N
N

N

HAL

open science

Implementation and Efficiency of Reproducible Level 1
BLAS

Chemseddine Chohra, Philippe Langlois, David Parello

» To cite this version:

Chemseddine Chohra, Philippe Langlois, David Parello. Implementation and Efficiency of Repro-
ducible Level 1 BLAS. [Research Report] DALI - UPVD/LIRMM, UCD. 2015. lirmm-01179986

HAL Id: lirmm-01179986
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01179986
Submitted on 23 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01179986
https://hal.archives-ouvertes.fr

Implementation and Efficiency
of Reproducible Level 1 BLAS

Chemseddine Chohra*, Philippe Langlois* and David Parello*

Univ. Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques,
F-66860, Perpignan. Univ. Montpellier II, Laboratoire d’Informatique Robotique et
de Microélectronique de Montpellier, UMR 5506, F-34095, Montpellier. CNRS.

Abstract. Numerical reproducibility failures appear in massively paral-
lel floating-point computations. One way to guarantee this reproducibil-
ity is to extend the IEEE-754 correct rounding to larger computing se-
quences, e.g. to the BLAS. Is the extra cost for numerical reproducibil-
ity acceptable in practice? We present solutions and experiments for the
level 1 BLAS. We detail optimized implementations and we conclude
about their efficiency.

1 Introduction

Numerical reproducibility is an open question for current high performance com-
puting platforms. Dynamic scheduling and non-deterministic reduction on mul-
tithreaded systems affect the operation order. This leads to non-reproducible
results because the floating-point addition is not associative. Numerical repro-
ducibility is important for debugging and for validating results, particularly if
legal agreements require the exact reproduction of the execution results. Failures
have been reported in numerical simulation for energy science, dynamic weather
forecasting, atomic or molecular dynamic, fluid dynamic — see entries in [6].

Solutions provided at the middleware level forbid the dynamic behavior and
so impact the performances — see [9] for TBB, [13] for OpenMP or Intel MKL.
Note that adding pragmas in the source code avoids memory alignment effects
onto reproducibility. A first algorithmic solution has been recently proposed in
[3]. Their summation algorithms, ReprodSum and FastReprodSum, guarantee the
reproducibility independently from the computation order. They return about
the same accuracy as the performance optimized algorithm only running a small
constant times slower.

Correctly rounded results ensure numerical reproducibility. IEEE754-2008
floating-point arithmetic is correctly rounded in its four rounding modes [4].
We propose to extend this property to the level 1 routines of the BLAS that
depend on the summation order: asum, dot and nrm2, respectively the sum of
the absolute values, the dot product and the vectorial Euclidean norm. Recent
algorithms that compute the correctly rounded sum of n floating-point values

* firstname.lastname@univ-perp.fr

allow us to implement such reproducible parallel computation. The main issue is
to investigate whether the running-time overhead of these reproducible routines
remains reasonable enough in practice. In this paper we present experimental an-
swers to this question. Our experimental framework is significant of the current
computing practice: it consists in a shared memory parallel system with several
sockets of multicore x86 processing units. We apply standard optimization tech-
niques to implement efficient sequential and parallel level 1 routines. We show
that for large vectors, reproducible and accurate routines introduces almost no
overhead compared to their original counterparts in a performance-optimized li-
brary (Intel MKL [5]). For shorter ones, reasonable overheads are measured and
presented in Table 4.1. Since Level 1 BLAS performance is mainly dominated
by the memory transfers, additional computation does not significantly increase
the running time, especially for large vectors.

The paper is organized as follows. In Section 2, we briefly present some
accurate summation algorithms, their optimizations and an experimental per-
formance analysis to decide how to efficiently implement the level 1 BLAS. The
experimental framework used throughout the paper is also described in this part.
Section 3 is devoted to the performance analysis of the sequential implementation
of the level 1 BLAS routines. Section 4 describes their parallel implementations
and the measure of their efficiency. We conclude describing the future develop-
ments of this ongoing project towards efficient and reproducible BLAS.

