
HAL Id: lirmm-01177564
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01177564

Submitted on 17 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Diversification in Distributed
Recommendation

Maximilien Servajean, Esther Pacitti, Miguel Liroz-Gistau, Sihem
Amer-Yahia, Amr El Abbadi

To cite this version:
Maximilien Servajean, Esther Pacitti, Miguel Liroz-Gistau, Sihem Amer-Yahia, Amr El Abbadi. Ex-
ploiting Diversification in Distributed Recommendation. BDA: Gestion de Données - Principes, Tech-
nologies et Applications, IMAG, Oct 2014, Autrans, France. �lirmm-01177564�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01177564
https://hal.archives-ouvertes.fr

Exploiting Diversification in Distributed
Recommendation ∗

Exploitation de la Diversité dans les Systèmes de

Recommandation Distribués

Maximilien Servajean1, Esther Pacitti1, Miguel Liroz-Gistau1, Sihem
Amer-Yahia2 and Amr El Abaddi3

1INRIA & LIRMM,University of Montpellier France

2CNRS, LIG

3Dpt of Computer Science, University of California at Santa Barbara

Résumé

Les utilisateurs du Web 2.0 sont de gros producteurs de données.
Ces dernières sont stockées sur des systèmes très variés, allant des
plateformes de partage aux réseaux sociaux. Le fait que l’espace de
stockage soit distribué sur ces nombreuses et diverses plateformes rend
le partage des données particulièrement difficile. Dans ce contexte de
distribution à grande échelle des utilisateurs et des données, une so-
lution pour le partage de ces dernières est offerte par la recherche et
recommandation distribuée. En particulier, les approches à base de ba-
vardages (i.e. gossip) offrent le passage à l’échelle, la dynamicité, l’au-
tonomie et un contrôle décentralisé. Généralement, dans la recherche
et recommandation à base de bavardages, chaque utilisateur s’emploie
à construire un cluster des utilisateurs “pertinents” qui seront utilisés
ultérieurement pour traiter les requêtes. Cependant, le fait même que
ces utilisateurs soient choisis en terme de “pertinence” introduit une
redondance significative au sein de chaque cluster. Ainsi, lorsqu’une
requête est soumise, puisque les utilisateurs de chaque cluster sont
très similaires, la probabilité que chacun d’entre eux renvoie le même

∗Work conducted within the Institut de Biologie Computationnelle and partially funded
by the labex NUMEV and the CNRS project Mastodons.

1

résultat augmente, et le rappel (i.e. recall) devient limité. Dans ce pa-
pier, nous proposons une approche de recherche et recommandation
à base de bavardages s’appuyant sur un nouveau score de clustering,
appelé usefulness, combinant la pertinence avec la diversité et nous
présentons l’algorithme de clustering correspondant. Notre évaluation
expérimentale valide notre proposition et s’appuie sur trois jeux de
données différents issus du web : MovieLens, Flickr and LastFM. En
comparant avec des solutions de l’état de l’art, les gains en terme de
recall sont considérables en étant jusqu’à trois fois supérieur lorsque
la notion de usefulness est prise en compte, et ce, quelque soit le score
de pertinence utilisé.

1 Introduction

In the context of Web 2.0, users become massive producers of diverse
data (e.g. photos, videos, scientific data) that can be stored in a large va-
riety of systems (e.g. DropBox, Facebook, Flickr, Google+, local computer or
smartphone). Users are often willing to share their data with other users in
a community of interest. However, the fact that their data spaces are distri-
buted in many different systems makes data sharing especially difficult. For
instance, an artist photographer who wants to share her pictures within an
online community of photographers may have to log in several different Web
applications such as deviantArt, Facebook or Flickr, each with a different
interface and account. Similarly, a scientist who needs to search for scientific
datasets within an online community of scientists will be faced with the pro-
blem that the relevant data is typically distributed in many different labs’
servers or scientists’ local computers. Furthermore, since this data is hidden
to web crawlers, traditional search engines become useless. In order to mi-
tigate this problem, some Web applications allow grouping several accounts
and data from different systems (e.g. Facebook enables to regroup DropBox
and blogs into a single Facebook account). However, they are limited to a
few well-known systems.

