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Coverability and Multi-Scale Coverability on Infinite
PicturesI

Guilhem Gamard1, Gwenaël Richomme1,2

Abstract

A word is quasiperiodic (or coverable) if it can be covered with occurrences
of another finite word, called its quasiperiod. A word is multi-scale quasiperi-
odic (or multi-scale coverable) if it has infinitely many different quasiperiods.
These notions were previously studied in the domains of text algorithms and
combinatorics of right infinite words.

We extend them to infinite pictures (two-dimensional words). Then we com-
pare the regularity properties (uniform recurrence, uniform frequencies, topo-
logical entropy) of quasiperiodicity with multi-scale quasiperiodicity, and we
also compare each of them with its one-dimensional counterpart.

We also study which properties of quasiperiods enforce properties on the
quasiperiodic words.

Keywords: Infinite pictures; combinatorics; quasiperiodicity; multi-scale

1. Introduction

At the beginning of the 1990’s, in the area of text algorithms, Apostolico
and Ehrenfeucht introduced the notion of quasiperiodicity [1]. Their definition
is as follows: “a string w is quasiperiodic if there is a second string u 6= w such
that every position of w falls within some occurrence of u in w”. The word w
is also said to be u-quasiperiodic, and u is called a quasiperiod (or a cover) of
w. For instance, the string:

ababaabababaababababaababa

is aba-quasiperiodic and ababa-quasiperiodic.

IThis is an extended version of [8], by the same authors, published in the proceedings of
the LATA2015 conference.
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In 2004, Marcus extended this notion to right-infinite words and observed
some basic facts about this new class. He opened several questions [13], most of
them related to Sturmian words and the factor complexity. First answers were
given in [10]. A characterization of right-infinite quasiperiodic Sturmian words
was given in [11] and extended to episturmian words in [9]. More details on
their complexity function are given in [14, 15].

In [14], Marcus and Monteil showed that quasiperiodicity is independent
from several other classical notions of symmetry in combinatorics on words.
They also introduced a stronger notion, namely multi-scale quasiperiodicity,
with better properties.

Finally, in [5], a two-dimensional version of quasiperiodicity was introduced.
In particular, a linear-time algorithm computing all square quasiperiods of a
square matrix of letters was given.

Warning. Note that in some contexts, most notably in the fields of sub-shifts,
symbolic dynamics and tilings, “quasiperiodic” means “uniformly recurrent”.
Since we intend to move towards these areas in the future, the risk of collision
is very high. Hence, from now on, we refer to quasiperiodic words as coverable
words; each quasiperiod is a cover (or covering pattern).

In [8], we continued the study of two-dimensional coverability by generalizing the
results from [14] to infinite pictures. In particular, we have shown some depen-
dence and independence results between coverability (and multi-scale coverabil-
ity) and aperiodicity, uniform recurrence, uniform frequencies, and topological
entropy.

Our idea was (and still is) that coverability is a local rule. Hence a natural
question, related to dynamical systems and tilings, is: does this local rule enforce
some global order? (For a broader study of this question in the general context of
tilings, see e.g. [6]). Independence results are negative answers to this question:
coverability, which is a local rule, does not imply global properties. This is why
we focus on a stronger notion, multi-scale coverability, in the last part of this
paper.

Our preliminary results (from [8]) are summarized in the following table.
Here, ⊥ means “independent”, ? means “not treated yet” and =⇒ means
“implies something about”.

Aperiodicity Uniform recurrence Frequencies Entropy
Coverability ⊥ ? ? ?
Multi-scale ⊥ =⇒ ? =⇒

In this article, we extend these results in various ways. We complete our
independence (and dependence) results with coverability. We also show that
multi-scale coverability implies the existence of uniform frequencies. As a sum-
mary, we have get the following table.

Aperiodicity Uniform recurrence Frequencies Entropy
Coverability ⊥ ⊥ ⊥ =⇒
Multi-scale ⊥ =⇒ =⇒ =⇒
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The paper is structured as follows.
In Section 2, we recall notations, definitions, and classical properties of sym-

metry on pictures, notably uniform recurrence, uniform frequencies and topo-
logical entropy. Then we adapt an elementary proof from the one-dimensional
case to show that, in two dimensions, coverability is independent from these
properties. This proof relies on a very specific cover; we conclude this section
by showing that, for many other covers, coverability implies zero topological en-
tropy. This new result might seem surprising, as it is different from dimension
one. We conjecture that coverability may imply zero topological entropy, except
for a very specific class of covers (which are essentially one-dimensional words).
This would make things very different from the one-dimensional case.

In Section 3, we characterize the covers that are independent from aperiod-
icity, uniform recurrence and uniform frequencies. (Our previous work only did
this for aperiodicity).

Finally in Section 4, we study relations between multi-scale coverability and
topological entropy, uniform recurrence and uniform frequencies. Multi-scale
coverability is a good notion of symmetry in one dimension, as it implies uniform
recurrence, uniform frequencies and zero topological entropy. In our preliminary
work, we have studied links between multi-scale coverability and uniform recur-
rence and topological entropy in two dimensions. We present these results, along
with a new one: in two dimensions, multi-scale coverability also implies the ex-
istence of frequencies. This proof is purely combinatorial and does not involve
ergodic theory.

2. Independence and Dependence Results

2.1. Definitions and Notations

In this section, we give all notations and definitions we will use afterwards.
We will occasionally use classical notations and well-known results from the
one-dimensional case, i.e. combinatorics on words; for these, see [12].

Let Σ be a finite alphabet. An infinite picture (or two-dimensional word, or
Z2-word) is a function from Z2 to Σ. Unless otherwise stated, those functions
are assumed to be total; otherwise, we note dom(w) the domain of w, i.e. the
set of coordinates where it has defined letters.

A finite picture, or block, is a function w such that dom(w) = {i, . . . , i+n−
1}×{j, . . . , j+m−1}, for i, j ∈ Z and n,m ∈ N. In that case, let width(w) = n
and height(w) = m. Moreover, the function w such that dom(w) = ∅ is the
empty block ; it is considered as a block and has width and height equal to 0.
Conversely, any block which has either width or height equal to 0 is the empty
block. The set of blocks of dimension n×m is denoted by Σn×m. More generally,
if u is a block, then un×m denotes the rectangle formed of n rows and m columns
of copies of u. Thus un×m has size nwidth(u)×m height(u).

If u and v are blocks, then let |u|v denote the number of occurrences of v
in u. Let u[x, y] denote the image of (x, y) by u. If w is an infinite picture,
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w[(x, y), · · · , (x+w− 1, y+ h− 1)] denote the restriction of w to the rectangle
{x, . . . , x + w − 1} × {y, . . . , y + h − 1}, for x, y ∈ Z and w, h ∈ N. If either w
or h equal 0, then this denotes the empty block.

We will sometimes need to see finite blocks as one-dimensional words whose
alphabets are “columns” or “lines”. Let CΣ,n (respectively LΣ,m) denote the
set of n-columns (respectively m-lines) over Σ, i.e. 1 × n-blocks (respectively
m×1-blocks) over Σ. Concatenation in C and L is done respectively horizontally
or vertically.

In what follows, letw be an infinite picture and let u, v be blocks. We recall some
classical notions from combinatorics on words, adapted to the two-dimensional
case.

By definition, w has a vector of periodicity (k, `) ∈ Z2 \{(0, 0)} if, for all
positions (x, y) ∈ Z2, we have w(x, y) = w(x+ k, y+ `). Moreover, we say that
w is periodic if it has at least two non-colinear vectors of periodicity.

We say that u is a cover (or a covering pattern) of w if, for all (x, y) ∈ Z2,
there exists (i, j) ∈ N2 with 0 ≤ i < width(u) and 0 ≤ j < height(u) such that
w[(x − i, y − j) . . . (x − i + width(u) − 1, y − j + height(u) − 1]) is equal to u.
Intuitively, u is a cover of w when each position of w belongs to an occurrence
of u. If w has at least one cover, then it is coverable.

The picture w is uniformly recurrent if, for all k ∈ N, there exists some
` ∈ N such that all k×k-blocks of w appear in all `× `-blocks of w. Intuitively,
this means that any block of w appears infinitely often with bounded gaps.

