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Abstract. A word is quasiperiodic (or coverable) if it can be covered
by occurrences of another finite word, called its quasiperiod. This notion
was previously studied in the domains of text algorithms and combina-
torics of right infinite words. We extend several results to two dimen-
sions. We also characterize all rectangular words that cover non-periodic
two-dimensional infinite words. Then we focus on two-dimensional words
with infinitely many quasiperiods. We show that such words have zero
entropy. However, contrarily to the one-dimensional case, they may not
be uniformly recurrent.

Keywords: Combinatorics on Words, Patterns

1 Introduction

At the beginning of the 1990’s, in the area of text algorithms, Apostolico and
Ehrenfeucht introduced the notion of quasiperiodicity [1]. Their definition is as
follows: “a string w is quasiperiodic if there is a second string u ̸= w such that
every position of w falls within some occurrence of u in w”. The word w is also
said to be u-quasiperiodic, and u is called a quasiperiod (or a cover) of w. For
instance, the string:

ababaabababaababababaababa

is aba-quasiperiodic and ababa-quasiperiodic.
In 2004, Marcus extended this notion to right-infinite words and observed

some basic facts about this new class. He opened several questions [10], most
of them related to Sturmian words and the subword complexity. First answers
were given in [7]. A characterization of right-infinite quasiperiodic Sturmian
words was given in [8] and extended to episturmian words in [5]. More details
on the complexity function were given in [11,12].

In [11], Marcus and Monteil showed that quasiperiodicity is independent from
several other classical notions in combinatorics on words. They also introduced
a stronger notion of quasiperiodicity, namely multi-scale quasiperiodicity, with
better properties.

Finally, in [4], the authors introduced a two-dimensional version of quasipe-
riodicity. In particular, they gave a linear-time algorithm computing all square
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quasiperiods of a given square matrix of letters. Our approach is to continue the
study of two-dimensional quasiperiodicity by generalizing the results from [11]
to infinite two-dimensional words.

– First, we recall definitions of some classical notions from combinatorics on
words in a two-dimensional context. Then, to illustrate these notions and
quasiperiodicty, we check that independence between these notions and qua-
siperiodicity is still true in two dimensions (Section 2).

– We determine a necessary and sufficient condition for a word to be a qua-
siperiod of non-periodic two-dimensional word. Given a quasiperiod q, we
construct a substitution allowing to forge q-quasiperiodic words with vari-
ous properties, in particular aperiodicity (Section 3).

– We define multi-scale quasiperiodicity in two dimensions. Then we study
how multi-scale quasiperiodicity is linked to other classical notions from
combinatorics on words. (Section 4).

Warning. Note that in some contexts, most notably in the field of tilings,
“quasiperiodic” means “uniformly recurrent”. Hence we refer to quasiperiodic
words as coverable words; each quasiperiod is a cover (or covering pattern).

2 Coverability

Let Σ be a finite alphabet. A two-dimensional word (or Z2-word) is a function
from Z2 to Σ. Unless otherwise stated, those functions are assumed to be total.
When clarification will be needed, we will note dom(w) the domain of w, i.e.
the set of coordinates where it has defined letters.

A rectangular word is a word w such that dom(w) = {i, . . . , i+n}×{j, . . . , j+
m}, for i, j ∈ Z and n,m ∈ N. In that case, let width(w) = n+1 and height(w) =
m+1. The set of rectangular words of dimension n×m is Σn×m. More generally,
if u is a rectangular word, then un×m denotes the nwidth(u) × mheight(u)-
rectangle which consists only in occurrences of u.

Let CΣ,n denote the set of n-columns over Σ, i.e. 1 × n-rectangular words
over Σ. Those columns are concatenated horizontally. Likewise, let LΣ,m denote
the set of m-lines over Σ, concatenated vertically. We will occasionally view
rectangular words as finite one-dimensional words over CΣ,n or LΣ,m, considered
as alphabets.

In what follows, let w be a bidimensional word and let u, v be rectangular
words.

We say that u is a cover (or a covering pattern) of w if, for all (x, y) ∈ Z2,
there exists (i, j) ∈ N2 with 0 ≤ i < width(u) and 0 ≤ j < height(u) such that
w[x − i . . . x − i + width(u) − 1; y − j . . . y − j + height(u) − 1] is equal to u
up to shift. Intuitively, u is a cover of w when each position of w belongs to an
occurrence of u.