In this context of large scale distribution of users and data, a general
solution to data sharing is offered by distributed search and recommenda-
tion [1, 2]. In this paper, we adopt a peer-to-peer gossip-based approach,
because it provides important properties such as scalability, dynamicity, au-
tonomy and decentralized control. Within an online community, each user u
is associated to a virtual data space that contains all the data items (stored
in different systems) it shares. Given u and a keyword query q, the goal of
our search and recommendation approach is to recommend to u items that

2

are relevant with respect to q and that are shared by other users, regardless
of the systems that store the items. Then, a recommended item is simply a
reference that can be used to retrieve the actual data item. In other words,
we combine search and recommendation in the sense that a user u searches
relevant items among those recommended by users similar to u.

Distributed search and recommendation has received considerable atten-
tion [1, 2, 3, 4]. However, one open problem is the ability to attain high recall
results. A query is generally forwarded only to a subset of users who will be
employed to process queries and return recommendations. To compute this
subset of users, many solutions cluster relevant user profiles implicitly using
gossip protocols. Gossip protocols are known to be highly resilient, scalable
and converge quickly [5], which makes them a good alternative for distribu-
ted search and recommendation. A User Network (U-Net in the following)
refers to the cluster of relevant users, a user u is aware of by gossiping, using
a score (e.g. similarity between u and the users in U-Net). At each gossip
round, the most relevant users are kept in U-Net. Since U-Net is used to
guide recommendations given a keyword query, the relevance score used in
the clustering process plays a very important role to increase the number of
relevant items retrieved with respect to the whole set of items (i.e. recall),
known as the global corpus.

Relevance scores (e.g. jaccard, overlap) define how well a user profile v
meets the needs of another user u. Most of the existing solutions exploit
different kinds of relevance scores to increase recall [2, 3, 4, 6, 7]. But recall
results remain limited.

The reason why recall remains limited is because using relevance as the
clustering score introduces a significant amount of redundant user profiles in
U-Net. As a result, when a query is submitted, since many user profiles in U-
Net are quite similar (i.e. redundant), and these users are chosen to provide
recommendations to answer the query, the probability of retrieving the same
set of relevant items increases and recall results remain low. In Information
Retrieval, usefulness is used as a way to overcome redundancy between the
items of a result list by combining relevance with diversity [8, 9]. In our
context, we claim that usefulness can be used when clustering user profiles
in U-Net, instead of just relevance. This way, a more diverse set of results
will be returned from different users and the recall would be enhanced.

In this paper, we propose a gossip-based search and recommendation ap-
proach based on a new clustering score, called usefulness, that combines re-
levance and diversity. As we show experimentally, this new score is able to
increase significantly the quality of the recommendations returned by the
system. However, existing peer-to-peer clustering algorithms are no longer
suitable since they are optimized for relevance only. Therefore we also pro-

3

pose a new clustering algorithm especially conceived for usefulness.
In summary, we make the following contributions :

1. We show that usefulness is a good way to increase recall and that it
should be expressed as a known probabilistic diversification score [8, 9].

2. We propose a clustering algorithm that maintains a useful U-Net over
a gossip overlay using the usefulness score.

3. We validate our approach with an experimental evaluation using three
different datasets : MovieLens, Flickr and LastFM. We observe that
diversification enables a huge increase of recall regardless of the rele-
vance score used. Compared with state of the art solutions, we obtain
an excellent gain with recall results up to three times better when using
the notion of usefulness.

This paper is organized as follows. Section 2 provides some basic concepts
and gives the problem definition. In Section 3, we describe our new clustering
score and present in details the new clustering algorithm that maintains U-
Net. In Section 4, we provide an experimental evaluation. In Section 5, we
compare our contributions with related work. Finally, Section 6 concludes
and provides directions for future work.

2 Basic Concepts and Problem Definition

In this section, we introduce the background necessary to understand the
problem we address. In our distributed search and recommendation approach,
whenever a user u submits a query q, the system sends q to a subset of users
that we call U-Net, and who will return their relevant results to u and will
also recursively forward the query to the users in their U-Net until the TTL is
reached. To build U-Net, we use a two steps approach. First, based on random
gossiping each user u is aware of other peers available on the network. Second,
by means of a clustering algorithm, u chooses among these users the best ones
to answer u’s queries and keep them in U-Net.