2 Choice of Optimized Floating-Point Summation

Level 1 BLAS subroutines mainly rely on floating-point sums. It exists several
correctly rounded summation algorithms. Our first step aims to derive optimized
implementations of such algorithms and to choose the most efficient ones. In the
following, we briefly describe these accurate algorithms and then, how to opti-
mize and to compare them.

All floating-point computations satisfy the IEEE754-2008. Let fI(>_ p;) be
the computed sum of a length n floating-point vector p. The relative error of the
classical accumulation is of the order of w - n - cond(>_ p;), where cond(> p;) =

S pil/1 - pi| is the condition number of the sum. u is the machine precision
that equals 27°% for IEEE754 binary64.

2.1 Some Accurate or Reproducible Summation Algorithms

Algorithm SumK [8] reduces the previous relative error bound as if the classical
accumulation is performed in K times the working precision:

[SumK(p) —>pi| . _(n-u

K
| > pil “1-(n .)U)K ccond(d pi) + u. (2.1)

SumK replaces the floating-point add by Knuth’s TwoSum algorithm that com-
putes both the sum and its rounding error [7]. SumK iteratively accumulates
these rounding errors to enhance the final result accuracy. The correct round-
ing could be achieved by choosing a large enough K to vanish the effect of the
condition number in (2.1) — but in practice this latter is usually unknown.

Algorithm iFastSum [16] repeats SumK to error-free transform the entry vector.
This distillation process terminates returning a correctly rounded result thanks
to a dynamic control of the error.

Algorithms AccSum [12] and FastAccSum [11] also rely on error-free transfor-
mations of the entry vector. They split the summands, relatively to max |p;|
and n, such that their higher order parts are then exactly accumulated. This
split-and-accumulate steps are iterated to enhance the accuracy up to return a
faithfully rounded sum. These algorithms return the correctly rounded sum and
FastAccSum requires 25% less floating-point operations than AccSum.

HybridSum [16] and OnlineEzact sum [17] exploit the short range of the floating-
point number exponents. These algorithms accumulate the summands with a
same exponent in a specific way to produce a short vector with no rounding error.
The length of the output vector of this error-free transform step is the exponent
range. HybridSum splits the summands such that floating-point numbers can be
used as error-free accumulators. OnlineFEzact uses two floating-point numbers to
simulate a double length accumulator. These algorithms then apply iFastSum to
evaluate the correctly rounded sum of the error-free short vector(s).

ReprodSum and FastReprodSum [3] respectively rely on AccSum and FastAcc-
Sum to compute not fully accurate but reproducible sums independently of the
summation order. So numerical reproducibility of parallel sums is ensured for
every number of computing units.

2.2 Experimental Framework

Table 2.1 describes our experimental framework. Aggressive compiler options as
-ffast-math are disabled to prevent the modification of the sensitive floating-
point properties of these algorithms.

Rounding intermediate results to the binary64 format (53 bit mantissa) and
value safe optimizations are provided with -fp-model double and -fp-model
strict options. Runtimes are measured in cycles with the hardware counters
thanks to the RDTSC assembly instruction. We display the minimum cycle mea-
sures over more than fifty runs for each data. Condition dependant data are
computed with the dot product generator from [8]. We compare our solutions to
the well optimized but non-reproducible MKL BLAS implementation [5].

Table 2.1: Experimental framework

Software

Compiler (language) ICC 14.0.2 (C)

Options -03 -axCORE-AVX-I -fp-model double -fp-model strict
-funroll-all-loops

Parallel library OpenMP 4.0

BLAS library Intel MKL 11

Hardware

Processor Xeon E5 2660 (Sandy Bridge) at 2.2 GHz

Cache L1: 32KB, L2: 256KB, shared L3 for each socket: 20MB

Bandwidth 51.2 GB/s

#cores 2 x 8 cores (hyper-threading disabled)

2.3 Implementation and Test

For a fair comparison, all algorithms are manually optimized by a best effort
process. All optimization details are presented in Appendix A. The source code
for all presented algorithms is downladable on [10]. AVX vectorization, data
prefetching and loop unrolling are carefully combined to pull out the best im-
plementation of each algorithm.

