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SUMMARY 
 

Computer simulations may ingest and generate high numbers of raw data files. Most of these files follow a de 
facto standard format established by the application domain, e.g., FITS for astronomy. Although these formats are 
supported by a variety of programming languages, libraries and programs, analyzing thousands or millions of files 
requires developing specific programs. Database Management Systems (DBMS) are not suited for this, because 
they require loading the raw data and structuring it, which gets heavy at large-scale. Systems like NoDB, RAW 
and FastBit, have been proposed to index and query raw data files without the overhead of using a DBMS. 
However, these solutions are focused on analyzing one single large file instead of several related files. In this case, 
when related files are produced and required for analysis, the relationship among elements within file contents 
must be managed manually, with specific programs to access raw data. Thus, this data management may be time-
consuming and error-prone. When computer simulations are managed by a Scientific Workflow Management 
System (SWfMS), they can take advantage of provenance data to relate and analyze raw data files produced 
during workflow execution. However, SWfMS register provenance at a coarse grain, with limited analysis on 
elements from raw data files. When the SWfMS is dataflow-aware, it can register provenance data and the 
relationships among elements of raw data files altogether in a database which is useful to access the contents of a 
large number of files. In this paper, we propose a dataflow approach for analyzing element data from several 
related raw data files. Our approach is complementary to the existing single raw data file analysis approaches. We 
use the Montage workflow from astronomy and a workflow from Oil and Gas domain as I/O intensive case 
studies. Our experimental results for the Montage workflow explore different types of raw data flows like showing 
all linear transformations involved in projection simulation programs, considering specific mosaic elements from 
input repositories. The cost for raw data extraction is approximately 3.7% of the total application execution time. 
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1. INTRODUCTION 

Computer simulations have become ubiquitous in scientists’ daily duties, once they perform analyses using 
complex computational models and increasing volumes of data [1]. This allows for the exploration of 
domain-specific data to support scientists (henceforth named users) in the validation of specific behaviors or 
scientific hypotheses. Moreover, most large-scale computer simulations involve the execution of many 
programs that are data-intensive. Typically, each simulation program is characterized by the ingestion and 
production of large quantities of data. Most of the generated data is stored using several files with 
heterogeneous formats. Domain-specific areas adopt a common file format, such as FITS [2] in astronomy, 
or NetCDF [3] and HDF5 [4] in computational fluid dynamics. Each file format is self-described, machine-
independent and offers support to a variety of programming languages. They are normally adopted by a 
large number of libraries and are widely used by reference simulation programs in their domain area. These 
files are also known as raw data files as opposed to structured data ready to be queried by a Database 
Management System (DBMS). In addition, these files often contain binary or semi-structured data, which 
makes data analysis difficult. 
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In computer simulations, the users typically need to validate their hypotheses by analyzing not only the 
last resulting file, but also its dataflow path. A dataflow in this context may be defined as a composition of 
data transformations, consuming one or more data sets as input and producing one or more data sets as 
output. Each data set can be defined as any set of data elements, which has some predefined attributes in 
each data element. A data transformation performs some data processing based on procedures from 
simulation programs using files as input and output data. Without dataflow support, the main challenge is to 
analyze data propagation from a large number of data sets (such as files), which are related by the simulation 
program execution flow. Analyzing these files manually involves naming files accordingly, writing several 
specific analytical programs and retracing the file transformation flow. This may be tedious and error-prone 
with high volumes of data. Consequently, it is not trivial to trace data elements related by simulation 
programs. Let us consider three important types of queries in the exploratory analysis of raw data files, 
which require access to: 

(1) Domain-specific file content; 

(2) Multiple files related by simulation programs; 

(3) Specific related elements from multiple files. 

While queries of type 1 need raw data access to a single file, queries of type 2 or 3 require dataflow 
access paths. To support queries of type 1, raw data files need to be parsed, following a specific format, and 
gathering relevant domain-specific data based on the query specification.  