Let cw(n,m) be the number of different n×m-blocks of w. Note that cw is
known as the block complexity function of w, and links between periodicity and
block complexity are currently investigated (see e.g. [4]). In this paper, we will
focus on the topological entropy of w, which is the following quantity:

H(w) = lim
n→∞

log|Σ| cw(n, n)

n2

Intuitively, if cw(n, n) ' |Σ|εn2

, then H(w) ' ε. In other words, when the
complexity function of w is polynomial, w has zero entropy. This is a classical
regularity property on words, often used in the context of dynamical systems.
Note that there are several kinds of entropy, in addition to topological entropy.
However, topological entropy is the canonical notion when studying finite-type
sub-shifts, our area of interest.

Finally, the frequency of u in w is the following quantity:

fu(w) = lim
n→∞

|w[(−n,−n) . . . (+n,+n)]|u
n2

if it exists. If fu(w) exists for all blocks u of w, then u is said to have frequencies
(or have uniform frequencies). This is another common regularity property
coming from dynamical systems, where it is more often called unique ergodicity.
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2.2. Coverability is Independent from Classical Notions of Symmetry

Now let us warm up with an easy independence result, already known in
one-dimension (see [14]).

First, recall that Σ is a finite alphabet and let h denote a function from Σ
to Σn×m, for n,m ∈ N. We extend h to a function from ΣZ2

to ΣZ2

as follows:
if w is a picture (either finite or infinite), then h(w) is the picture w′ defined
by w′[(xn, ym), · · · , (xn + n − 1, ym + m − 1)] = h(w[x, y]) for all x, y ∈ N.
When convenient, we similarly extend h to finite pictures. We say that h is a
morphism on pictures. We will use such a morphism in the next proof.

Proposition 1. On infinite pictures, coverability is independent from uniform
recurrence, existence of frequencies and topological entropy.

Proof. For uniform recurrence, observe that q = b b a
a b b is a cover of the non-

uniformly recurrent word displayed on Figure 1. With the same value of q, the
q-periodic infinite picture is uniformly recurrent.

Let w be an infinite picture over {a, b} with polynomial (respectively ex-
ponential, respectively. double-exponential) complexity. Consider the following
function:

ν(a) = ababaaba

ν(b) = abaababa

The image ν(w) has polynomial with the same degree (respectively exponential,
respectively double-exponential) complexity and is aba-coverable (viewing aba
as a 3 × 1-block). Therefore, we can get either zero or positive topological
entropy for coverable words.

Finally, the word ν(aZ
2

) has frequencies for all its blocks. By contrast, if
w is a word having no frequencies for any block, then ν(w) has no frequencies
either.

Proposition 1 is a direct generalization of the one-dimensional case; it shows
the independence between coverability and various notions. However, the proof
involved a very specific quasiperiod, which was an 8×1-rectangle; i.e., we repro-
duced the behaviour of one-dimensional coverability on each line of an infinite
picture. In the following, we use more specifically the two dimensions and show
that a reasonable condition on the cover q can enforce a global property of
q-coverable words.

2.3. Topological Entropy of Coverable Pictures

Let q and u be finite blocks such that q 6= u and q is not empty. We say that
u is a border of q when u occurs in two opposite corners of q. Note that it is
possible to have either width(b) = width(q) (which we call a full-width border)
or height(b) = height(q) (a full-height border), but not both. If neither case
applies, we call b a diagonal border, following the terminology from [5]. We are
going to show that, if q has a corner without any (non-empty) border, then all
q-coverable pictures have zero topological entropy.
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Figure 1: A coverable, non-uniformly recurrent word.

This is not a contradiction with Proposition 1, as we impose a condition
on the cover q. However, there are no equivalent results in one dimension:
no non-trivial condition on q can force topological entropy to be 0 on right-
infinite words. (The following theorem could be reformulated in one dimension,
but the hypothesis on q would be the trivial condition that q is border-free.)
Therefore this is a striking contrast with the one-dimensional case: even though
coverability and topological entropy are independent, the latter is forced to be
zero for a large class of covers. Hence a global order might arise from coverability
if the cover is sufficiently well-chosen.

Theorem 2. Let q be a finite picture of size w×h and w an infinite q-coverable
picture. If q has a corner without any non-empty border, then w has zero
topological entropy.

The end of this subsection is devoted to the proof of this theorem.

Suppose, without loss of generality, that all the borders are in the top left-
hand corner of q. Moreover, q has no full-width nor full-height borders.

In what follows, “occurrence” denotes an occurrence of q in w—unless oth-
erwise stated. Moreover, Occ(x, y) denotes the occurrence of q which covers the
letter at coordinates (x, y). If there are several such occurrences, we choose the
leftmost one among the lowest ones. The coordinates of an occurrence (or a
block) are the coordinates of its bottom, left-hand corner.

Let o be an occurrence whose domain is {(x, y), · · · , (x+w−1, y+h−1)}. We
denote Right(o) = Occ(x+w, y+h−1). If Right(o) has coordinates (x′, y′), then
dR(o) = y′ − y. In particular, the coordinates of Right(o) are (x+w, y+ dR(o))
(since there are no borders in this corner, see Figure 2). Similarly, we denote
Above(o) = Occ(x + w − 1, y + h). If Above(o) has coordinates (x′′, y′′), then
dA(o) = x′′ − x. The coordinates of Above(o) are (x + dA(o), y + h) (for the
same reasons).
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Observe that if both dA(o) > 0 and dR(o) > 0, then (dA(o), dR(o)) is the size
of a border of q. So, there are only three possible cases, illustrated by Figure 2:

1. dR(o) = 0 and 0 ≤ dA(o) < w;

2. dA(o) = 0 and 0 ≤ dR(o) < h; or

3. (dA(o), dR(o)) is the size of a border.

o

�
�

dA(o)

Right(o)

Above(o)

Case 1

o

�
� dR(o)

Right(o)

Above(o)

Case 2

o

�
�

Right(o)

Above(o)

Case 3

Figure 2: Illustration of Above, Right, dA and dR.
The squares � and � show which letter Right(o) and Above(0) should cover, respectively.

Proposition 3. Let w and q be as in Theorem 2.
Let o be an occurrence with coordinates (x, y). Then we have:

Right(Above(o)) = Above(Right(o)) = Occ(x+ w + dA(o), y + h+ dR(o))

In particular, this occurrence is uniquely determined by o, dA(o) and dR(o).

Proof. As in theorem 2, we suppose without loss of generality that the borders
are on the top left-hand corner of q.

By definitions, we have:

Above(Right(o)) = Above(Occ(x+w, y+dR(o)) = Occ(x+2w−1, y+h+dR(o))

and:

Right(Above(o)) = Right(Occ(x+dA(o), y+h)) = Occ(x+w+dA(o), y+2h−1)

Consider o′ = Occ(x + w + dA(o), y + h + dR(o)): its coordinates must be
(x+ w + dA(o), y + h+ dR(o)), otherwise, it would overlap in an incorrect way
(that is, on the upper right-hand corner) with either Above(o) or Right(o) (see
Figure 3). So the top right-hand corner of o′ must be at coordinates (x+ 2w+
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dA(o)− 1, y+2h+ dR(o)− 1). We can see that both (x+2w− 1, y+h+ dR(o))
and (x+w+dA(o), y+2h−1) are covered by o′ with some coordinates-checking:

x+ w + dA(o) ≤ x+ 2w − 1 ≤ x+ 2w + dA(o)− 1

y + h+ dR(o) ≤ y + 2h− 1 ≤ y + 2h+ dR(o)− 1

Moreover, o′ is the lowest and the leftmost occurrence covering those letters
(any other one would overlap either Right(o) or Above(o) in an incorrect way,
see Figure 3 again). Hence, by definition of Occ, o′ must be the correct one.

o

o′

Right(o)

�

Above(o)

�

Case 1

o

Right(o)

�
Above(o)

�
o′

Case 2

o
Right(o)

�

Above(o)

�

o′

Case 3

Figure 3: Illustration for proof of Proposition 3. The � indicates (x+w + dA(o), y + 2h− 1)
and � indicates (x+ 2w − 1, y + h+ dR(o)).