——OnlineExact —~OnlineExact

| HybridSum | HybridSum
50 ——FastAccSum 50
© AccSum o
N N
2401 ~=iFastSum 2401
m = Sum2 m
Q o
Q30 ~Sum3 Q30
o o
T T
E E
20T 20T
2 3
101 101
0 0
10 15 20 25 10 15 20 25
log2 of size log2 of size
(a) Condition number = 108 (b) Condition number = 102

Fig.2.1: Runtime/size for optimized summation algorithms

Figures 2.1a and 2.1b present the runtime measured in cycles divided by the
vector size (y-axis). Vector lengths vary between 210 and 22° (z-axis) and two
condition numbers are considered : 108 and 1032.

It is not a surprise that HybridSum and OnlineEzact are interesting for larger
size vectors. These algorithms produce one or two short vectors (length = 2048
in binary64) whose distillation is of constant time compared to the linear times

of the data preprocessing step (exponent extraction) or also, of the successive
error free transformations in the other algorithms. Moreover they are very less
sensitive to the conditioning of the entry vector. Shorter size vectors benefit
from the other algorithms, especially from FastAccSum while their conditioning
remains small.

In the following we take advantage of these different behaviors according to
the size of the entry vector. We call it a “mixed solution”. In practice for the
level 1 BLAS routines, FastAccSum or iFastSum are useful for short vectors
while larger ones benefit from HybridSum or OnlineFEzact as we will explain it.

3 Sequential Level 1 BLAS

Now we focus on the sum of the absolute value vector (asum), the dot product
(dot) and the 2-norm (nrm2). Note that other level 1 BLAS subroutines do not
suffer neither of accuracy nor of reproducibility failures. In this section, we start
with sequential algorithms detailing our implementations and their efficiency.

3.1 Sum of Absolute Values

The condition number of asum equals 1. So SumK is enough to efficiently get a
correctly rounded result. According to (2.1), K is chosen such that n < u'/K-1,

Figure 3.1a exhibits that the correctly rounded asum costs less than 2x the
optimized MKL dasum. Indeed K = 2 applies for the considered sizes. Note that
K = 3 is enough until n < 23% i.e. until 256 Terabyte of data.

3.2 Dot Product

The dot product of two n-vectors is transformed into a sum of a 2n-vector with
Dekker’s TwoProd [2]. This sum is correctly rounded using a “mixed solution”.
Short vectors are correctly rounded with FastAccSum. For large n, we avoid to
build and read this intermediate 2n-vector: the two TwoProd results are directly
exponent-driven accumulated into the short vectors of OnlineFzact. This ex-
plains why this latter is interesting for shorter dot products than what we can
expect from Section 2.3.

Figure 3.1b shows this runtime divided by the input vector size — the con-
dition number is 1032, Despite the previous optimizations, the extra cost ratio
compared to MKL dot is between 3 and 6. This is essentially justified by the
additional computations (memory transfers are unchanged). If a fused-multiply-
and-add unit (FMA) is available, the 2MultFMA algorithm [7] that only costs
2 FMA (compared to the TwoProd’s 17 flop) certainly improves these values.