Figure 1 shows an example of queries of types 1, 2 and 3 using raw data from the astronomy domain 
based on the Montage toolkit [5] (Section 4 presents more details of Montage). Suppose that the user wants 
to perform a domain-specific query on the content of the projected_images.tbl file (type 1). Attributes FA 
and FB (marked by a gray line in projected_images.tbl file) need to be parsed and retrieved to analyze linear 
transformations from the projection program of the simulation with a given configuration. These attributes 
are also important in tracing anomalies or errors from custom mosaic generation, and can be used to define 
some conditions for the query. The black arrows represent the sequence of files in tbl and fits formats, which 
are projected into another tbl file and transformed to create a mosaic in jpg format. When these relationships 
are registered, they allow for queries of type 2, e.g., tracing back the intermediate files that led to mosaic.jpg 
file generation. Finally, Figure 1 further shows data element flows – queries of type 3 – by the gray arrows. 
In this example, the attribute CRVAL1 is used as a key that relates data elements from different raw data 
files. Therefore, the file hdu_1n.fits can be related to the FB element: 0.001969140. Consequently, it is also 
possible to analyze HDU file content (i.e., attribute HDU_MATRIX) in relation to the linear transformations 
(e.g., attributes FA and FB). Without dataflow support, users have to write programs that search for each of 
these key values along the file flow and write more code to relate and analyze them, for example, in a 
selected region of the space (i.e., attribute CRVAL1).  

 
Figure 1. An example from astronomy simulation for the queries in the exploratory analysis of raw data files. 

In another example of queries of type 3, users may need to analyze which projected planes (i.e., HDU 
files) were generated for the mosaic in a specific region on the sky (e.g., this region can be limited by the 
CRVAL1 element – floating-point value for positioning reference). Thus, this kind of analysis needs to 
manage file transformations along simulation programs and extract raw data content from files. Users have 
to parse the raw data (i.e., domain-specific data) for filtering their results. In this case, one mosaic dataflow 
may have more than 100,000 files to be parsed.   
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1.1. Problem Overview 

There are approaches that allow for analyzing domain-specific file contents (queries of type 1), such as 
FastBit [6], FastQuery [7], SDS/Q [8], NoDB [9] and RAW [10]. They all work directly on the raw data file 
and avoid the overhead of raw data transformation for loading into a DBMS. Even when the DBMS has 
scientific data structures such as arrays and matrices, raw data files must coexist with the transformed data in 
the DBMS. This means that after the scientific data has been loaded in a DBMS, raw data will continue to 
be generated by widely adopted libraries and processed by benchmark programs of the associated scientific 
domains. These solutions represent a step forward with respect to a DBMS approach. However, they do not 
support analysis of a dataflow resulting from a sequence of data transformations stored in multiple related 
files. Thus, they lack support for raw data queries of types 2 and 3. 

Supporting queries of type 2 requires following a dataflow of multiple files. As data is generated and 
transformed by the simulation programs, they create a file flow. A file flow represents a dependency 
relationship describing the order of data (file) transformations. Accessing this file flow is essential in 
analytical queries that need to trace back the history of data transformations. Manually obtaining the file 
flow after the simulation, when all the files have been generated is error-prone, since the user usually has to 
rely on file names to trace the flow. A popular solution is to use Scientific Workflow Management Systems 
(SWfMS), such as Pegasus [11] and AUDAS [12], to trace file generation. To use a SWfMS, the computer 
simulation must be modeled as a scientific workflow, defined by a set of activities and their data 
dependencies. When the scientific workflow finishes, analytical queries may be submitted to a database, 
which represents the file flow among other workflow execution metadata. However, when SWfMS only 
consider the file flow management, they track the file derivation history, but disregard domain-specific file 
contents. Thus, they lack support for raw data queries of type 1 and 3. 