Proof of Theorem 2. Consider an arbitrary n× n-block B of w whose leftmost
bottom coordinate if (x, y). Sincew is q-coverable, all letters of B are covered by
occurrences of q. Call u1, · · · , uk the occurrences of q covering B[(x, y), · · · , (x+
n− 1, y)] (the bottom frontier of B), from left to right. Likewise, call v1, · · · , v`
the occurrences of q covering B[(x, y), · · · , (x, y+ n− 1)] (the left-hand frontier
of B), from bottom to top. Observe that u1 = v1.

By Proposition 3, B is uniquely determined by u1, . . . , uk, v1, . . . , vk and the
coordinates of B relative to u1. Let us bound the number of possible such B’s.

For all 1 ≤ i < k, we have either ui+1 = Right(ui) or Above(ui+1) =
Right(ui). Therefore, the number of possible sequences for u1, . . . , uk, given u1,
is bounded by 2k ≤ 2n. Likewise, for 1 ≤ j < `, we have vj+1 = Above(vi)
or Right(vi+1) = Above(vi). Therefore, the number of possible sequences for
v1, . . . , vk, given v1, is bounded by 2` ≤ 2n. Finally, the number of possible B
is bounded by |q| × 22n.

Observe that:

lim
n→∞

log(|q| × 22n)

n2
= lim

n→∞

2n× log |q|
n2

→ 0
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therefore, w has zero topological entropy.

As we saw in the above proof, coverability when there is no border reduces
to questions of tiling the plane with rectangles. The different possible overlaps
could yield different polyomino-shaped tiles. Tiling of the plane by rectangles
and polyominoes was investigated in [2].

By contrast with Theorem 2, any block q with only full-width (or only full-
height) borders has either q-coverable pictures with positive entropy, or only
periodic q-coverable pictures. We conjecture that, in the only remaining case,
the entropy is zero.

Conjecture 4. If q is a block without full-height or full-width borders, but with
borders in all corners, the topological entropy of the q-coverable words is zero.

Observe that, in the previous remark, we had to exclude the “only periodic
coverable pictures” case. This is a common problem with coverability, which we
will address in the next section.

3. Aperiodic Coverings

Here is a natural question about coverability: let q be a block with some
property; do all q-coverable infinite pictures get some other property? In other
terms, can a property on a cover enforce another property to all coverable pic-
tures? For instance, we could imagine that some property on q would force each
q-coverable picture to have uniform frequencies.

Theorem 2 is already a partial answer to this question; in this section, we
give a more exhaustive answer. We show that there exist aperiodic q-coverable
pictures if and and only if the smallest block which tesselates q does not overlap
itself. This is an answer to the previous question in the case of periodicity. This
is specifically important, as we generally want to exclude the periodic case when
working with coverability.

Finally, we observe that this condition is also necessary and sufficient to force
the existence of coverable non-uniformly recurrent pictures, and even coverable
non-uniform frequencies pictures. Therefor, except for a trivial class of covers
(trivial in the sense that they only allow periodic coverable pictures), coverability
does not force any interesting property but (possibly) zero topological entropy.

3.1. A Condition for Simpler Cases

First, let us consider the question on one-dimensional words (either right-
infinite or bi-infinite, it does not matter). Let q be a finite word. Is there a
condition on q forcing all q-coverable one-dimensional words to be periodic?

Recall that, in the context of one-dimensional words, a border is a proper
factor of q which is both a prefix and a suffix of q. (A word u is a proper factor
of v if it is a factor of v and u 6= v). Moreover, the primitive root r of q is the
shortest word such that, for some k ∈ N, we have q = rk. We might have q = r
and k = 1 for some words.
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Now let us get some intuition about what is next. Let q be a finite (one-
dimensional) word and u be the shortest nonempty border of q, so that we have
q = uvu for some v ∈ Σ∗. Then, the word uvuv(uvu)ω is q-coverable (it is
covered with occurrences of uvu) does not seem to be periodic (uvuvuv only
appears visually once). However, this is not quite true: if there exists some
r ∈ Σ∗, k, ` ∈ N such that u = rk and v = r`, then uvuv(uvu)ω = rω, which is
periodic. This is why the condition is as follows.

Proposition 5. Let q be a finite one-dimensional word. There exists an aperi-
odic q-coverable N-word if and only if the primitive root of q has a non-empty
border.

Proof. First, suppose that q is a cover of an aperiodic infinite word w. Call r the
primitive root of q; observe that r is also a cover of w. Suppose by contradiction
that r does not have any non-empty borders; then, two occurrences of r never
overlap. Hence w, which is r-covered, only consists in concatenations of r.
Therefore, w is r-periodic: a contradiction.

Conversely, write q = rk with r primitive and k ≥ 1. Suppose that r has
a non-empty border and let u be the smallest one, i.e. r = uvu for some
non-empty word v. Let h be the morphism defined by h(a) = (uvu)k and
h(b) = u(vu)k. Both h(a) and uvu · h(b) are q-coverable, so the image of any
word beginning with a by h is q-coverable. Moreover, since r = uvu is a primitive
word, u(vu)k 6= (uvu)` for all k, ` ∈ N. Therefore, h is injective, so the image
of any aperiodic word by h is also aperiodic.

Now, let us shift to Z2-words. This shift is mainly motivated by the study
of tilings, which is why we choose Z2-words instead of N2-words. We need some
definitions before getting to prove one of our main theorem.

3.2. Preliminaries for the Z2-Case

Let q and r be blocks. In this context, r is a root of q if q = rn×m, for
some positive integers n and m. If q has no roots except itself, it is said to be
primitive. These notions initially came from combinatorics on one-dimensional
words. The following lemma is a classical result about roots in one dimension:
it shows that any one-dimensional finite word has a smallest root, called its
primitive root.

Lemma 6. (See, e.g., [12], Prop. 1.3.1 and 1.3.2.)
Given any finite one-dimensional words u and v, the following statements are
equivalent:

1. there exist integers n,m ≥ 0 with (n,m) 6= (0, 0), such that un = vm;

2. there exist a word t and positive integers k and ` such that u = tk and
v = t`;

3. uv = vu.

Let us show that primitive roots are also well-defined on finite pictures.
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Lemma 7. Let q be a finite picture. Suppose that q has two distinct roots r1
and r2. Then there exists a finite picture r such that r is a root of both r1 and
r2.

Proof. Let rk1 (respectively rk2 ) denote k occurrences of r1 (respectively r2) con-
catenated vertically. Since r1 and r2 are roots of q, there exist integers n and
m such that both rn1 and rm2 are roots of q, with height(q) = height(rn1 ) =
height(rm2 ). Consider q, rn1 and rm2 as words over CΣ,height(q); by Lemma 6,
there exists a word c over CΣ,height(q) such that c is a root of both rn1 and rm2 .

Let r3 (respectively r4) be the horizontal prefix of r1 (respectively r2) of
length width(c). Both r3 and r4 are prefixes of q, hence rn3 = rm4 (the power
is still taken for vertical concatenation). Now view r3 and r4 as words over
LΣ,width(c). By Lemma 6, there exists a word r over LΣ,width(c) which is a
common root of r3 and r4.

As r1 (respectively r2) is obtained by horizontal concatenations of occur-
rences of r3 (respectively r4), we deduce that r is a root of r1 and of r2.

The primitive root of a block q is the minimal root. By Lemma 7, it is the
only root of q which is primitive. Note that q might be its own primitive root.

3.3. Blocks Covering Aperiodic Infinite Pictures

Now we can state the condition under which a block can be the covering
pattern of a non-periodic Z2-word.

Theorem 8. Let q be a finite block. Then there exists a q-coverable, non-
periodic Z2-word if and only if the primitive root of q has a non-empty diagonal
border.

This subsection is entirely dedicated to the proof of Theorem 8.

Proof of the “only if” part. First, suppose that w is a Z2-word which is both
q-coverable and non-periodic. There exists at least two overlapping occurrences
of q in w (otherwise, w would be q-periodic). Moreover, the overlapping part is
not a power of the primitive root of q: if all overlappings were powers of some
root r of q, then w would be r-periodic. Therefore, q must have at least one
border which is not a power of its primitive root. Hence its primitive root has
a non-empty border.

Proof of the “if” part. Suppose that q’s primitive root has a non-empty diagonal
border. Let us build an infinite Z2-word which is q-coverable, but not periodic.