3.3 Euclidean Norm

It is not difficult to implement an efficient and reproducible Euclidean norm.
Reproducibility is ensured by the correct rounding of the sum of the squares

4 T T
mklasum
— Rasum
03[
N
"
n
@
L2
o
k3
£
€
2
1h
ob— . . .
10 15 20 25
log2 of size
(a) asum
30 T T 30— T T
mkldot nOrm2
—~Rdot ——Rnrm2
25 1 25 1
() ()
N N
»201 L2071
n m
< <@
£15 215
o 3
T T
E £
€107 €107
2 2
5 5
0o— ; - ; 0o— ; - ;
10 15 20 25 10 15 20 25
log2 of size log2 of size
(b) dot (¢) nrm2

Fig. 3.1: Runtime/size for sequential asum, dot and nrm2.

and then by the correct rounding of the IEEE-754 square root. Of course this re-
producible 2-norm is only faithfully rounded. Hence a “mixed solution” is similar
to the dot one.

Here the MKL nrm2 is not used as the comparison reference since we measure
very disappointing runtimes for it. We implement a non-reproducible simple and
efficient 2-norm with the optimized MKL dot (cblas _ddot). We named it nOrm?2.

The memory transfer cost dominates the computing one for dot and nOrm2:
compared to dot, nOrm2 halves the memory transfer volume, performs the
same number of floating-point operations and runs twice faster, see Figures 3.1b
and 3.1c. As previously mentioned, the “mixed solution” dot product is still
computation-dominated. This justifies that the previous dot ratios prohibitively
double for our sequential nrm?2.

4 Reproducible Parallel Level 1 BLAS

Now we consider the parallel implementations. As in the previous section, parallel
asum relies on parallel SumK while parallel dot and nrm2 derive from a parallel
version of a “mixed solution” for the dot product. We start introducing these two
parallel algorithms. Then we derive the parallel reproducible level 1 BLAS and
perform its performance analysis.

4.1 From Parallel Sums to Reproducible Level 1 BLAS

Parallel SumK. Tt derives from the sequential version and has already been
introduced in [15]. It consists in 2 steps. Step 1 applies the SumK algorithm on
the local data without the final error compensation for every K iterations. Hence
it returns a K-length vector S such that (S;);—1, k is the sum of the j** layer in
SumK applied to the local subvector. Step 2 gathers these K-length vectors to
the master unit and applies the sequential SumK.

Parallel dot “mized solution”. Every n-length entry vector is split within P
threads (or computing units) and N denotes the length of these local subvectors.
The key point is to perform efficient error-free transformations of these N-vectors
until the last reduction step. This consists in a 4 step process presented with
Fig. 4.1 for P = 2. Steps 1 and 2 are processed by the P threads with local
private vectors. Step 1 is similar to the sequential case and produces one vector
of size = 2NN or 2048 or 4096: TwoProd transforms short N-vectors into a 2/N-
one while this latter is not built for larger entries but directly exponent-driven
accumulated into the size-length vector as for HybridSum or OnlineEzact. Step
2: the size-length vector is distilled (as for iFastSum) into a smaller vector of
non overlapping floating-point numbers. Step 3: every thread fuses this small
vector into a global shared one. Step 4 is performed by the master thread that
computes the correctly rounded result of the global vector with FastAccSum.

Let us remark that the small vector issued from Step 2 is at most of length
40 in binary64. Hence the distillation certainly benefits from cache effect. The
next fusing step moves across the computing units these vectors of length 40 in
the worst case. This induces a communication over-cost especially for distributed
memory environments. Nevertheless it introduces no more reduction step than
a classic parallel summation.

The Reproducible Parallel Level 1 BLAS. The reproducible parallel Rasum de-
rives from parallel SumK as in Sect. 3.1. The parallel dot “mixed solution” gives
reproducible parallel Rdot and Rnrm2. In practice, the parallel implementation
of the Step 1 differs from the sequential one as follows.

For shorter vectors, iFastSum is preferred to FastAccSum to minimize the
Step 3 communications. For medium sized vectors, HybridSum is preferred to
OnlineEzxact for Rdot to minimize the Step 2 distillation cost. Otherwise Onli-
neEzact is chosen to minimize the exponent extraction cost.