Now we recall some classical notions from combinatorics on words, adapted
to the two-dimensional case. Then we will check that coverability is independent
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from these notions. This will generalize the first part of [11] to two-dimensional
words.

Let w[i . . . i + n; j . . . j + m] denote the restriction of w to the rectangle
{i . . . i+n}×{j . . . j+m}, for i, j ∈ Z and n,m ∈ N. If u = w[i . . . i+n; j . . . j+m]
for some i, j, n and m, then u is a block of w.

A two-dimensional word w is uniformly recurrent if, for all k ∈ N, there
exists some ℓ ∈ N such that all k× k-blocks of w appear in all ℓ× ℓ-blocks of w.
Intuitively, this means that any block of w appears infinitely often with bounded
gaps.

Moreover, a two-dimensional word w has a vector of periodicity −→x ∈ Z2∗ if,
for all vectors −→y ∈ Z2, we have µ(−→x ) = µ(−→x +−→y ). We say that w is periodic if
it has at least two non-colinear vectors of periodicity. Links between periodicity
and others notion defined in this section (most notably the block complexity
function, see below) are currently investigated, see e.g. [3].

Let cw(n,m) be the number of n×m-blocks of w (cw is known as the block
complexity function of w). Then the the topological entropy of w is the following
quantity:

H(w) = lim
n→∞

log|Σ| cw(n, n)

n2

Intuitively, if cw(n, n) ≃ |Σ|ϵn2

, then H(w) ≃ ϵ. In other words, when the
complexity function of w is polynomial, w has zero entropy. This is a classical
regularity property on words, often used in the context of dynamical systems.

Let |u|v denote the number of occurrences of v in u. The frequency of u in
w is the following quantity:

fw(u) = lim
n→∞

|w[−n · · ·+ n,−n · · ·+ n]|u
n2

when it exists. If fw(u) exists for all blocks u of w, then u is said to have
frequencies. This is another common regularity property coming from dynamical
systems.

Proposition 1. Coverability is independent from uniform recurrence, subword
complexity and existence of frequencies.

Proof. For uniform recurrence, observe that q =
b b a
b b b
a b b

is a cover of the non-

uniformly recurrent word displayed on Figure 1. With the same value of q, the
q-periodic two-dimensional word is uniformly recurrent.

Let w be a two-dimensional word over {a, b} with polynomial (resp. expo-
nential) complexity. Consider the following function:

ν(a) = ababaaba

ν(b) = abaababa

The image ν(w) has polynomial with the same degree (resp. exponential) com-
plexity and is aba-coverable (viewing aba as a 3× 1-rectangle).
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Finally, the word ν(aZ
2

) has frequencies for all its blocks. By contrast, if w
is a word having no frequencies for any block, then ν(w) has no frequencies
either. ⊓⊔

..................................................................
. . .

. . . ..

. . .

.

. . .

Fig. 1. A coverable, non-uniformly recurrent word

As a conclusion, coverability is a weak notion: it does not bring much infor-
mation about two-dimensional words it characterizes.

3 Aperiodic Coverings

In this section, we determine under which conditions a rectangular word q can
be a cover of an aperiodic Z2-word w. First, let us consider the question for
N-words. Recall that, in this context, a border is a block of q which is both a
proper prefix and a suffix of q. (A word u is a proper block of v if it is a block
of v and u ̸= v).

Lemma 2. A finite one-dimensional word q is a cover of an aperiodic coverable
N-word if and only if the primitive root of q has a non-empty border.

Sketch of proof. If q is a cover of an aperiodic infinite word, then so is its primitive
root. If the primitive root r of q has no non-empty borders, then two occurrences
of r never properly overlap. Hence any r-covered word must be periodic.

Conversely, if r has a non-empty border and if q = rk for some positive
integer k, then r = uvu. Let h be the morphism defined by h(a) = (uvu)k and
h(b) = (uvu)k−1vu. The image of any aperiodic word by h is an aperiodic, r-
coverable word. The proof is omitted by lack of space, but proof of Theorem 5
works quite the same. ⊓⊔

The previous result also holds for Z-words. For N2-words, one can prove
similarly: a finite rectangular word q is a cover of some aperiodic infinite word
if and only if the primitive root of q has a non-empty horizontal border or a
non-empty vertical border. In this context, a horizontal (resp. vertical) border
is a rectangular word which has the same width (resp. height) as q and which
occurs both at the top and the bottom (resp. left and right) of q.
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The proof of Lemma 2 used a morphism. Given a word w, readers can check
that h(w) shares a lot of common properties with w. From now on, we focus
on the Z2 case. Theorem 5 below generalizes the previous result for Z2-words.
However, our deeper goal is to to construct a substitution over Z2 allowing to
obtain q-coverable Z2-words with various properties.