SWfMS such as Kepler [13] and Panda [14] have specific data structures to support data element and 
collection flow, but they are not aware of domain-data file content, which also limits the power of 
supporting queries of type 1 and 3. In the Chiron SWfMS [15], raw data can be extracted from the file 
contents and stored in its relational database, which captures information about workflow modeling and 
execution, besides the domain-specific data. Thus, Chiron supports queries of type 1 and 2, which allows  
accessing the contents of individual raw data files among a large number of files spread in several 
workspaces (i.e., directories where files are stored). However, Chiron does not support data element flow 
management, which is the basis for queries of type 3. 

Supporting all three types of analytical queries is an open, yet important, problem in a large-scale data-
intensive scenario. Solutions for tracking data element and data collection transformations require an engine 
to manage the dataflow at different granularities, with domain-specific file content support.  

1.2. Contributions 

In this paper, we extend the dataflow approach of Chiron to introduce the extraction of domain-specific data 
element along its derivation path. This extraction allows for analyzing multiple-related raw data files 
through dataflows, thus supporting queries of type 1, 2 and 3. The users may choose domain attributes to be 
traced and while the computer simulation is running, attribute values are gathered and their data element 
flow is captured in a DBMS. Users can submit queries for selecting raw data from the registered dataflow 
during and after the execution of computer simulation. The goal is to get the data elements of interest at the 
time they are being generated and relate them to other data elements from the same file, as well as to data 
elements from other related files, produced during the file flow. This avoids parsing the raw data file to find 
the desired data elements. Also, this data element is available for queries as soon as it is generated, which 
empowers workflow steering [16].  

 We incorporate domain data extraction within the process of workflow provenance registry [17]. Thus, 
the same database relates domain data elements with performance data and coarse grain provenance data. 
Such data integration does not need data conversions and allows for powerful queries, as it is shown with the 
astronomy case study based on the Montage workflow [5] and another study based on an Oil and Gas 
workflow. Our experimental results for Montage workflow in providing different types of raw data access 
show the power of analytical queries and the cost for this raw data extraction is approximately 3.7% of the 
total workflow execution time.  

This paper is a major extension of the paper presented at the Workshop on Parallel and Distributed 
Computing for Big Data Applications (WPBA 2014) [18], which introduces the initial idea of the proposed 
approach without an experimental evaluation. In this paper, we extend [18] by presenting a formal definition 
for the dataflow concept; dataflow management techniques separated on two abstraction levels; and several 
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experiments, which evaluate these new ideas including measuring the costs of data extraction using 
workflows from the astronomy domain and oil & gas. 

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 presents our 
formalization concepts of dataflow management. Moreover, this section discusses how provenance can be 
used to access raw data in data-intensive computer simulations. This section also describes raw data 
extraction and analysis from domain-specific files using Chiron SWfMS. Section 4 presents two data-
intensive case studies: a Montage workflow and a synthetic workflow based on Oil and Gas applications. 
Section 5 presents our experimental evaluation. Section 6 concludes. 

2. RELATED WORK 

In this section, we discuss the main approaches for raw data analysis for single file and the SWfMS 
solutions that involve dataflow management at the physical and logical levels. These three approaches 
correspond to supporting queries of types 1, 2 and 3 respectively. However, to the best of authors’ 
knowledge, there is no other work that allows for combining these three types of analytical dataflow queries.  

2.1. Raw data analysis for single file 

Several approaches deal with raw data analysis for single files [6,8,9,19,20]. Typically, they access specific 
data from the files, then parse and index it using specific query languages, engines and APIs, thus relieving 
the users to develop their own code for each type of analysis.  Examples of these approaches are FastBit [6] 
and Attribute-based Unified Data Access Service (AUDAS) [20]. Other approaches such as FastQuery [7] 
and SDS/Q [8] deal with indexing and querying data in parallel. SDS/Q processes queries directly over the 
files, but is restricted to the HDF5 file format [4]. Thus, it eliminates overheads related to data 
transformation and loading into a different data structure. Its main advantage is to exploit increasing 
memory capacities, since it uses bitmap indexing and in-memory query processing. It also exhibits 
performance improvements through parallel query execution, with techniques that parallelize execution 
across nodes or within a node, and the use of FastBit indexes to improve the performance of semi-join 
operations.  