More precisely, our peer-to-peer model is expressed based on a graph
G = (U, I, E), where U = {u1, ..., un} is the set of users distributed over the
network, I = {i1, ..., im} the set of shared data items (in the following, an
item refers to a data item), and E = {e1, ..., ek} the set of directed edges
among users and between users and items. This model is very generic. In our
case, users are independent nodes in the network. A node can be a physical
computer or a virtual node in a server.

Definition 1 (U-Net) Given a user u, its User Network, or U-Net, refers
to the cluster of relevant users u is aware of. There is an edge e(u, v) in the
graph between u and a user v, if v is in u’s U-Net.

4

With random gossiping [5], each user keeps locally a random view of its
dynamic acquaintances (or view entries). Each view entry corresponds to a
user profile. Periodically, each user chooses randomly a contact (view entry)
to gossip with. The two involved users then exchange a subset of each others
view (i.e. user profiles), and update their view state. Then, after each gossip
exchange, the random view is used to update the U-Net if more relevant
profiles are found in the updated view. We use jaccard as the relevance score
to select the best users :

jaccard(u,v) = |Iu ∩ Iv| / |Iu ∪ Iv| (1)

Where Iu and Iv are the items shared by user u and v respectively.
Here, we use the vector space model to represent items and user pro-

files [10]. Specifically, each item it is modelled as a sparse vector containing
only the weights of the keywords k1, ..., kz in it. The weight of each keyword
is computed using tf × idf . Distributed tf × idf can be easily implemented
using gossip protocols. Indeed, the first part of the score, denoted tf, can
be computed locally, and the second part, denoted idf, only needs average
information (e.g. average number of items per user) to be computed. These
averages can be easily computed using gossip protocols [11]. Due to lack of
space, we do not develop this protocol in this paper.

Each user profile is defined based on the items the user shares, Iu (i.e.
content based recommendation). We choose a relevance score (i.e. jaccard)
that works well with content-based recommendation, but other relevance
measures and profiles definition methods could be used as well.

As mentioned before, whenever a user u submits a keywords query q =
k1, ..., kw, the query is redirected to all users in the participating users’ U-
Net recursively, until a predefine upper threshold, TTL (i.e. Time-To-Live).
Whenever a user v receives a query, it computes its top-k most relevant
items with respect to the query using a specific relevance score (e.g. jaccard).
Then, v returns them to u. A recommended item is defined by its identifier,
its tf × idf vector, v’s identifier and v’s profile. Once u receives the set of
recommended items from v1, ..., vn with respect to its query q, it ranks them
based on their relevance with respect to the query :

Recq = rank(rec1q(it1, ...) ∪ ... ∪ recnq (itp, ...)) (2)

Where rec1q(it1, ...) is a recommendation (i.e. a set of recommended items)
coming from a user v1.

To evaluate the quality of search and recommendation, we use the recall
measure [12]. Recall captures the fraction of items that have been successfully
recommended : recall = |Iretq| / |Irelq|, where Iretq ∈ I refers to the
relevant items recommended with respect to a query q, and Irelq ∈ I refers
to all the relevant items with respect to query q.

5

Problem Definition : Given a user u ∈ U , a query q, I in G, and a
gossip based overlay, the goal is to maximize the number of relevant items
with respect to q returned to u while minimizing TTL.

3 Diversified Clustering and Algorithm

In this section, we show that usefulness is an excellent way to increase
recall results of gossip-based recommendation, and can be used as a clustering
score. In section 3.1, we formally show that to increase recall, usefulness
should take into account relevance and diversity. Next, Section 3.2 presents
the Useful U-Net clustering algorithm deployed over a gossip-based overlay.

3.1 Usefulness Score

The usefulness score should be designed such that it maximizes the pro-
bability that a user u can retrieve relevant items given a random query q,
known as the coverage probability. In other words, u’s neighbors v1, ..., vn ∈ G
should be chosen such that the number of relevant items (with respect to the
queries u will submit) that can be accessed through them is maximized.