3.1 Primitive Roots of Rectangular Words

We need some simple definitions to state our characterization. Let q and r be
rectangular words. By definition, r is a root of q if q = rn×m, for some positive
integers n and m. If q has no roots except itself, it is said to be primitive.

These notions initially came from combinatorics on one-dimensional words.
The following lemma is a classical result about roots in one dimension. It shows
that any one-dimensional finite word has a smallest root, called its primitive
root.

Lemma 3. (See, e.g., [9], Prop. 1.3.1 and 1.3.2.)
Given any finite one-dimensional words u and v, the following statements are
equivalent:

1. there exist integers n,m ≤ 0 with (n,m) ̸= (0, 0), such that un = vm;
2. there exist a word t and positive integers k and ℓ such that u = tk and v = tℓ;
3. uv = vu.

Let us show that primitive roots are also well-defined on rectangular words.

Lemma 4. Let q be a rectangular word. Suppose that q has two distinct roots
r1 and r2. Then there exists a rectangular word r3 such that r3 is a root of both
r1 and r2.

Proof. Let rk1 (resp. rk2 ) denote k occurrences of r1 (resp. r2) concatenated verti-
cally. Since r1 and r2 are roots of q, there exist integers n and m such that both
rn1 and rm2 are roots of q, with height(q) = height(rn1 ) = height(rm2 ). Consider
q, rn1 and rm2 as words over CΣ,height(q); by Lemma 3, there exists a word c over
CΣ,height(q) such that c is a root of both rn1 and rm2 .

Let r3 (resp. r4) be the horizontal prefix of r1 (resp. r2) of length width(c).
Both r3 and r4 are prefixes of q, hence rn3 = rm4 (the power is still taken for verti-
cal concatenation). Now view r3 and r4 as words over LΣ,width(c). By Lemma 3,
there exists a word r over LΣ,width(c) which is a common root of r3 and r4.

As r1 (resp. r2) is obtained by horizontal concatenations of occurrences of r3
(resp. r4), we deduce that r is a root of r1 and of r2. ⊓⊔

The primitive root of a rectangular word q is the root minimal for the “is a
root of” relation. By Lemma 4, it is the only root of q (possibly itself) which is
primitive.

We need one last definition before stating our first theorem. Let q be a rect-
angular word. Following [4], a proper block b of q is a diagonal border of q if
b occurs in two opposite corners of q. Note that it is possible to have either
width(b) = width(q) (horizontal border) or height(b) = height(q) (vertical bor-
der), but not both.
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3.2 Patterns Covering Aperiodic Bidimensional Words

Now we can state the condition under which a rectangular word can be the
covering pattern of a non-periodic Z2-word.

Theorem 5. Let q be a finite, rectangular word. Then there exists a q-covera-
ble, non-periodic Z2-word if and only if the primitive root of q has a non-empty
diagonal border.

This subsection is entirely dedicated to the proof of Theorem 5.

Proof of the “only if” part. First, suppose that w is a Z2-word which is both
q-coverable and non-periodic. There exists at least two overlapping occurrences
of q in w. Moreover, the overlapping part is not a power of the primitive root of
q: if all overlappings are powers of some root of q, then w is periodic. Therefore,
q must have at least one border which is not a power of its primitive root. Hence
its primitive root has a non-empty border.

Proof of the “if” part. Suppose that q’s primitive root has a non-empty diagonal
border. Let us build an infinite Z2-word which is q-coverable, but not periodic.

.....................
α

....................
β

....................

δ

....................

γ

Fig. 2. Four tiles to build a q-coverable word. Each rectangle is an occurrence of q

Let r be the primitive root of q and b be a non-empty diagonal border of r.
Consider the four tiles α, β, δ and γ displayed on Figure 2. Each rectangle is an
occurrence of q. The overlapping zones are all occurrences of b and the shifts on
tile borders are sized accordingly. If the border b is on the opposite corner, all
tiles are built symmetrically.