Let r be the primitive root of q and b be a non-empty diagonal border of
r. (Thus b is potentially a picture and not a single letter.) Consider the four
tiles α, β, δ and γ displayed on Figure 4. Each rectangle is an occurrence of q.
The overlapping zones are all occurrences of the border b and the shifts on tile
borders are sized accordingly. If the border b is on the opposite corner, all tiles
are built symmetrically.
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α = µ(a1) β = µ(a2)

δ = µ(a3) γ = µ(a4)

Figure 4: Four tiles to build a q-coverable word. Each rectangle is an occurrence of q.

Let A = {a1, a2, a3, a4} and µ be the function from AZ2

to ΣZ2

, defined by
µ(a1) = α, µ(a2) = β, µ(a3) = δ and µ(a4) = γ. If its input is regular enough,
µ behaves more or less like a morphism, with the following concatenation rules.

On Figure 4, each tile has three anchors, i.e. letters marked by a small
square. Concatenate two tiles horizontally by merging the right-anchor of the
first one with the left-anchor of the second one. Concatenate two tiles vertically
by merging the bottom-anchor of the first one with the top-anchor of the second
one.

More formally, we have:

µ(ai · u) = µ(ai) ∪ S(4width(q);height(b)) ◦ µ(u)

µ

(
u
v

)
= µ(v) ∪ S(width(b);4 height(q)) ◦ µ(u)

where S(x,y) denotes the translation (shift) by the vector (x, y) and the operator
∪ denotes the superposition of two finite words. Recall that we view two-
dimensional words as (possibly partial) functions from Z2 to the alphabet. These
functions have domains which may be strictly included in Z2. If w1 and w2 are
two words with disjoints domains, then (w1 ∪ w2)[x, y] = w1[x, y] where w1 is
defined and w2[x, y] where w2 is defined. In what follows, we will only consider
superpositions where no position (x, y) is defined in both w1[x, y] and w2[x, y].

If u is a block, the leftmost bottom anchor of µ(u[i, j]) has coordinates:

(i× 4× width(q) + j × width(b); j × 4× height(q) + i× height(b))

in µ(u). Figure 5 gives an example of how µ works.
An infinite picture overA is suitable when it satisfies the following conditions:

1. each line is either on alphabet {a1, a2} or on alphabet {a3, a4};
2. each column is either on alphabet {a1, a3} or on alphabet {a2, a4}.

12



Figure 5: µ
( a3 a4 a4 a3
a1 a2 a2 a1

)
, each rectangle is an occurrence of q

Let us check that if w is suitable, then each letter of µ(w) belongs to the im-
age of exactly one letter of w. This essentially means that all tiles “fit together”
with no overlaps.

By construction, tiles α and δ fit together vertically, and tiles β and γ fit
as well. Hence µ( a1

a3
) and µ( a2

a4
) are well-defined. Likewise, tiles α and β fit

together horizontally, and tiles δ and γ fit as well. Hence µ(a1a2) and µ(a3a4)
and are well-defined. Iterating this argument, we deduce that the image of any
suitable word is well-defined.

Moreover, we let readers check that µ(w) has no “holes”. More precisely, if
if w is a suitable block, µ(w) satisfies the following weak convexity properties:

• for all i, j, j1, j2 ∈ N with j1 ≤ j ≤ j2, if (i, j1) and (i, j2) are in dom(µ(w)),
then (i, j) is in dom(µ(w)) as well;

• for all i, j, i1, i2 ∈ N with i1 ≤ i ≤ i2, if (i1, j) and (i2, j) are in dom(µ(w)),
then (i, j) is in dom(µ(w)) as well.

As a consequence, the definition of µ can be extended to suitable Z2-words.
If w is a suitable Z2-word, then µ(w) is a well-defined Z2-word as well.

Now let us prove that if w, an infinite picture, is aperiodic, then so is µ(w).
First, we need a technical lemma about our tiles.

Lemma 9. Let x and y be different tiles from {α, β, γ, δ}. Then an occurrence
of x and an occurrence of y cannot overlap when their anchor points coincide.

This essentially means that situations from Figure 6 cannot occur.

Proof. There are six possibilities for the set {x, y}. All proofs are the same, up
to some symmetry, so we only provide a proof when x = α and y = β (illustrated
by the top left-hand case of Figure 6). In what follows, q refers to the block
used for the construction of the tiles, r to its primitive root and b to a diagonal
border of r.

There are three occurrences of q, named q1, q2 and q3, such that q1 is covered
by q2 and q3 and all three are horizontally aligned. In other words, q1 is an
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Figure 6: All other possible overlappings.

occurrence of q in q2 · q3 viewed as words over LΣ,width(q). (See for instance the
top second column of q’s in the figure). View q1, q2 and q3 as one-dimensional
words over the alphabet LΣ,width(q). There exist words x and x′ over LΣ,width(q)

such that q1 = xx′ and q2 = q3 = x′x (where words are concatenated from
bottom to top).

By Lemma 6, x and x′ (and q) are powers of the same word s over LΣ,width(q).
Notice that height(x′) = height(b) and height(x) = height(q) − height(b). It
follows that height(s) divides height(x) and height(q)− height(b).

Observe that s is a vertical prefix of both q and x. Thence one can find
three occurrences of s, named s1, s2 and s3, such that s1 is covered by s2 and
s3 and all three are vertically aligned. In other terms, sq is an occurrence of q
in s2 · s3 viewed as a word over CΣ,height(q). (See for instance the second line of
q’s in the figure).

Now view s as a one-dimensional word on the alphabet CΣ,height(s). There
exist words y, y′ such that s1 = yy′, s2 = s3 = y′y and width(y′) = width(b).
By Lemma 6, we deduce that there exists a word t over CΣ,height(s) such that y
and y′ (and s) are powers of t.

Let k ≤ 1 be the integer such that q = sk (for vertical concatenation) and
let ` ≥ 1 be the integer such that s = t` (for horizontal concatenation). We
have that q = t`×k. Therefore t is a root of q such that width(t) ≤ width(y′) =
width(b) and height(t) = height(s) ≤ height(b). Thus width(s) × height(s) ≤
width(b) × height(b) which is a contradiction with the definition of b. Indeed,
recall that b is a border (hence a proper block) of the primitive root of q, which
is the smallest (in number of letters) root of q.

In the next proof, Lemma 9 helps to establish a correspondence between the
letters of the Z2-word µ(w) and the “tiling” consisting of occurrences of α, β, δ
and γ. We need this correspondence to prove that some µ(w) can always be
made aperiodic.

Lemma 10. Let q be a block, r its primitive root and b one non-empty diagonal
border of r. Let w be an aperiodic, suitable Z2-word. Then µ(w) is an aperiodic,
q-coverable Z2-word.
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Proof. By construction, µ(w) is q-coverable for all w. Suppose that µ(w) has a
non-zero vector of periodicity −→p ∈ Z2. Let us prove that, under this assumption,
w is periodic.

Let a ∈ Z2 be the coordinates of the anchor point of some tile in µ(w). For
any i ∈ Z, let ti = a+ i×−→p . Since tiles have at most 16×width(q)× height(q)
letters, by the pigeonhole principle, there are two pairs of coordinates ti and
tj which have the same offset to the anchor points of their respective tiles (i.e.
the tiles covering their respective positions). Hence the difference between these
anchor points is a multiple of the vector of periodicity −→p .

Let Ti (resp. Tj) be the tile covering position ti (resp. tj). Since Ti is
the (j − i) × −→p -translation of Tj , they are both occurrences of a same tile.
Moreover, the right-neighbours of Ti and Tj are both occurrences of a same
tile, otherwise we would have a configuration forbidden by Lemma 9. Likewise,
the top-neighbour, bottom-neighbour and left-neighbour of Ti and Tj are also
equal. By iterating this argument over the neighbours’ neighbours, and so on,
we conclude that the tiling itself is periodic. Hence, w is periodic.

This ends the proof of Theorem 8. From any block q with at least one non-
empty diagonal border in its primitive root, we can build µ(w) for any aperiodic,
suitable Z2-word w. The picture µ(w) will be q-coverable and aperiodic.

3.4. Uniform Recurrence, Uniform Frequencies and Coverability

In this subsection, we extend Theorem 8 (which characterizes periodicity in
terms of covers) to uniform recurrence and uniform frequencies. To do so, we
exploit Theorem 8 itself as well as the function µ from its proof. Note that these
results are direct generalizations of the one-dimensional case discussed in [14].