Let Q be the set of all possible queries (all the combinations of terms),
and P (Qv) the probability that a user v can return at least one relevant item
given a random query q ∈ Q. In the following, we first define the coverage
with respect to U-Netu = {v1, ..., vn}. Then, based on coverage, we express
the usefulness of a user v with respect to the other users in u’s U-Net.

Definition 2 (Coverage) Given Q and U-Netu = {v1, ..., vn}, the users in
u’s U-Net. The coverage is the probability that at least one of the user in u’s
U-Net can return at least one item given a random query q ∈ Q. Coverage is
denoted P (Qv1 ∪Qv2 ∪ ... ∪Qvn), where Qv is the event v can return at lest
on relevant item for the query q.

The user profiles v1, ..., vn must be selected such that the coverage probability
is maximized. Formula 3 develops the coverage probability with respect to
every user in u’s U-Net.

P (Qv1 ∪ ... ∪Qvn) =
∑

j∈1,...,n
(P (Qvj)− P (Qvj ∩ (Qv1 ∪ ... ∪Qvj−1))) (3)

P (Qvj)− P (Qvj ∩ (Qv1 ∪ ...∪Qvj−1
)) represents the coverage added by user

vj with respect to the users v1, ..., vj−1. As a consequence, when j = 1, only
P (Qvj) is considered as there is no more user profiles to compare with.

In the following, we define the usefulness of a user profile vi with respect
to the coverage probability.

6

Definition 3 (Usefulness) Given u’s U-Net, where the user are sorted in
decreasing order of usefulness, the usefulness of a user profile vj is the pro-
bability that it can return relevant items for a random query q, that could
not be returned users ranked before him in u’s U-Net. In other words, it is
defined as follows :

usefulness(vj |v1, ..., vj−1) =P (Qvj)− P (Qvj ∩ (Qv1 ∪ ... ∪Qvj−1)) (4)

Formula 4 shows that the usefulness score should consider relevance P (Qvj)
and take into account P (Qvj ∩ (Qv1 ∪ ... ∪Qvj−1

)) which corresponds to the
redundancy of user profile vj with respect to the other user profiles v1, ..., vj−1.

In the following, we show that usefulness(vj|v1, ..., vj−1) can be expressed
into a known probabilistic diversification model [8, 9]. In Formula 5 we first
integrate usefulness (the right hand side of Formula 4) into a conditional
probability.

P (Qvj)− P (Qvj ∩ (Qv1 ∪ ... ∪Qvj−1)) =P (Qvj)× (1− P (Qv1 ∪ ... ∪Qvj−1 |Qvj))

=P (Qvj)× P (Q̄v1 ∩ ... ∩ Q̄vj−1 |Qvj)
(5)

Similar to [8, 9, 13], we assume that the redundancy of a user profile v1 with
another user profile v2 is independent of its redundancy with other users and
we derive Formula 6.

P (Qvj)× P (Q̄v1 ∩ ... ∩ Q̄vj−1 |Qvj) =P (Qvj)×
∏

i∈1,...,j−1
(1− P (Qvi |Qvj)) (6)

Finally, we observe that the usefulness of a user profile is clearly similar
to the probabilistic diversification problem used in [8, 9] and presented in
Formula 7.

usefulness(vj |v1, ..., vj−1) =rel(vj)×
∏

i∈1,...,j−1
(1− red(vj , vi)) (7)

where rel(vj) = P (Qvj) is the relevance of user profile vj and red(vj, vi) =
P (Qvi |Qvj) is the redundancy of user profile vj with respect to the other user
profile vi.

3.2 Useful U-Net Clustering

We now present in details our clustering algorithm that maintains a useful
U-Net over a random gossip overlay using the usefulness score.

Given the set of users in the random view, the goal of the clustering
algorithm is to compute the usefulness of each user found in the view, with
respect to those that were previously added to the U-Net, taking into account
relevance and diversity, as defined in Equation 7, and to update the U-Net
as consequence.