Let A = {a1, a2, a3, a4} and µ be the function from AZ2

to ΣZ2

, defined by
µ(a1) = α, µ(a2) = β, µ(a3) = γ and µ(a4) = δ. If its input is regular enough, µ
behaves more or less like a morphism, with the following concatenation rules.

On Figure 2, each tile has three anchors, i.e. letters marked by a small square.
Concatenate two tiles horizontally by merging the right-anchor of the first one
with the left-anchor of the second one. Concatenate two tiles vertically by merg-
ing the bottom-anchor of the first one with the top-anchor of the second one.
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More formally, we have:

µ(ai · u) = µ(ai) ∪ S(4width(q);height(b)) ◦ µ(u)

µ

(
u
v

)
= µ(v) ∪ S(width(b);4 height(q)) ◦ µ(u)

where the operator ∪ denotes the superposition of two finite words. Recall that
we view two-dimensional words as (possibly partial) functions from Z2 to the
alphabet. These functions have domains which may be strictly included in Z2. If
w1 and w2 are two words with disjoints domains, then (w1 ∪w2)[x, y] = w1[x, y]
where w1 is defined and w2[x, y] where w2 is defined. In what follows, we will
only consider superpositions where no position (x, y) is defined in both w1[x, y]
and w2[x, y].

If u is a rectangular word, the leftmost bottom anchor of µ(u[i, j]) has coor-
dinates:

(i× 4× width(q) + j × width(b); j × 4× height(q) + i× height(b))

in µ(u). Figure 3 gives an example of how µ works.

.................................................................................................................................

Fig. 3. µ ( a3 a4 a4 a3
a1 a2 a2 a1 ), each rectangle is an occurrence of q

A word over A is suitable when it satisfies the following conditions:

1. each line is either on alphabet {a1, a2} or on alphabet {a3, a4};
2. each column is either on alphabet {a1, a3} or on alphabet {a2, a4}.

First, we check that if w is suitable, then each letter of µ(w) belongs to
the image of exactly one letter of w. This essentially means that all tiles “fit
together” with no overlaps.

By construction, tiles α and δ fit together vertically, and tiles β and γ fit as
well. Hence µ( a1

a3
) and µ( a2

a4
) are well-defined. Likewise, tiles α and β fit together

horizontally, and tiles δ and γ fit as well. Hence µ(a1a2) and µ(a3a4) and are
well-defined. Iterating this argument, we deduce that the image of any suitable
word is well-defined.

Moreover, we let readers check that µ(w) has no “holes”. More precisely, if
if w is a suitable rectangular word, µ(w) satisfies the following weak convexity
properties:

– for all i, j, j1, j2 ∈ N with j1 ≤ j ≤ j2, if (i, j1) and (i, j2) are in dom(µ(w)),
then (i, j) is in dom(µ(w)) as well;
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– for all i, j, i1, i2 ∈ N with i1 ≤ i ≤ i2, if (i1, j) and (i2, j) are in dom(µ(w)),
then (i, j) is in dom(µ(w)) as well.

As a consequence, the definition of µ can be extended to suitable Z2-words.
If w is a suitable Z2-word, then µ(w) is a well-defined Z2-word as well.

We will now prove that µ(w) is aperiodic for any aperiodic bidimensional
word w. First, we need a technical lemma about our tiles.

Lemma 6. Let x and y be different tiles from {α, β, γ, δ}. Then an occurrence
of x and an occurrence of y cannot overlap when their anchor points coincide.

This essentially means that situations from Figure 4 cannot occur.

.................................................................................................................................................................................................

Fig. 4. All other possible overlappings

Proof. There are six possibilities for the set {x, y}. All proofs are quite similar,
so we only provide a proof when x = α and y = β (illustrated by the top left-
hand case of Figure 4). In what follows, q refers to the rectangular word used for
the construction of the tiles, r to its primitive root and b to a diagonal border
of r.

There are three occurrences of q, named q1, q2 and q3, such that q1 is covered
by q2 and q3 and all three are horizontally aligned. (See for instance the top
second column of q’s in the figure). View q1, q2 and q3 as one-dimensional words
over the alphabet LΣ,width(q). There exist words x and x′ over LΣ,width(q) such
that q1 = xx′ and q2 = q3 = x′x (where words are concatenated from bottom to
top).

By Lemma 3, x and x′ (and q) are powers of a same word s over LΣ,width(q).
Notice that height(x′) = height(b) and height(x) = height(q) − height(b). It
follows that height(s) divides height(x) and height(q)− height(b).