TwoProd
with or w/o
exponent
accumulation

Fostocm | s |

TwoProd
with or w/o
exponent

accumulation

Fig. 4.1: Parallel dot “mixed solution”

4.2 Test and Results

The experimental framework is unchanged. Each physical core runs at most one
thread thanks to the KMP_AFFINITY variable. For every routine, we run from 1
to 16 threads on 16 cores to select the most efficient configurations with respect
to the vector size. This optimal number of threads is given in parentheses in
Table 4.1 except when it corresponds to the maximum possible resources (16).
Intel MKL’s (hidden) choice is denoted with a *.

Table 4.1: Runtime extra cost for the reproducibility of parallel level 1 BLAS

Vector size 10° 10* 10° 10° 107
Rasum/asum 2.0 (1/1) 1.5 (4/2) 1.3 1.1 1

Rdot /mkldot 6.4 (8/%x) 3.8 (8/%) 1.6 1.1 1

Rnrm2/nOrm?2 9.1 (8/x) 7.1 (8/%) 34 1.6 1.5
Rasum/FastReprodasum 0.9 (1/1) 0.9 (4/4) 1.0 0.8 0.5
Rdot/FastReprodDot 1.5 (8/1) 1.5 (8/8) 0.9 0.7 0.6
Rnrm?2/FastReprodNrm2 1.7 (8/1) 1.5 (8/8) 0.9 0.5 0.4

For the next performance comparisons, optimized parallel routines are nec-
essary as references. We use the MKL parallel dot and we implement asum and
nrm?2 parallel versions. Our parallel asum runs up to 16 MKL dasum and per-
forms a final reduction. Our parallel nOrm2 derives similarly from the sequential
nOrm?2 introduced in Sect. 3.3. These implementations exhibit the best perfor-
mances in Fig. 4.2. As in Section 2.3, our implementations of ReprodSum and
FastReprodSum are optimized in a fair way using again AVX vectorization, data
prefetching and loop unrolling. The latter one is selected for the sequel.

We compare our reproducible Rasum, Rdot and Rnrm2, to the optimized
but non-reproducible reference implementations, and to the one derived from
FastReprodSum. Fig. 4.2 and Table 4.1 present these results.

Our reproducible Rasum compares very well to the optimized asum: the
initial 2x extra cost tends to 1 for n about 10°, see Fig. 4.2a. Compared to
the sequential cases and since it operates now on 16x smaller local vectors, our
reproducible Rdot and Rnrm?2 reach their optimal linear performance for larger
entry sizes. Nevertheless the reproducible Rdot runs less than 2x slower than the
MKL reference for vector size up to 10°, see Fig. 4.2b. For the same reasons as
in the sequential case (Sect. 3.3), our reproducible Rnrm?2 is not enough efficient
to exhibit the same optimal tendency. Nevertheless the Rnmr2 overhead now
reduces to the more convincing ratios compared to nOrm2, see Fig. 4.2c.

4
asum
——FastReprodasum
—~Rasum
03[
N
"
n
@
L2
)
(9]
£
€
2
1t

10 15 20 25

log2 of size
(a) asum
4 4
mkidot nOrm2
— FastReprodDot —+FastReprodNrm2
——Rdot ——Rnrm2

runtime(cycles) / size
n

-

15 20 25
log2 of size

(b) dot

15 20 25
log2 of size

(c) nrm2

Fig. 4.2: Runtime/size of parallel level 1 BLAS (up to 16 threads, cond=1032)

Finally our fully accurate reproducible level 1 routines compare quite favor-
ably to those derived from the reproducible FastReprodSum, especially for large
vectors: see Fig. 4.2. Those latest algorithms read twice the entry vector and
thus suffer from cache effects for large vectors. It is not the case for our algo-

10

rithms. On the other hand, the additional computation required by OnlineFEzact
or HybridSum benefit from the floating-point unit availability.