7

0.92v2

v4

v5

0.78

0.65

0.45

v3 } Need to be
recomputed

v8 0.65

v9 0.22

v6 0.21

v7 0.89

v3

v4

v5

0.12

0.42

0.41

v6

v7

v8

v9

v1

0.89v7

v1

Move from U-Net
to candidates list

RandomView

U-Net

Candidates List

compute
scores

1a

2a

0.95

ID Usefulness

ID Usefulness

1b & 3a

2b

3bInitialization of
the candidate list

Most useful
user (best)

}Retained
Users}Already in U-Net }

}

i=1

i=2

i=3

i=4

i=5

Figure 1: An example of the execution of Useful-Unet.

Based on random gossiping [5], each user u maintains a set of random
view entries corresponding to the users profile u is aware of. Periodically, users
gossip, and exchange a random subset of their views entries. After the random
gossip merging phase, the clustering algorithm, which corresponds to the
Useful U-Net Algorithm depicted in Algorithm 1, is triggered. In fact, taking
into account the previous gossip exchange, the algorithm selects the most
useful users from the random view considering the useful users previously
selected (i.e. from the previous gossip rounds) in the U-Net. The algorithm
uses three main data structures : random view, U-Net, and the candidate list.
The random view and the U-Net are initialized when u joins the network,
and continuously updated as a result of random gossip. The candidates list
contains the user profiles that will potentially be added to the U-Net and is
initialized each time the clustering algorithm is triggered.

In the following we present in more details the Useful U-Net algorithm
based on the example of Figure 1. The random view entries correspond to
the profiles of users v1, v6, v7, v8, v9. The previous useful user profiles are
v1, v2, v3, v4, v5 and are stored in U-Net. Assuming that the algorithm is exe-
cuted in u’s node, the algorithm input is u’s profile, its random view denoted
RandomViewu and its U-Net denoted U-Netu. The data structure used for U-
Net is an array of size N of user profiles, associated to their usefulness score
and sorted in decreasing order of usefulness. The output of the algorithm is
the updated U-Net. Useful U-Net algorithm has three main parts :

1. The first part (lines 1 to 6) finds the best useful user profile from the
random view, and the position i where it should be inserted in the U-
Net (recall that the usefulness score of a user depends on its position
in the U-Net). As a consequence, the update of the U-Net will only
concern the user profiles from position i to N . To find the best useful

8

Algorithm 1: Useful U-Net
Input: u profile, U-Netu (array[1..N]), RandomViewu

Output: U-Netu is updated with respect to the RandomView
1 candidates : unsorted list of user profiles;
2 candidates ← RandomViewu − U-Netu ; best ← ∅ ; i← 0;
3 repeat
4 i++;
5 for each cj ∈ candidates do score(cj)← usefulness(cj ,u,U-Netu[1..i− 1])

best ← arg maxc∈candidates(score(c));

6 until i=N or score(best) > score(U-Net[i]);
7 if score(best) > score(U-Net[i]) then
8 after← U-Netu[i..N] ; U-Netu[i]← best ; i++;
9 candidates ← candidates − best ;

10 candidates ← after ∪ candidates ; U-Netu ← U-Netu − after ;
11 while i < N and candidates6= ∅ do
12 for each cj ∈ candidates do
13 score(cj)← usefulness(cj , u,U-Netu[1..i− 1]);

14 best ← arg maxc∈candidates(score(c)) ; U-Netu[i]← best ;
15 candidates ← candidates − best ; i++;

user from the random view, the algorithm first initializes the candidates
list with all users in the random view except those already in the U-
Net (line 2). In Figure 1, v1 is already in the U-Net, so the candidates
list is initialized with the users v6, v7, v8, v9 (1a). For each position i in
U-Net, all the usefulness scores of the candidates are computed using
Formula 7 taking into account the set of users in the U-Net at positions
1, ..., i − 1, and compared with the usefulness score of the user profile
in U-Netu[i]. If the best user profile in candidates is more useful than
U-Netu[i], then, the algorithm stops iterating (line 6). If there is more
than one best user profile, the best user profile is chosen randomly with
respect to the set of best user profiles. In Figure 1, v7 is more useful
than v3 at the third position in u’s U-Net because v3’s usefulness is
0.78 while v7’s usefulness is 0.89 (1b). If there is no user profile in the
candidate list whose profile score is superior to any user profile in the
U-Net, position N is reached and the algorithm stops. Only the scores
of the user profiles up to position i are definitive. Thus, in our example,
the scores of v4, v5, v6, v8, v9 are not definitive because they are either
not in the U-Net or after i.