Alagiannis et al. [9] propose NoDB for extracting domain-specific contents from raw data files and 
populating them in a modified version of PostgreSQL, called PostgresRaw. NoDB avoids data 
transformations, since it allows for adaptive query processing and improves query performance using 
statistics and caching strategies. The limitation of NoDB is that raw data is stored in PostgresRaw and the 
raw data file itself. To overcome these limitations, Karpathiotakis et al. [10] propose RAW, a flexible query 
engine that adapts the query plan to the formats of raw data, without the overhead of loading raw data into 
another repository or a DBMS. This approach is similar to SDS/Q, yet not specific to one file format. RAW 
implements Just-in-Time (JIT) access paths and column shreds. JIT access paths are generated at runtime in 
order to map existing scan operators for the raw data. Also, columns shreds create subsets of columns for 
some of the data elements or data collections. 

None of these approaches allow for dataflow analysis. They focus on “isolated” files and do not consider 
the dataflow transformations that led to the “final” file that is being indexed and queried. To support 
dataflow analysis, these approaches need to introduce the physical and logical levels for dataflow 
management.  

2.2. Dataflow management at the physical level 

Dataflow management at the physical level designates approaches that support data transformations on the 
file system, thus ignoring domain-specific file contents. It treats files as black-boxes, i.e., there is no index or 
query support for domain-specific contents from raw data files. Vahi et al. [11] propose two approaches 
based on data stores, where users do not need to modify anything in their programs to store the data products 
in these data stores. The first approach considers object stores to gather all files consumed and produced by 
a workflow. This solution provides a way to manage the files generated at runtime using a specific indexing 
scheme to perform queries during or after scientific workflow execution. The second approach, also in [11], 
performs an evaluation based on a shared file system to gather the files in one or more object stores. Their 
experiments on big data workflows in a cloud environments (Amazon EC2) [21], considering an I/O-
intensive workflow (i.e., Montage workflow) and another CPU-intensive workflow (i.e., Rosetta workflow), 
show better performance for a shared file system in comparison with a non-shared file system.  

The AWARD framework [12] provides a dataflow-based approach, with a tuple-oriented representation 
to manage experiment execution. This framework supports data distribution in different data centers 
(different regions). To control dataflow execution, AWARD gathers tuples (a set of parameter values or data 
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elements, in our approach) at runtime and generates tokens to propagate data between dependent activities. 
However, AWARD does not consider data elements, such as parameter values in AWARD relations. 
Furthermore, it is not easy to integrate AWARD with provenance databases, since the AWARD schema is 
fixed and any modification to insert new metadata would yield major modifications in the AWARD engine. 

2.3. Dataflow management at the logical level 

SWfMS such as Kepler [13], Panda [14] and Chiron [15] focus on dataflow management at the logical level. 
However, these approaches are not aware of element flow within raw data files. This limits the analytical 
power of raw data analysis. Kepler formally defines the chaining of activities in a workflow, representing 
dataflows as a set of data elements and data collections access. However, these dataflows are limited to data 
directly manipulated by the workflow engine, e.g., parameter sweep, and not raw data file contents. Thus, 
Kepler does not support queries of type 1 and has limited support for queries of type 3. Panda proposes an 
elegant and powerful provenance data formalism to trace file flow and data element / collection flow 
generated by a workflow composed of relational algebra operations. However, it does not support raw data 
file access. Similarly, current solutions for provenance, such as Pegasus Lite [11] and Wings [22] do not 
address dataflow queries as we show in this paper. Chiron implements a data-centric workflow algebra. 
Workflows are represented and executed as algebraic expressions composed of operations, which 
encapsulate the simulation programs and operands to represent the dataflow. Its algebraic workflow engine 
gathers domain raw data and combines it to the dataflow information that is stored in relations of its 
provenance database. Chiron supports queries of types 1 and 2. However, data element flows are complex to 
be followed and queries of type 3 are not currently supported.  