Let q be a block whose primitive root has a non-empty diagonal border. Let
µ be as in the proof of Theorem 8. Recall that µ takes as an argument a picture
over the alphabet {a1, a2, a3, a4}. Consider the word w such that:

• w[0, 0] = a4;

• w[0, j] = a2 for j ∈ Z∗;

• w[i, 0] = a3 for i ∈ Z∗;

• w[i, j] = a1 for i ∈ Z∗ and j ∈ Z∗.

Observe that w is suitable, hence µ(w) exists. Moreover, µ(w) is not uniformly
recurrent: any block which contains µ(a4) only occurs once. Therefore µ(w) is
a q-coverable picture not uniformly recurrent.

Now consider t a Z−word (one-dimensional) over {1, 2}, such that no fac-
tor of t has uniform frequencies in t. Then define w′ an infinite picture over
{a1, a2, a3, a4} by w′[i, j] = at[i], for all i, j ∈ Z. Observe that, in µ(w′), the fre-
quency of any block containing exactly one occurrence of µ(a2) is the frequency
of a2 in t. Therefore, those factors do not have uniform frequencies.
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Proposition 11. Let q be a block. There exists a q-coverable infinite picture
which is not uniformly recurrent (respectively has no uniform frequencies) if and
only if the primitive root of q has a non-empty diagonal border.

Proof. If q does not have a primitive root with a diagonal border, then by The-
orem 8 all q-coverable pictures are periodic and therefore uniformly recurrent
(respectively have uniform frequencies). Otherwise, the constructions above
gives µ(w) (respectively µ(w′)) a non-uniformly recurrent, and not even recur-
rent (respectively without uniform frequencies) q-coverable word.

This remark generalizes a one-dimensional result from [14]. It is a negative
answer to our initial question. As soon as the cover q we choose is non-trivial
(has at least one non-periodic coverable word), we have q-coverable word with-
out frequencies and without uniform recurrence. By contrast, we conjectured
in Section 2.3 that, for almost any q, all q-coverable words have zero topolog-
ical entropy. To sum up, coverability is independent from uniform recurrence
and uniform frequencies for all “non-trivial” covers, and it likely implies zero
topological entropy for “almost all” covers. Not only coverability implies very
little symmetry properties on words, but the covers themselves bear very little
information.

As a consequence, we move on a stronger notion of coverability, based on
the same idea, but with (hopefully) better properties.

4. Multi-Scale Coverability in Two Dimensions

In [14], Monteil and Marcus called multi-scale quasiperiodicity any N-word
having infinitely many quasiperiods. In our context, we want to exclude cases
where coverability is obtained on groups of one-dimensional lines (or columns)
packed all over Z2. Hence we call a Z2-word multi-scale coverable if, for each
n ∈ N, it has a cover of size k × ` with both k ≥ n and ` ≥ n. This is actu-
ally a generalization of one-dimensional multi-scale quasiperiodicity (in 1D, all
quasiperiods are prefixes of the multi-scale quasiperiodic word, so the quasiperi-
ods must be longer and longer).

An example of multi-scale coverable picture is given on Figure 1. No matter
the value of q, this infinite picture admits qn×n as a cover for any positive integer
n. The widths and heights of qn×n grow to infinity as required.

In [14], Monteil and Marcus prove that multi-scale coverable right-infinite
words have zero topological entropy, uniform frequencies, and are uniformly
recurrent. In this section, we generalize implications of topological entropy and
uniform frequencies to the two-dimensional case. Then we see that uniform
recurrence is a bit more subtle.

4.1. Topological Entropy

Let w be a Z2-word. Recall that cw(n,m) is the number of different of
blocks of size n×m which occur in w and that the topological entropy of w is
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the following quantity:

H(w) = lim
n→+∞

log|Σ| cw(n, n)

n2
(1)

Proposition 12. Any multi-scale coverable, Z2-word w has zero topological
entropy.

Proof. Consider a covering pattern q of w with size n × m. Suppose without
loss of generality that n ≤ m. Let s be a m ×m-square of w. The square s is
covered with occurrences of q (which may spill out of s). The relative position
of s and of the occurrences of q completely defines s.

We need at most 4m occurrences of q to define a covering of s. Indeed, each
occurrence of q must have at least one of its corners in s. If some occurrence
of q has its bottom right-hand corner in s, then no other occurrence of q may
have their bottom right-hand corners on the same line of s. Otherwise, one of
these occurrences would supersede the other one, which would be “useless” in
the covering. Proceed the same way for the other corners and deduce that at
most 4m occurrences of q (4 per line) uniquely define s.

Each of these occurrences is uniquely determined by its position of its corner
on a line of s. There are at most m possibilities for each. Therefore, there are
at most m4m q-coverings which define at most m4m squares of size m×m.

This bound on cw(m,m) allows us to compute the entropy of w. Observe
that:

lim
m→∞

logm4m

m2
= lim

m→∞

4m logm

m2
→ 0 (2)

Since there are infinitely many covering patterns of w with growing sizes,
there are infinitely many integers m such that cw(m,m) ≤ m4m. Hence equa-
tion (2) shows that then topological entropy of w converges to zero.

Note that since the Kolmogorov complexity is bounded by the topological
entropy (see [3]), this result also shows that the Kolmogorov complexity of
multi-scale coverable words is zero as well.

4.2. Uniform Frequencies

In this subsection, we prove the following theorem:

Theorem 13. Multi-scale coverable pictures have uniform frequencies.

This answers an open question from our preliminary work on the subject [8],
and we generalize a result from infinite words to infinite pictures. We believe
that this proof is easily adaptable to higher dimensions (3-dimensional words,
etc.). Moreover, the proof on words in [14] was expressed in terms of sub-
shifts and used ergodic theory. By contrast, our proof uses purely combinatorial
means, and hence is accessible to readers unfamiliar with this theory. For a
survey about ergodic theory in the context of one-dimensional words, see [7].

First, let us recall some notation. If u and v are finite blocks, then |u| =
width(u) × height(u) and |v|u is the number of occurrences of u in v. As for
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infinite words, we note fu(v) the frequency of u in v, which is the following
quantity:

fu(v) =
|v|u
|v|

Let w be an infinite picture. Define Bn(w) as w[(−n,−n), · · · , (+n,+n)] and
fu(w) as:

fu(w) = lim
n→+∞

fu(Bn)

if this quantity exists.
We say that w has frequencies (or has uniform frequencies, or is uniquely

ergodic) if fu(w) exists for each block u of w. Our purpose is to show that any
multi-scale coverable picture has frequencies. This purpose is not void, because
some infinite pictures do not have uniform frequencies. For instance, any picture
containing arbitrarily large squares of 0’s and arbitrarily large squares of 1’s has
no frequencies for 0 nor for 1.

Let us give a general idea of the proof, which is structured in several lemmas.
Lemmas 14, 15 and 18 are technicalities for later calculations. Lemma 16 states
that, if w is a multi-scale coverable picture without frequencies, then there exist
either:

1. infinitely many covers with “high” frequencies and infinitely many blocks
with “low” frequencies; or

2. infinitely many covers with “low” frequencies and infinitely many blocks
with “high” frequencies.

(Here “low” and “high” are used to describe the ideas of the proof. Their formal
meaning will be given later.) Lemma 17 states that, if a picture has infinitely
many covers with high frequencies and infinitely many blocks with low frequen-
cies, then it has infinitely many blocks with even lower frequencies. Similarly,
Lemma 19 states that if a picture has infinitely many covers with low frequen-
cies and infinitely many blocks with high frequencies, then it has infinitely many
blocks with even higher frequencies. Finally, the proof of Theorem 13 is as fol-
lows: by Lemma 16, any multi-scale picture without frequencies is either in
case 1 or in case 2. In case 1, apply Lemma 17 many times, until getting blocks
with frequencies higher than 1: a contradiction. In case 2, apply Lemma 19
many times, until getting blocks with frequencies lower than 0: a contradiction
again.

Let us start.

If w is an infinite picture, let L≥K(w) the set of blocks of w whose width is
larger than K and whose height is also larger than K.