2. The second part (lines 7 to 10) copies and deletes the remaining user
profiles (from position i to N) from the U-Net to the candidates (2a)
list because their scores need to be recomputed using Formula 7 and

9

with respect to the best user profile in candidates (computed in part
1). Then, the best user profile is inserted in position i. In the on-going
example of Figure 1, the user profiles v3, v4, v5 are copied and removed
from the U-Net to the candidates list and user profile v7 is added in
the U-Net at position 3 (2a and 2b).

3. Finally, in the last part (lines 11 to 15), the algorithm iteratively com-
putes, for each empty position i in the U-Net (positions emptied in
part 2), the scores of the user profiles in the candidates list using For-
mula 7 and taking into account the set of users in the U-Net at positions
1, ..., i − 1 (lines 12 and 13 and step 3a in the figure). Then, the most
useful candidate is moved to the U-Net at that position (line 15 and
step 3b in the figure). The algorithm repeats these steps until all the
positions in U-Net are filled out (line 11).

Recall that gossip protocols converge quickly [3]. As a consequence the
U-Net will also converge quickly and, in general, tends to stabilize. Therefore,
the algorithm will stop at step 1b more and more frequently.

4 Experimental Evaluation

In this section, we provide an experimental evaluation to validate our
approach and compare it to other state-of-the-art solutions. We conducted
a set of experiments using three datasets which correspond to MovieLens,
Flickr and LastFM. In Section 4.1, we introduce the experimental setup of
our evaluation. Then, in Section 4.2, we present and discuss the experimental
results.

4.1 Experimental Setup

We ran our experiments on the PeerSim simulator 1. We used three dif-
ferent datasets : MovieLens, Flickr and LastFM. MovieLens dataset is com-
posed of users that rated movies. Flickr dataset is composed of users that
submitted or added a picture to their favorites. Each user also associates tags
to the pictures he/she submits. Finally, LastFM dataset is composed of users
who listen and associate tags to artists. Each dataset has different features, in
particular users are more or less redundant if the number of items per user is
more or less respectively. The characteristics of the datasets are summarized
in Table 1.

The queries used in the experiments consist of : In MovieLens, for each
user, a random subset of movies are shared and the rest are used as the

1. www.peersim.sourceforge.net

10

dataset items # items # users avg items/user

MovieLens Movies 3, 900 6, 040 166

Flickr Pictures 2, 029 2, 000 3.7

LastFM Artists 23, 346 2, 000 98

Table 1: Characteristics of the datasets used in the experiments.

overlap(u,v) = |Iu ∩ Iv| over big(u,v) = |Iu ∩ Iv|+ |Iv|

jaccard(u,v) = |Iu∩Iv| / |Iu∪Iv| cosine(u,v) = Iru× Irv / ||Iru|| × ||Irv||

Table 2: Relevance scores used in the experiments.

queries to submit. In particular, the words in the title are used as sepa-
rate keywords. In Flickr and LastFM queries are computed as the random
association of several tags submitted by a given user on a given item. An ex-
periment is composed of two parts. First, all users gossip during 400 rounds
until convergence. Then, every 20 gossip rounds all users submit one of their
queries. The experiment stops at 500 gossip rounds. We measure the average
recall results. The recall enables to compute the fraction of items that has
been successfully recommended as presented in Section 2. On the MovieLens
dataset, the recall value is 1 if the movie has been found and 0 otherwise. On
Flickr and LastFM, the recall is the proportion of pictures in the whole data-
set that contains all query’s keywords that have been returned to the user. On
the Flickr and LastFM experiments, we have computed the variance which
enables to compute the variability of the recall and is computed as follows :
V (X) = 1/N ×

∑n
i=1(xi −m)2 where m is the average recall.