5 Conclusion and Future Developments

This experimental work illustrates that reproducible level 1 BLAS can be im-
plemented with a reasonable extra cost compare to the performance-optimized
non-reproducible routines. Moreover our implementations offer full accuracy al-
most for free compared to the existing reproducible solutions.

Indeed the floating-point peak performance of current machines is far to be
exploited by level 1 BLAS. So the additional floating-point operations required
by our accuracy enhancement do not significantly increase their execution time.

Of course these results are quantitatively linked to the experimental frame-
work. Nevertheless the same tendencies should be observed in other current com-
puting contexts. Work is ongoing to benefit from FMA within dot and nrm2,
to validate an hybrid OpenMP+MPI implementation on larger HPC cluster,
to port and optimize this approach to accelerators (as Intel Xeon Phi) and to
compare it to the expansions and software long accumulator of [1].

Finally there is alas no reason to be optimistic for the BLAS level 3 where
the floating-point units have no space left for extra computation. Reproducible
solutions need to be implemented from scratch, for example following [14].

Appendix A Optimization of summation algorithms

To guarantee best efficiency, all the algorithms that we have presented are opti-
mized manually. For prefetching and vectorization we use assembly like intrinsics.
Loops have been manually unrolled to reduce dependencies on loop incremental.
We show next the different optimizations in details for each algorithm.

A.1 OnlineExact

We show in Alg. A.1 the difference between optimized and not optimized im-
plementation of algorithm OnlineExact. On the optimized version side there are
three changes. (1) Loops are manually unrolled. (2) Prefetching in the 4‘* line
reduce the cost of memory latency. The distance of prefetching has been selected
according to experimental work. It could change on another test environment.
Distance of prefetch depends mainly on memory latency and bandwidth. (3) The
third difference is about data locality. Since the algorithm OnlineExact simulate
a large accumulator using two floating point numbers. The original idea was
to use two vectors, one for either part of accumulators. Those two vectors are
indexed easily using the exponent of the entry. What we have done is to put the
accumulator two floating point numbers successively in the same vector. That
costs two extra integer operations to compute "2exp" and "2exp + 1". Although
it guarantees that the accumulator holds always on the same cache-line. such
optimization is very efficient in practice because memory latency has much more

11

1: Declare arrays C'1 and C2 1: Declare array C
2: for iin 1:n do 2: Declare distance of prefetch
3: exp = exponent(p;) 3: for i in 1:n (Manually unrolled) do
4: FastTwoSum(Clegp, piy Clegp, error)d: prefetch(pitdistance)
5: C2cp = C2¢np + error 5: exp = exponent(p;)
6: end for 6: FastTwoSum(Caeap, i, C2eap, €rror)
7: S = iFastSum(C1 U C2) 7 Coezpt1 = Coexpt1 + error
8: return S 8: end for
9: S = iFastSum(C)
10: return S
(a) Before optimization (b) After optimization

Alg. A.1: Optimization of algorithm OnlineExact(p, n)

extra cost compared to integer operations. Note also that even prefetching can
not avoid latency cost in this case. Because we do not know the location of data
before the previous instruction that gets exponent.

This algorithm has a very annoying drawback. Since we do not access to accu-
mulator vector in regular order, hardware vectorization is impossible to employ.
The 5" instruction which gets exponent value with a mask and shift operations
can be easily vectorized. Anyways, according to experimental results this vector-
ization was not efficient, and have had even negative effect on performance. The
reason of that is that those vector instruction are followed by scaler operations
on the same data. Since vector operations use 256 bits YMM registers and scaler
operations work only on "the first" 64 bits of the same registers. Compiler has
to add shuffle or store and load operations to be able to apply scaler operations
on these data. Those operations cost more cycles, and also create some data
dependencies that give rise to poor instruction level parallelism.

If we have had more operations to vectorize, performance will be better. For
instance when we implement an exact dot product which is based on OnlineEx-
act, we vectorize the TwoProd operation. In case of two prod, even if there is
scaler operations after vector operations, vectorization gain worth it. The reason
is that it overlays the additional cost to apply scaler operations.