Observe that s is a vertical prefix of both q and x. Thence one can find three
occurrences of s, named s1, s2 and s3, such that s1 is covered by s2 and s3 and
all three are vertically aligned. (See for instance the second line of q’s in the
figure).

Now view s as a one-dimensional word on the alphabet CΣ,height(s). There
exist words y, y′ such that s1 = yy′, s2 = s3 = y′y and width(y′) = width(b).
By Lemma 3, we deduce that there exists a word t over CΣ,height(s) such that y
and y′ (and s) are powers of t.
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Let k ≤ 1 be the integer such that q = sk (for vertical concatenation) and let
ℓ ≥ 1 be the integer such that s = tℓ (for horizontal concatenation). We have that
q = tℓ×k. Therefore t is a root of q such that width(t) ≤ width(y′) = width(b)
and height(t) = height(s) ≤ height(b). Thus width(s) × height(s) ≤ width(b) ×
height(b) which is a contradiction with the definition of b. Indeed, recall that b
is a border (hence a proper block) of the primitive root of q, which is smallest
(in number of letters) roots of q. ⊓⊔

In the proof of next lemma, Lemma 6 helps to establish a correspondence
between the letters of the Z2-word µ(w) and the “tiling” consisting of occur-
rences of α, β, δ and γ. We need this correspondence to prove that some µ(w)
can always be made aperiodic.

Lemma 7. Let q be a rectangular word, r its primitive root and b one non-empty
diagonal border of r. Let w be an aperiodic, suitable Z2-word. Then µ(w) is an
aperiodic, q-coverable Z2-word.

Proof. By construction, µ(w) is q-coverable for all w. Suppose that µ(w) has a
non-null vector of periodicity −→p ∈ Z2. Let us prove that, under this assumption,
w is periodic.

Let a ∈ Z2 be the coordinates of the anchor point of some tile in µ(w). For
any i ∈ Z, let ti = a+ i×−→p . Since tiles have at most 16×width(q)× height(q)
letters, by pigeonhole principle, there are two pairs of coordinates ti and tj which
have the same offset to the anchor points of their respective tiles (i.e. the tiles
covering their respective positions). Hence the difference between these anchor
points is a multiple of the vector of periodicity −→p .

Let Ti (resp. Tj) be the tile covering position ti (resp. tj). Since Ti is the (j−
i)×−→p -translation of Tj , they are both occurrences of a same tile. Moreover, the
right-neighbours of Ti and Tj are both occurrences of a same tile, otherwise we
would have a configuration forbidden by Lemma 6. Likewise, the top-neighbour,
bottom-neighbour and left-neighbour of Ti and Tj are also equal. By iterating
this argument over the neighbours’ neighbours, and so on, we conclude that the
tiling itself is periodic. Hence, w is periodic. ⊓⊔

This ends the proof of Theorem 5. From any rectangular word q with at least
one non-empty diagonal border in its primitive root, we can build µ(w) for any
aperiodic, suitable Z2-word w.

3.3 Lifting other Properties to Coverable Words

Notice how we “lifted” aperiodicity from an arbitrary Z2-word to a q-coverable
word. This technique can be used to lift other properties, such as existence of
frequencies, uniform recurrence, block complexity or topological entropy. The
proof is as in Proposition 1, using µ instead of ν.

Hence, for any rectangular word q, there exist q-coverable Z2-words with or
without uniform recurrence, with or without frequencies, and with any complex-
ity function. Any rectangle which is the cover of a Z2-word is also the cover of
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Z2-words with any properties. In other terms, the contents of a covering pattern
do not bring any information about the covered word.

As a conclusion of this section, remark that our substitution preserves various
kind of non-periodic properties. In Lemma 3.5, we could have assumed that
there exists no-sequence (xi, yi)i∈N of coordinates in w with (xi+1−xi, yi+1−yi)
constant. We would have obtained exactly the same property for µ(w).

4 Multi-Scale Coverability in Two Dimensions

In [11], Monteil and Marcus called multi-scale coverable any N-word having in-
finitely many covers. We want to exclude cases where coverability is obtained
on groups of lines (or columns) stacked all over Z2. Hence our generalization is
more specific. A Z2-word (or a N2-word) is called multi-scale coverable if, for
each n ∈ N, it has a k × ℓ cover with both k ≥ n and ℓ ≥ n.

In [11], Monteil and Marcus prove that multi-scale coverable right-infinite
words have zero entropy and are uniformly recurrent. We study these results for
Z2-words.