The relevance scores used in our experiments are presented in Table 2.

where Iu and Iv are the items shared by u and v, respectively, and where
Iru and Irv are the sets of ratings u and v gave to the items they share.
We have fixed the U-Net ’s size to 16 and TTL to 3. Other values have been
tested and showed similar results. The size of the random view (5 in our case)
is not important as it only modifies the convergence speed.

4.2 Experiments

Figure 2 presents the results of our experiments. More precisely, Fi-
gures 2a, 2b and 2c compare the recall results of the used relevance scores
with and without including our usefulness score, while Figures 2d, 2e and 2f
compare the recall results of several diversification methods.

11

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(a) MovieLens

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(b) Flickr

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(c) LastFM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Jaccard Cosine over_big Overlap

R
ec

al
l

Diversified
Undiversified

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(d) MovieLens

0

0.2

0.4

0.6

0.8

1
R

ec
al

l

(e) Flickr

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(f) LastFM

0
0.2
0.4
0.6
0.8

1
1.2

R
ec

al
l

Usefulness (Jaccard)
xQuad (Jaccard)
MMR (Jaccard)
Jaccard

Figure 2: Effect on recall of diversification

Not surprisingly, diversifying the U-Net enables for all relevance score
to significantly increase recall. On the MovieLens dataset, the recall results
without diversification range between 0.58 and 0.62 while they range between
0.978 and 0.999 with diversification. On the Flickr dataset, the gains are
slightly smaller. Since all users share their own pictures, their profiles are very
different and already diversified. Therefore, diversification has less impact on
the recall. Finally, the LastFM dataset recall results are up to 3.26 times
higher.

In addition to improving the recall, diversified solutions enable to reduce
the variance compared to undiversified solutions. For instance, on Flickr, the
variance decreases from 0.116 to 0.013 when using jaccard. This can be ex-
plained by the fact that in the undiversified solution, users in U-Net are very
similar among them. As a consequence, either all are relevant to the query,
and hence they provide a high recall ; or none of them is, thus producing a low
recall. Diversification enables to increase coverage and therefore, it increases
the probability to answer any kind of query.

In addition, we ran these experiments with different sizes of U-Net and
values of TTL. For instance, on the MovieLens dataset, with a U-Net of size
5 and a TTL of 2, the recall is in average 2.37 times higher compared to
undiversified solutions. Indeed, without diversification, recall values are in
average of 0.26 while they reach 0.61 using usefulness.

We have also compared three different diversification methods. The first
is the usefulness score presented in Equation 7. The second method we use is
the Maximal Marginal Relevance, known as MMR [13]. MMR chooses users
that minimize the maximum similarity between any two users in u’s U-Net.
Finally, the last method is Explicit Query Aspect Diversification known as
xQuad [14]. xQuad chooses users such that each user vi in u’s U-Net is similar

12

to u in a different way. For instance, suppose that u shares items i1 and i2.
If v1 is in u’s U-Net and is similar to u because it also shares i1, then, xQuad
chooses a user v2 such that v2 is similar to u because it shares the item i2. In
this experiment, we use jaccard as the similarity measure.

Figures 2d, 2e and 2f show that all diversification methods enable to
increase the recall values compared to undiversified methods. Among them,
usefulness obtains the best gain in terms of recall closely followed by xQuad.
Finally, MMR shows the worst gain in terms of recall. Indeed, MMR chooses
users that minimize the maximum similarity between any two users in u’s
U-Net. Therefore, it prefers users that are a little bit similar with every user
in u’s U-Net, and that do not necessarily increase recall results.

5 Related Work

Distributed recommendation for web data based on collaborative filte-
ring has been recently proposed with promising results. In this section, we
compare our recommendation approach with state of the art solutions.

In [15], the authors propose a decentralized approach for social networking
with three goals in mind : privacy, scalability with profitability and availa-
bility. They propose an architecture based on a DHT for keywords query
search. Since DHTs are better suited for exact-match queries, the author
propose to decompose each query into several single word exact-match que-
ries. The main drawback is that responses that have medium scores with
respect to each keyword but high scores with respect to all the keywords are
likely to be missed.