A.2 HybridSum

The optimization process for algorithm HybridSum is quite similar of that of
OnlineExact. In 274, 37¢ and 4*" line in Algorithm A.2b, we unroll the loop
and prefetch the data like for OnlineExact and for the same reasons. We see
also in the 7" instruction that p; is not accumulated according to its exponent.
Although since the last non-zero bit of p; should always be greater than or equal
the last non-zero bit of C_o7, we guarantee that the proof in the Section 3.2
of [16] still valid.

—
\V]

1: Declare array C 1:
2: for iin 1:n do 2:
3: split(ps:, pr, p1) 3:
4: expn, = exponent(ps) 4:
5: exp; = exponent(p;) 5:
6: Ceapy, = Ceapy, + Dn 6:
7 Cexp, = Ceap, + M 7
8: end for 8:
9: S = iFastSum(C) 9:
10: return S 10

11

12

(a) Before optimization

Declare array C'
Declare distance of prefetch
for i in 1:n (Manually unrolled) do
prefetch(pitaistance)
split (pi, pn, pr)
expr = exponent(pp)
erp; = expp - 27
Cezp;, = Ceap,, + Ph
Ceapy = Ceap; + pi

: end for
: S = iFastSum(C)
: return S

(b) After optimization

Alg. A.2: Optimization of algorithm HybridSum(p, n)

The major disadvantage of both algorithms HybridSum and OnlineExact is
that we can not vectorize most operations. This will reduce the scalability of
algorithms performance on new microarchitectures.

A.3 AccSum

M = Max(p)

o = NextPower2(n + 2) x NextPower2(M)
S=0

repeat

S = S + ExtractVector(o, p)
o = o x u x NextPower2(M)

until "Stop cretiria"
return S

Alg. A.3: Algorithm AccSum(p,n)

In Algorithm A.3 we show a simplified version of the algorithm AccSum
(see [12] for full details). As we have explained in Section 2.1 AccSum split sum-
mands according to . Then the higher order parts are accumulated exactly. This
work is done with the algorithm ExtractVector as we will show in Algorithm A .4.

The advantage of the algorithm ExtractVector is that all its operations can
be vectorized. The operations that are performed to generate the vector ¢ are
fully independent. The accumulation of ¢; can be vectorized since the summation

of these high order parts is exact.

Theoretically, vectorization can give a multiplicative boost to the compu-
tation performance. Unfortunately for this algorithm the memory bandwidth
limits performance. Especially that it pass through the vector multiple times to

1: t=0 1:
2: for iin 1:n do 2:
3 g = (0c+pi)-o 3:
4: Pi = Pi - q;i 4:
5 t=t+ q 5:
6: end for 6:
7: return t 7

8:

9:

10

(a) Before optimization

13

t=0
t,[size] = {0}
ov[size] = {o}

for i in 1:n do (unrolled by size)
Qii+size — ((71; + pi:i+size) - Oy
Dii+size — Pivitsize ~ Qizit-size
ty =ty + Qivitsize

end for

t = ReduceSum(¢,)

: return t

(b) After optimization

Alg. A.4: Optimization of algorithm ExtractVector (o, p)

enhance precision until the stop cretiria is verified. Prefetching was not efficient
on the algorithm ExtractVector. A possible reason is that we read and write on
the vector p in each iteration, while the software prefetching should be either for

read, or for write.

Since algorithms FastAccSum, ReprodSum and FastReprodSum have similar
properties, they are optimized in the same way. The difference is that prefetching
for read was efficient on ReprodSum and FastReprodSum because there is no

overwrite of the input vector.

