work, despite
crucial consequences on the extraction time responses allowing the discovery to be done
with very low minimum support. Such ability to use very low threshold is mandatory
when dealing with Big Data and particularly hundreds of Gigabytes like we have done
in our experiments. Our results show that a careful management of processes, along
with adequate data placement, may dramatically improve performances and make the
difference between an inoperative and a successful extraction.

This work opens interesting research avenues for PFIM in massively distributed
environments. In general, we would like to deeply investigate a larger number of algo-
rithms and the impact of data placement on them. More specifically, there are two main
factors we want to study. Firstly, we need to better identifywhat algorithms can be im-
plemented in MapReduce while avoiding to execute a large number of jobs (because the
larger the number of jobs, the worse the response time). Secondly, we want to explore
data placement alternatives to the ones proposed in this paper.
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