P2PRec [3] has been proposed as a gossip-based search and recommen-
dation solution. The profile of each user u is represented as a set of topics
computed based on the items u shares. Then, using gossip protocols, similar
users in term of topics, are clustered together and used to guide recommen-
dation as we do. However, since diversity is not taken into account, users
within each cluster can be redundant, thus limiting recall results. In [6] the
authors focus on recommendation and propose to combine gossip algorithms
and random walks. First, the users are clustered based on relevance through
gossip protocols. A user has knowledge of the items shared by its neighbors.
To compute the recommendation, each user runs locally a random walk using
a transition similarity matrix. However, computing this matrix and its inverse
seems not scalable due to the computational complexity of the algorithm with
respect to the size of the neighborhood and the number of items. Also in the
context of recommendation, in [7] the authors claim that, because of the he-
terogeneity of the users in the network, a single similarity measure to cluster
users is not sufficient to achieve good recall results. Instead they propose

13

that each user employ its own similarity measure to build its view (clustering
layer) of the network. Nevertheless, the concept of diversity is different from
ours as it represents the usage of various relevance scores depending on each
user’s profile. As a consequence, each user’s cluster may still carry redundant
user profiles, because there is no explicit diversification. In [1] the authors
propose a solution for personalized P2P top-k search in the context of colla-
borative tagging systems, called P4Q. In this solution, the users are clustered
based on relevance through gossip protocols. The users in each cluster are
split into two groups : 1) the c closest users from which u replicates all items
metadata (i.e. tagging actions) and 2) the n less similar users from which
u knows only the profile (i.e. bloom filter). Still, diversity is not taken into
account and users within the clusters are likely to be redundant.

6 Conclusion and Future Work

In this paper, we proposed a new gossip-based search and recommen-
dation approach with new measures and techniques. We first showed that
usefulness, by combining relevance and diversity, is very effective in increa-
sing recall results and can be used as a clustering score. Then, we designed
a new clustering algorithm based on usefulness that combines relevance and
diversity. We validated our proposal with an experimental evaluation using
the MovieLens dataset. Compared with state of the art solutions, we obtain
major gains with recall results more than two times better.

In future work we intend to exploit other recommendation scenarios such
as multisite recommendation.

References

[1] Bai, X., et al.: Collaborative personalized top-k processing. Transactions
on Database Systems 36(26) (December 2011)

[2] Carretero, J., et al.: Geology: Modular georecommendation in gossip-
based social networks. In: ICDCS. (2012) 637–646

[3] Draidi, F., Pacitti, E., Parigot, D., Verger, G.: P2Prec: a social-based
P2P recommendation system. In: CIKM. (2011) 2593–2596

[4] Voulgaris, S., Steen, M.: Epidemic-style management of semantic over-
lays for content-based searching. In: Euro-Par. (2005) 1143–1152

[5] Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology man-
agement. In: ESOA. Volume 3910 of Lecture Notes in Computer Sci-
ence., Berlin, Heidelberg (2005) 1–15

14

[6] Kermarrec, A., Leroy, V., Moin, A., Thraves, C.: Application of random
walks to decentralized recommender systems. In: OPODIS. Volume 6490
of Lecture Notes in Computer Science. (2010) 48–63

[7] Kermarrec, A., Täıani, F.: Diverging towards the common good: Het-
erogeneous self-organisation in decentralised recommenders. In: SNS.
(2012) 3–8

[8] Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD.
(2011) 781–792

[9] Chen, H., Karger, D.: Less is more: Probabilistic models for retrieving
fewer relevant documents. In: SIGIR. (2006) 429 – 436

[10] Manning, C., Raghavan, P., Schütze, H.: Introduction to Information
Retrieval. Cambridge University Press (2008)

[11] Kowalczyk, W., Jelasity, M., Eiben, A.: Towards data mining in large
and fully distributed peer-to-peer overlay networks. In: BNAIC. (2003)
203–210

[12] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc. (1999)

[13] Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking
for reordering documents and producing summaries. In: SIGIR. (1998)
335–336

[14] Santos, R., Peng, J., Macdonald, C., Ounis, I.: Explicit search result
diversification through sub-queries. In: ECIR. (2010) 87–99

[15] Loupasakis, A., Ntarmos, N.: eXO: Decentralized autonomous scalable
social networking. In: CIDR. (2011) 85–95

15