A.4 SumK

1: S[K] = {0}

2: for k in 1:K-1 do

3 for iin 1:n do

4 (S[k], ps) = TwoSum(S[K], p:)
5: end for

6: end for

7: for iin 1:n do

8 SIK] = SIK] + p:

9: end for

0: return >~ Sk

[y

(a) Before optimization

S[K] = {0}
Declare distance of prefetch
for i in 1:n (manually unrolled) do
prefetch(pitdistance);
for k in 1:K-1 do
(S[k], pi) = TwoSum(S[k], p:)

end for
SIK] = S[K] + pi
end for

: return Y1, S

(b) After optimization

Alg. A.5: Optimization of algorithm SumK(p,n)

For the algorithm SumK, the most important optimization is the inversion
of loops. Since we know the value of K a priori, we can accumulate summands
for all K passes in one iteration. Also we can keep the original values of vector p

14

by using intermediate variable to write instead of p;. This should make prefetch-
ing more efficient and reduce memory cost, because there is no need to write
values on p. Similar optimization is applied for the algorithms ReprodSum and
FastReprodSum.

Unfortunately we could not do the same with AccSum and FastAccSum be-
cause the number of iterations is not predefined.

Vectorization of SumK We vectorize the algorithm SumK using the same
idea of the parallel version of SumK [15]. A brief description of this algorithm is
given in Section 4.1. So in the end of vectorized part, we will get K vectors of
size s (such that s is the size of hardware registers). Then we concatenate those
vectors, and we apply non vectorized SumK on the result vector of size K X s.

References

1. Collange, S., Defour, D., Graillat, S., Iakimchuk, R.: Reproducible and Accu-
rate Matrix Multiplication in ExBLAS for High-Performance Computing. In:
SCAN’2014. Wiirzburg, Germany (2014)

2. Dekker, T.J.: A floating-point technique for extending the available precision. Nu-
mer. Math. 18, 224-242 (1971)

3. Demmel, J.W., Nguyen, H.D.: Fast reproducible floating-point summation. In:
Proc. 21th IEEE Symposium on Computer Arithmetic. Austin, Texas, USA (2013)

4. IEEE Task P754: IEEE 754-2008, Standard for Floating-Point Arithmetic. Insti-
tute of Electrical and Electronics Engineers, New York (Aug 2008)

5. Intel Math Kernel Library, http://www.intel.com/software/products/mkl/

6. Jézéquel, F., Langlois, P., Revol, N.: First steps towards more numerical re-
producibility. ESAIM: Proceedings 45, 229-238 (2013), http://hal-lirmm.ccsd.
cnrs.fr/lirmm-00872562

7. Muller, J.M., Brisebarre, N., de Dinechin, F.; Jeannerod, C.P., Lefévre, V.,
Melquiond, G., Revol, N.; Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhduser Boston (2010)

8. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. STAM J. Sci.
Comput. 26(6), 1955-1988 (2005)

9. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, first edn. (2007)

10. http://webdali.univ-perp.fr/ReproducibleSoftware

11. Rump, S.M.: Ultimately fast accurate summation. STAM J. Sci. Comput. 31(5),
3466-3502 (2009)

12. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation — part I:
Faithful rounding. STAM J. Sci. Comput. 31(1), 189-224 (2008)

13. Story, S.: Numerical reproducibility in the Intel Math Kernel Library. Salt Lake
City (Nov 2012)

14. Van Zee, F.G., van de Geijn, R.A.: BLIS: A framework for rapidly instantiating
BLAS functionality. ACM Transactions on Mathematical Software 41(3)

15. Yamanaka, N., Ogita, T., Rump, S., Oishi, S.: A parallel algorithm for accurate
dot product. Parallel Comput. 34(6-8), 392 — 410 (2008)

16.

17.

15

Zhu, Y.K., Hayes, W.B.: Correct rounding and hybrid approach to exact floating-
point summation. STAM J. Sci. Comput. 31(4), 2981-3001 (2009)

Zhu, Y.K., Hayes, W.B.: Algorithm 908: Online exact summation of floating-point
streams. ACM Trans. Math. Software 37(3), 37:1-37:13 (2010)