In this paper, we extend Chiron, to explicitly provide for data element flows obtained from file contents. 
Our approach is complementary to the powerful indexes and query mechanisms for raw data analysis for 
single files in approaches such as RAW [10]. 

3. DATAFLOW MANAGEMENT IN RAW DATA FILES 

Our approach for managing dataflows involving raw data files is based on the data-centric relational 
algebraic approach previously proposed by our team in [15, 23]. As in any algebra, data is represented as 
operands and transformations are ruled by operations. In the next section, we review definitions for this 
algebra from [23] and show how it may represent the dataflow including element flows. In particular, we 
show how operand relations represent domain-specific data extracted from raw data files. In Section 3.2 we 
show how the algebraic notation for dataflows is represented in a provenance database schema. 

3.1. Algebraic notation for dataflows 

We provide a dataflow definition, which is used in the remaining of this paper. We assume that each data set 
is any set of data elements, which has some predefined attributes in each data element. In a dataflow 
scenario, a data transformation performs some data processing based on some procedures from simulation 
programs, consuming data from one or more data sets (i.e., inputs) and producing one or more data sets 
(i.e., outputs).  

Let T1 and T2 be two data transformations. The composition T1 ∘ T2 is a transformation that first applies 
T1 to input data sets I1 to obtain intermediate data sets I2. It then applies T2 to I2 to obtain output data set I3. 
Composition is associative, so we denote the linear composition of n data transformations as T1 ∘ T2 ∘ … ∘ 
Tn. Therefore, we define such composition of n data transformations as a dataflow DF, which can be 
represented as DF = T1 ∘ T2 ∘ … ∘ Tn. The output data sets In+1 from this dataflow can be represented as In+1 
= (T1 ∘ T2 ∘ … ∘ Tn)(I1), or In+1 = (DF)(I1) for short, where I1 represents the input data set of this dataflow. 
This definition was adapted from the workflow instance concept presented by Ikeda et al. [24].  

Dataflows can be represented using a data-centric workflow algebra [23]. The main advantage is to add 
semantics to the data transformations. For example, the algebra from [23] has a set of operators (Map, 
Reduce, Filter, SplitMap, MRQuery and SRQuery) to rule data transformations (i.e., workflow activities). If 
Ti takes a data element from its Ii and transforms it into one corresponding data element in Ii+1 we may say 
that Ti has the behavior of a Map operator. If Ti generates an Ii+1 that is a subset of Ii, we may say that this Ti 
behaves like a Filter operator. Each Ti of a DF is associated to an operator, where its input data set Ii is 
represented as an operand input relation(s) and produces an output data set Ii+1 that is also represented as a 
relation. Likewise, an output relation can also be the input relation to the operator associated to the next data 
transformation. For each Ti, the user must specify its input data sets Ii, and output data sets Ii+1, which are 
mapped to relations (composed by a set of attributes and their associated values, i.e., parameter values). An 
algebraic data transformation can be represented as the expression:  
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Ii+1 ← Operator ( Ti, Optional operands, Ii  ) 

A dataflow is then represented as a set of algebraic expressions. The relations consumed and produced 
by Ti can be represented as a dependency graph, which is useful to represent the entire dataflow processing. 
In each relation that represents Ii, each tuple corresponds to a data element consumed or produced by Ti.  