For the purposes of the proof, we shall need to extend definitions of |v| and
|v|u to cases where v is a finite union of blocks (instead of a single block). In
that case, |v| is the number of letters in v and |v|u the number of complete
occurrences of u in v.
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Lemma 14. Let v be a finite block which can be decomposed into v1 and v2,
two unions of blocks such that dom v1 ∩ dom v2 = ∅. Let u be a block. Then,

fu(v1)×
|v1|
|v|

≤ fu(v1)×
|v1|
|v|

+ fu(v2)×
|v2|
|v|

≤ fu(v) ≤ fu(v1)×
|v1|
|v|

+
|v2|
|v|

Proof. This is equivalent to the following inequation:

|v1|u ≤ |v1|u + |v2|u ≤ |v|u ≤ |v1|u + |v2|

The first two inequality follows from dom v1 ⊆ dom v and dom v2 ⊆ dom v. For
the last inequality, consider that each occurrence of u in v has its top right-
hand corner which is either in v1 or in v2. The number of occurrences with their
corner in v1 is precisely |v1|u. In the “worst” case, there is an occurrence of u
per letter of v2.

We shall also need to express the relation between width, height and areas
of bigger and bigger blocks.

Lemma 15. Let x, y, z, t be real numbers such that x > 0, y > 0. Let (un)n∈N be
a sequence of finite pictures such that, for all i, width(ui) > i and height(ui) > i.
Then, there exists an integer N such that, for all n > N :

t <
width(un)× height(un)

xwidth(un) + y height(un) + z

Proof. Observe that, since x > 0 and y > 0, the following functions are non-
decreasing:

w 7→ wh

xw + yh+ z
h 7→ wh

xw + yh+ z

Hence, as for all i, width(ui) > i and height(ui) > i, we have for arbitrarily
large n:

n2

(x+ y)× n+ z
<

n× height(un)

n+ y × height(un) + z
<

width(un)× height(un)

xwidth(un) + y height(un) + z

The lemma follows from the fact that the function n 7→ n2/(n× (x+y)+ z) has
no upper bound.

We are now ready for the proof that each multi-scale coverable picture has
uniform frequencies. We section it into three technical Lemmas: 16, 17 and 19.

Lemma 16. Let w be a multi-scale coverable picture. Suppose that u is a block
of w and (fu(Bn))n∈N does not converge. Then there exists:

• a real number ε > 0;

• a real number t ∈ [0; 1];
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• an infinite set V of blocks of w;

• an infinite set Q of covers of w;

such that either fu(v) < t − ε < t < fu(q) for all q ∈ Q, v ∈ V, or fu(v) >
t+ ε > t > fu(q) for all q ∈ Q, v ∈ V. Moreover, L≥K(w)∩V and L≥K(w)∩Q
are non-empty, for all K.

Proof. Observe that (fu(Bn)) takes its values in [0; 1], a compact set. Since it
does not converge, it has two subsequences converging to two different limits,
say `1 and `2 with `1 < `2. Set t = (`1 + `2)/2 and ε = (`2 − `1)/4. Define:

B− = {v | v is a block of w and fu(v) < t}
B+ = {v | v is a block of w and fu(v) ≥ t}

Remark that {B−, B+} is a partition of the set of blocks of w and that both
B− and B+ are infinite (thanks to existence of the subsequences). Moreover,
B− and B+ even contain squares of arbitrarily large sizes (still thanks to the
subsequences).

By the pigeonhole principle, there is either infinitely many covers in B−

or infinitely many covers in B+. Suppose there are infinitely many covers in
B− and call Q the set of these covers. Then we have to set V. By our previ-
ous remarks, there is an infinite subsequence of (Bn), call it Bα(n), such that
fu(Bα(n)) converges to `2 = t+2ε. By definition of convergence, there exists N
such that for all n > N , we have fu(Bα(n)) > t+ ε. Let V = {Bα(n)|n > N}.

Symmetrically, suppose there are infinitely many covers in B+ and call Q
the set of these covers. To set V, observe that there is an infinite sequence of
blocks with arbitrarily large widths and heights whose frequencies converge to
t− 2ε. By definition of convergence, there is an infinite sequence of blocks with
arbitrarily large widths and heights whose frequencies are less than t− ε. Call
the set of images of this sequence V.

Lemma 17. Let w denote a multi-scale coverable picture and u a block of w
without frequency. Suppose there exists some t ∈ [0; 1] and some ε > 0 such
that:

∀K ∈ N, ∃v ∈ L≥K(w) and fu(v) ≤ t− ε

and that:

∀K ∈ N, ∃q ∈ L≥K(w) and q is cover of w and fu(q) > t

Then we have:

∀K ′ ∈ N, ∃v′ ∈ L≥K′(w) and fu(v
′) ≤ t− 11

10
ε (3)

Proof. We assume the hypotheses of the lemma and we have to prove that
relation (3) holds. Let K ′ be some integer; let us find an appropriate block v′.
The proof is in five steps. First we give a summary of the steps.
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1. Use Lemma 15 to choose q ∈ Q and v ∈ V “big enough” for the following
steps to work well.

2. Let β be a block such that v ⊆ β and that width(β) is a multiple of
2width(q) and height(q) is a multiple of 2 height(q). By hypothesis, v has
a “low” frequency; we check that β has a “low” frequency as well.

3. Cut β into blocks of equal size 2width(q)×2 height(q). Since the frequency
of β is “low”, one of the small blocks (call it b) must have a “low” frequency
as well.

4. As b has dimensions 2width(q)× 2 height(q), it must contain a full occur-
rence of q. Cut b in two parts: q and m. By hypothesis, q has a “high”
frequency, while b as a whole has a “low” frequency. Therefore, m must
have a “very low” frequency. However, m is not a square, so we extract a
“big enough” square with a “very low” frequency.

5. Do the final calculations to check that everything before is correct.

Step one. Let q be a cover of w with fu(q) > t, and let B = 2K ′ × (width(q) +
height(q)). By hypothesis, we can choose such covers with arbitrarily large
widths and heights, thus use Lemma 15 to choose q such that:

width(q) > 10K ′ (4)

height(q) > 10K ′ (5)

|q|
B

> max(10,
1

t
t−ε/10 − 1

)

Therefore, q satisfies the following relations:

t× |q| > (t− ε

10
)(|q|+B) (6)

|q| > 10×B (7)

We will use Equations (4), (5), (6) and (7) in Step four.
Now let v be a block of w with fu(v) ≤ t − ε, and let A = 2width(q) ×

height(v) + 2 height(q)×width(v) + 4|q|. Use Lemma 15 to choose v such that:

|v|
A

>
10

ε
(8)

We will use Equation (8) in Step two.

Step two. Let β be one smallest block of w such that:

• v occurs in the bottom left-hand corner of β;

• width(β) = n× 2width(q) for some n ∈ N;

• height(β) = m× 2 height(q) for some m ∈ N.
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Since β is minimal, we have width(β)−width(v) < 2width(q) and height(β)−
height(v) < 2 height(q) (see Figure 7). So we have |v| ≤ |β| ≤ |v| + A (on
Figure 7, A is the maximal size of the gray area). In particular, |β|u ≤ |v|u +A
by Lemma 14, , hence (by fu(v) < t− ε and Equation (8)):

fu(β) ≤ fu(v)×
|v|
|β|

+
A

|β|

≤ fu(v) +
A

|v|

≤ t− ε+
A

|v|

≤ t− ε+
ε

10

= t− 9ε

10

So we have:

fu(β) ≤ t− 9ε

10
(9)

v

< 2width(q)

< 2 height(q)

Figure 7: Anatomy of β.

Step three. The width and height of β are multiples of twice the width and
height of q, respectively. So we can cut β into blocks of size 2width(q) ×
2 height(q). Call bi,j those blocks, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Since fu(β) ≤ t − 9ε
10 (Equation (9)), there exists some i and j such that

fu(bi,j) ≤ t− 9ε
10 . Suppose not. Then, by Lemma 14 applied several times:

fu(β) ≥
∑

1≤i≤n

∑
1≤j≤m

|bi,j |
|β|

fu(bi,j) > (t− 9ε

10
)(
∑
i

∑
j

|bi,j |
|β|

) = t− 9ε

10
≥ fu(β)

a contradiction (one inequality is strict). From now on, note i and j some
integers such that: fu(bi,j) ≤ t− 9ε

10 .
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q
m4

m3

m2

m1

2 height(q)

2width(q)

Figure 8: Anatomy of bi,j .

Step four. Decompose bi,j into five parts: an occurrence of q and four blocks
m1,m2,m3,m4 as on Figure 8.