4.1 Topological Entropy

Let w be a Z2-word. Recall that cw(n,m) is the number of rectangles of size
n ×m which occur in w and that the topological entropy of w is the following
quantity:

H(w) = lim
n→+∞

log|Σ| cw(n, n)

n2
(1)

This sequence converges since
log|Σ| cw(n,n)

n is sub-additive (thanks to the Fekete’s
Subadditive Lemma, see e.g. [13]).

Proposition 8. Any multi-scale coverable, Z2-word w has zero entropy.

Proof. Consider a covering pattern q of w with size n×m. Suppose without loss
of generality that n ≤ m. Let s be a m×m-square of w. The square s is covered
with occurrences of q (which may spill out of s). The relative position of s and
of occurrences of q completely defines s.

We need at most 4m occurrences of q to define a covering of s. Each occur-
rence of q must have at least one of its corners in s. If some occurrence of q
has its bottom right-hand corner in s, then no other occurrence of q may have
their bottom right-hand corners on the same line of s. Otherwise, one of these
occurrences would supersede the other one, which would be “useless” in the
covering.

Proceed the same way for the other corners and deduce that at most 4m
occurrences of q (4 per line) uniquely define s. Each of these occurrences is
uniquely determined by its position of its corner on a line of s. There are at
most m possibilities for each. Therefore, there are at most m4m q-coverings
which define all possible squares s.
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This bound on cw(m,m) allows us to compute the entropy of w. Observe
that:

lim
m→∞

logm4m

m2
=

4m logm

m2
→ 0 (2)

Since there are infinitely many covering patterns of w with growing sizes,
there are infinitely many integers m such that cw(m,m) ≤ m4m. Hence equa-
tion (2) shows that then topological entropy of w converges to zero. ⊓⊔

Note that since the Kolmogorov complexity is bound by the entropy (see [2]),
this result also shows that the Kolmogorov complexity of multi-scale coverable
words is zero as well.

4.2 Uniform Recurrence

Recall that a Z2-wordw is uniformly recurrent when all its blocks occur infinitely
often with bounded gaps. In N-words, multi-scale coverability implies uniform
recurrence. Quite surprisingly, this is not true for infinite two-dimensional words.

Consider q =
b b a
b b b
a b b

and the word displayed on Figure 1. The central block

b b b b a
b b b b b
b b a b b
b b b b b
a b b b b

occurs only once, hence this word is not uniformly recurrent.
Actually, the problem does not lie in the dimension two, but in the absence

of origin. The statement “multi-scale coverability implies uniform recurrence” is
true for N-words (see [11]) and N2-words, and false for Z-words and Z2-words.

Here is an example of a Z-word which is multi-scale coverable, but not uni-
formly recurrent:

ω(ab)a(ab)ω = . . . babababa a babababa . . .

Any word matching the aba(ba)∗ regular expression is a covering pattern of
this word. However, the pattern aa only occur once, hence it is not uniformly
recurrent.

Proposition 9. Any multi-scale, N2-word w is uniformly recurrent.

Proof. This is an adaptation of the proof from [11]. Consider a rectangle r occur-
ring in w. Since w has arbitrarily large covering patterns and all these patterns
occur at the origin, one of these patterns contains r entirely. Hence r occurs
whenever the covering patterns occurs, and the latter occurs infinitely many
times with bounded gaps. ⊓⊔

As a conclusion, uniform recurrence from multi-scale coverability does not
generalize to Z2-words. However, the situation as a whole generalizes to two
dimensions: the implication is true on words “with origins” (N,N2), and false on
words “without” (Z,Z2).
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5 Conclusion and Future Work

As a conclusion, let us point out several questions on which we are currently
working.

In [11], it is shown that all multi-scale coverable words have uniform frequen-
cies. Although the result seems still true for two-dimensional words, the proof
appears to be not directly generalizable.

Moreover, we have the feeling that non-uniformly recurrent coverable Z2-
words are pathological cases. We suspect that they are all similar to the one
displayed on Figure 1. We are currently working on a full characterization of
those words.

Finally, one-dimensional coverable words may be decomposed to a normal
form (see [6]). This allows to view one-dimensional coverable coverable words as
images of arbitrary words by some morphisms (which depend on the cover). How-
ever, there does not seem to exist such normal form for coverable two-dimensional
words. Is any q-coverable word an image by some kind of substitution?
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