By definition of the mi’s and Equations (4) and (5), we have:

width(m1) ≥ width(q) > 10K ′

width(m3) ≥ width(q) > 10K ′

width(m2) + width(m4) = width(q) > 10K ′

height(m2) ≥ height(q) > 10K ′

height(m4) ≥ height(q) > 10K ′

height(m1) + height(m3) = height(q) > 10K ′

Let m0 denote the empty block. We might have either width(m2) < K ′ or
width(m4) < K ′, but not both. If min(width(m2),width(m4)) < K ′, let σ be
the unique value in {2, 4} satisfying width(mσ) < K ′; otherwise, let σ = 0.
Likewise, we might have height(m1) < K ′ or height(m3) < K ′, but not both. If
min(height(m1),height(m3)) < K ′, let τ be the unique value in {1, 3} satisfying
height(mτ ) < K ′; otherwise, let τ = 0.

Observe that |q′| = |q|+|mσ|+|mτ | ≤ |q|+2width(q)×K ′+2height(q)×K ′.
So we have by Equation (7):

|q| ≤ |q′| ≤ |q|+B ≤ 11

10
|q|

and as |q|/|bi,j | = 1/4:
1

4
≤ |q′|

|bi,j |
≤ 11

40
(10)

Moreover, we have |q′|u ≥ |q|u (as q′ contains q). Therefore, by fu(q) > t and
Equation (6):

fu(q
′) ≥ fu(q)×

|q|
|q′|

> t
|q|

|q|+B
> t− ε

10
(11)
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Step five. We decompose bi,j into q′,m′
1,m

′
2,m

′
3,m

′
4 as follows. If width(mi) >

K ′ and height(mi) > K ′, then m′
i = mi; otherwise, m′

i is the empty block.
Without loss of generality, suppose that m′

1 is not empty and is minimal for fu
among the non-empty m′

i’s. Let M = |m′
1|+ |m′

2|+ |m′
3|+ |m′

4|. Then we have,
by Lemma 14 applied 4 times and minimality of m′

1 for fu:

|bi,j | = |q′|+M (12)

fu(bi,j) ≥
M

|bi,j |
× fu(m

′
1) +

|q′|
|bi,j |

× fu(q
′) (13)

Keep these relations in mind and recall that we have from previous steps that:

fu(bi,j) ≤ t− 9ε

10
(Step three)

fu(q
′) > t− ε

10
(Equation (11))

1

4
≤ |q′|

|bi,j |
≤ 11

40
(Equation (10))

29

40
≤ M

|bi,j |
≤ 3

4
(Equations (10) and (12))

Now, assume by contradiction that fu(m
′
1) ≥ t− 11ε

10 and recall that ε > 0.
Then we have:

t− 9ε

10
≥ fu(bi,j) ≥

M

|bi,j |
× (t− 11ε

10
) +

|q′|
|bi,j |

× (t− ε

10
)

≥ t× M + |q′|
|bi,j |

− ε(
3

4
× 11

10
+

11

40
× 1

10
)

≥ t− 341ε

400
� t− 360ε

400
= t− 9ε

10

a contradiction. Hence we get fu(m
′
1) < t− 11ε

10 . Set v
′ = m′

1 and the lemma is
proved.

Now we need a very similar lemma, but with “bigger and bigger” frequencies
instead of “smaller and smaller”. However, before this, we need an additional
technical fact about frequencies.

Lemma 18. Let u denote a finite block. Let v be a finite block which can be
decomposed into disjoint blocks v1, . . . , vn such that width(vi) > width(u) and
height(vi) > height(u) for all 1 ≤ i < n. Then we have:

fu(v) ≤
n∑

i=1

fu(vi)×
|vi|
|v|

+
width(vi)× height(u) + height(vi)× width(u)

|v|

Proof. Each occurrence of u in v has its bottom left-hand corner in some vi. It
is either entirely contained in this vi, or it overlaps it. There are respectively
|vi|u and at most width(vi)×height(u)+height(vi)×width(u) of these. Divide
by |v| to obtain the result.
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The next lemma is almost identical to Lemma 17, except that we get bigger
and bigger frequencies instead of lower and lower frequencies. Since the proofs
are very similar (we reverse inequalities and adapt everything to make it work),
we only highlight the differences with the proof of Lemma 17.

Lemma 19. Let w denote a multi-scale coverable picture and and u a block of
w without frequency. Suppose there exists some t ∈ [0; 1] and some ε > 0 such
that:

∀K ∈ N, ∃v ∈ L≥K(w) and fu(v) ≥ t+ ε

and that:
∀K ∈ N, ∃q ∈ L≥K(w) cover of w and fu(q) < t

Then we have:

∀K ′ ∈ N, ∃v′ ∈ L≥K′(w) and fu(v
′) ≥ t+

11

10
ε (14)

Proof. The five big steps are the same as in the proof of Lemma 17. We basically
have to reverse each inequality, and replace t−xε with t+xε for all values of x.
We use upper bounds instead of lower bounds, which sometimes slightly changes
the details of the calcuations.

Step one. Let B = 2K ′ × (width(q) + height(q)), C = 2width(q) height(u) +
2 height(q)width(u) and D = 10(width(q) + height(q))× |u|. Use Lemma 15 to
choose q such that:

width(q) >10K ′

height(q) >10K ′

|q|
C

>
1000

ε
|q|
B

>
ε

10
|q|
D

>
100

ε

Therefore q satisfies the following relations:

C

|q|
<

ε

1000
(15)

B

|q|
<
10

ε
(16)

D

4|q|
<

ε

400
(17)

Equations (15), (16) and (17) will be used in steps three, four and five, respec-
tively.
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Let A = 2width(q)×height(v)+2 height(q)×width(v)+4|q|. Use Lemma 15
again to choose v such that we have:

width(v) > 2width(q)

height(v) > 2 height(q)

|v|
A

>
t+ 9ε/10

ε/10

Therefore, v satisfies the following relation:

(t+ ε)× |v| >(t+
9ε

10
)(|v|+A) (18)

Equation (18) will be used in step two. Observe that A < 3|v|.

Step two. Let β be one smallest block of w such that:

• v occurs in the bottom left-hand corner of β;

• width(β) = 2nwidth(q) for some n ∈ N;

• height(β) = 2m height(q) for some m ∈ N.

As in proof of Lemma 17, |β| ≤ |v| + A and so (recall that A < 3|v|) we have
|β| < 4|v|.

As v ⊆ β, we have |β|u ≥ |v|u. Hence, by fu(v) ≥ t+ ε and Equation (18):

fu(β) ≥ fu(v)×
|v|
|β|

≥ (t+ ε)× |v|
|v|+A

> t+
9ε

10
(19)

Step three. Decompose β into blocks bi,j , such that width(bi,j) = 2width(q)
and height(bi,j) = 2 height(q), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In particular,
nm = |β|/4|q|. Since fu(β) > t+ 9ε

10 , there exists i, j such that f(bi,j) > t+ 89ε
100 .

Suppose not. Then, by Lemma 18:

fu(β) ≤
n∑

i=1

m∑
j=1

fu(bi,j)×
|bi,j |
|β|

+
C

|β|

≤
n∑

i=1

m∑
j=1

(t+
89ε

100
)× 1

nm
+

C

|v|

≤t+
89ε

100
+

n∑
i=1

m∑
j=1

C

|v|

≤t+
89ε

100
+

|β|
4|q|

× C

|v|

≤t+
89ε

100
+

4|v|
4|q|

× C

|v|

<t+
9ε

10
(Equation (15))
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a contradiction, as fu(β) > t + 9ε
10 . From now on, let i and j denote some

integers such that:

fu(bi,j) > t+
89ε

100
(20)

Step four. Decompose bi,j into q,m1,m2,m3,m4 and define q′ as in the proof
of Lemma 17. We have |q′| ≥ |q|. Then, by Lemma 14, fu(q) < t and Equa-
tion (16):

fu(q
′) < fu(q)×

|q|
|q′|

+
B

|q′|
< t× |q|

|q′|
+

B

|q|
< t+

ε

10
(21)

Moreover, Equation (10) is still valid.

Step five. Decompose bi,j into q′,m′
1,m

′
2,m

′
3,m

′
4 as in Lemma 17. Let M =

|m′
1|+ |m′

2|+ |m′
3|+ |m′

4|. We have:

|bi,j | = 4|q| = |q′|+M (22)

Without loss of generality, suppose m′
1 is not empty and is maximal for fu

among the m′
i’s.

Now we argue that:

Fact.
|bi,j |u ≤ |q′|u + |m′

1|u + |m′
2|u + |m′

3|u + |m′
4|u +D

Proof. The previous equation means that D is an upper bound on the number
of occurrences of u in bi,j which overlap over several components of bi,j .

First, view bi,j as decomposed over {q,m1,m2,m3,m4} as on Figure 8. Then
the total length of horizontal frontiers is width(m4) + width(m2) + 2width(q),
and the total length of vertical frontiers is height(m1)+height(m3)+2 height(q).
Hence, with this decomposition, the number of occurrences of u overlapping over
several components is bounded by

height(u)(width(m4) + width(m2) + 2width(q))+

width(u)(height(m1) + height(m3) + 2 height(q))

=height(u)× 3width(q) + width(u)× 3 height(q)

Recall that the decomposition {q′,m′
1,m

′
2,m

′
3,m

′
4} is {q,m1,m2,m3,m4} where

some components have been merged, and others turned to the empty set. Hence
the sum of lengths of frontiers is shorter. Hence, the number of overlapping
occurrences of u is smaller. So the given bound is also a bound for the number
of overlapping occurrences of u for bi,j decomposed as {q′,m′

1,m
′
2,m

′
3,m

′
4}.

To end the proof of Lemma 17, recall that M = |m′
1|+ |m′

2|+ |m′
3|+ |m′

4|.
We can deduce from the previous fact that:

fu(bi,j) ≤ fu(m
′
1)×

M

|bi,j |
+ fu(q

′)× |q′|
|bi,j |

+
D

|bi,j |
(23)
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Keep Equations (22) and (23) in mind, and recall from previous steps that:

fu(bi,j) > t+
89ε

100
(Equation (20))

fu(q
′) < t+

ε

10
(Equation (21))

1

4
≤ |q′|

|bi,j |
≤ 11

40
(Equation (10))

29

40
≤ M

|bi,j |
≤ 3

4
(Equation (10) and (12))

D

|bi,j |
<

ε

400
(Equation (17))

Finally assume by contradiction that fu(m
′
1) ≤ t + 11ε

10 and recall that ε > 0.
Then:

t+
89ε

100
< fu(bi,j) < (t+

11ε

10
)× M

|bi,j |
+ (t+

ε

10
)× |q′|

|bi,j |
+

D

|bi,j |

< t× M + |q′|
|bi,j |

+ ε(
11

10
× 3

4
+

1

10
× 11

40
+

1

400
)

< t+
342ε

400
� t+

356ε

400
= t+

89ε

100
,

which is a contradiction. Hence we get fu(m
′
1) > t+ 11ε

10 . Set v
′ = m′

1 and the
lemma is proved.

We are now ready for the main proof.

Proof of Theorem 13. Suppose that w is a multi-scale coverable picture and
that u is a block of w without frequencies. By Lemma 16 there exist real
numbers t and ε, an infinite set of blocks V and an infinite set of covers Q such
that either f(v) > t+ε > t > f(q) for all q ∈ Q, v ∈ V, or f(v) < t < t−ε < f(q)
for all q ∈ Q, v ∈ V. Moreover, V ∩ L≥K(w) and Q ∩ L≥K(w) are non-empty
for all K ∈ N.

Suppose we have f(v) < t − ε < t < f(q) for all q ∈ Q, v ∈ V. In this
situation, Lemma 17 states that there exists an infinite set of blocks V ′ such
that f(v′) ≤ t − 11

10ε for all v′ ∈ V ′ (and V ′ ∩ L≥K(w) is non-empty for all
K ∈ N). We can apply the same lemma again and get blocks whose frequency
is ≤ t − ( 1110 )

2ε. Then we can apply the lemma again and again, until we get
f(v′) ≤ t − ( 1110 )

nε < 0 for some n. At that point, we get blocks with negative
frequencies: a contradiction.

If f(v) > t + ε > t > f(q) for all v ∈ V, q ∈ Q, the proof follows the
same idea, except that we use Lemma 19. We get blocks with higher and higher
frequencies, until we find a block with a frequency bigger than 1: a contradiction
again.
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4.3. Uniform Recurrence

Recall that a Z2-word w is uniformly recurrent when all its blocks occur
infinitely often with bounded gaps. In N-words, multi-scale coverability implies
uniform recurrence. However, this result does not hold for Z-words. Here is an
example of a Z-word which is multi-scale coverable, but not uniformly recurrent:

ω(ab)a(ab)ω = . . . babababa a babababa . . .

Any word matching the aba(ba)∗ regular expression is a covering pattern of
this word. However, the pattern aa only occur once, hence it is not uniformly
recurrent.

It is easy to generalize these results to pictures.

Proposition 20. Any multi-scale, N2-word w is uniformly recurrent.

Proof. This is an adaptation of the proof from [14]. Consider a finite picture
r occurring in w. Since w has arbitrarily large covering patterns and all these
patterns occur at the origin, one of these patterns contains r entirely. Hence r
occurs whenever the covering patterns occurs, and the latter occurs infinitely
many times with bounded gaps.

Now let us see an example of coverable Z2-words which is not uniformly
recurrent (or even recurrent). Consider q = b b a

a b b and the word displayed on
Figure 1. The central block:

b b b b a
b b a b b
a b b b b

occurs only once, hence this picture is not uniformly recurrent.
To get uniform recurrence back, we propose a notion of strong multi-scale

coverability. A word (or a picture) is strongly multi-scale coverable if and only
if any factor (or block) occuring also occurs in a cover. Observe that multi-scale
coverability and its strong counterpart are equivalent on N-words.

Proposition 21. An infinite picture w is strongly multi-scale coverable if and
only if it is multi-scale coverable and uniformly recurrent.

Proof. Strong multi-scale coverability implies multi-scale coverability: each oc-
curring block must occur within a cover, and there are arbitrarily large (in width
and height) blocks, so there must be arbitrarily large (in width and height) cov-
ers.

Strong multi-scale coverability also implies uniform recurrence, almost by
definition: any block occurs in a cover, which in turn occurs infinitely often
with bounded gaps.

Finally, multi-scale coverability and uniform recurrence imply strong multi-
scale coverability. Indeed, let w be a multi-scale coverable picture which is also
uniformly recurrent, and let B be a block of w. Since w is uniformly recurrent,
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there exists n ∈ N such that any n× n-block of w contain an occurrence of B.
By definition of multi-scale coverability, there are covers which are bigger than
2n× 2n (both in width and in height); such covers must contain an occurrence
of B.

5. Conclusion

Coverability is a local rule. Our aim was to determine whether this notion
enforces some global properties on covered words. Although this is not the case
in one dimension, Theorem 2 shows that, under some natural hypotheses on
the cover (natural in the sense they take into account the two dimensions), this
enforcement is possible in two dimensions. However, many other questions have
to be considered to understand better the power of coverability, especially when
considering that covers are rectangular blocks.

One could also ask what happens with non-rectangular covers. In the multi-
scale case, it would be natural to require that the covers “grow” in all directions.
As a consequence, they would eventually contain larger and larger squares. Thus
we expect all the results about multi-scale coverability to remain unchanged if
the “rectangle” constraint is relaxed.

Our approach could be linked to considerations from dynamical systems and
tilings. For instance, a natural question is: are self-similarity and multi-scale
coverability linked? Our study already states that, as in the one-dimensional
case, multi-scale coverability implies other properties, such as existence of fre-
quencies and zero topological entropy. A difference with the one-dimensional
case is that multiscale coverability does not impy uniform recurrence. Proposi-
tion 20 and discussion before explain that this difference does not come directly
from the change of dimension but much more from the fact that we consider
the full plane Z2 instead of the quarter of plane N2.

One could ask: why did we consider Z2-words as a two-dimensional gener-
alization of N-words? This stems from the fact that Z2-words are much more
relevant in the area of tilings. Let us observe that most results, such as Propo-
sition 1, Proposition 12 and Theorem 13, can be directly adapted to N2-words.
However, it is much more difficult for Theorem 2 and Theorem 8, as the condi-
tion on border is not adequate for N2-words.
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