Let us consider a simple dataflow with two data transformations, T1 and T2, as illustrated in Figure 2. 
The boxes represent program invocations responsible for data transformations and <<stereotypes>> 
represent algebraic operators that describe the data transformation behavior. T1 is executed n times with the 
following input data set configuration: (1) Param1: a binary input file; (2) Param2: a numerical attribute 
value; and (3) Param3: a numerical threshold to be used by T1. Each of the n executions of T1 consumes one 
DAT file and produces one BIN file (i.e., it corresponds to Param4 value) as output. Both the DAT and BIN 
files may contain important information that users need for analysis. T1 is executed for each data element of 
data set R, since the Map operator rules this data transformation. For each execution, one resulting data 
element is generated in the output data set S. Then, T2 invokes another program execution that consumes S, 
aggregating new data according to the Param3 value. When one execution of data transformation T2 
produces another BIN file, which corresponds to OutputFile value, the user might be interested in tracking a 
specific data element from the contents of each of these OutputFile values. This would be the moment 
where a new operation would be inserted into the dataflow to invoke a program that would open the BIN file 
from attribute OutputFile, extract the necessary information and insert this extracted value in the 
corresponding attribute from relation V (i.e., attribute Result). In this case, the extraction process is 
represented as raw data gathering from file hdu_1n.fits. This extraction enriches the operand relations with 
domain-specific data in order to empower raw data analysis. 

 
Figure 2. Example of the algebraic representation of dataflow with raw data elements.  

3.2. Managing dataflows in provenance databases 

Using relations to represent data consumed and produced by data transformations allows for representing the 
dataflow from computer simulations uniformly in a provenance database. The relational approach allows for 
querying raw data in a structured way, thus easing user’s analysis. Chiron's engine is driven by the algebra 
expressions, which are stored in its provenance database. Thus, Chiron’s provenance database stores 
dataflow specifications following operators of the algebra expressions (prospective provenance) and the 
metadata associated to dataflow execution (retrospective provenance) [17], all in the same database. In other 
words, prospective provenance captures the dataflow specification (such as data transformations and the 
flow of data sets), while retrospective provenance determines the properties about dataflow execution (such 
as the directory to execute a computer simulation or the elapsed time to complete a data transformation) 
[17]. 

Since in this paper, we consider file flow and data element flow management, we extend Chiron's 
provenance database to store metadata related to domain-specific data, represented as the consumed and 
produced files, and their data elements, extracted from raw data files (i.e., files in scientific file format).  

A reference model for representing provenance of a scientific workflow named PROV-Wf has been 
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proposed [25] and employed in Chiron. PROV-Wf is a specialization of the PROV W3C recommendation 
[26], to accommodate provenance data specific to scientific workflows, in particular, large-scale parallel 
executions. Considering the dataflow definition given in Section 3.1, we extended/adapted PROV-Wf to 
support dataflow concepts. This extended/adapted provenance data model, named PROV-Df, is shown in 
Figure 3. PROV-Df is composed of three parts: the structure of the dataflow (white classes in the UML class 
diagram), execution of the dataflow (dark gray classes) and environment configuration (light gray classes). 
Each class in PROV-Df is extended from a PROV component. The stereotypes in the UML class diagram 
are used to represent PROV components. The white classes represent the dataflow specification (entity 
Dataflow), describing the data transformations (entity DataTransformation), data sets (entity 
DataSetSchema), attributes (entity Attribute) and types of manipulated files (entity FileType). In this paper, 
we add a representation for data dependencies between data transformations in PROV-Df, which can be 
represented in this data model by the WasAssociatedWith relationship between entities DataTransformation 
and DataSetSchema.  

The dark gray classes express information about dataflow execution (activity ExecuteDataflow), 
considering properties from the execution of data transformation (activity ExecuteDataTransformation), 
data set instantiation (entity DataSet), data elements from a data set (entity DataElement), establishments of 
attribute value to a data element (entity AttributeValue) and the program invoked by a data transformation 
(software agent Program). Furthermore, the light gray classes provide information about the computing 
environment. In this data model, agent Machine represents the computational resources used to execute a 
dataflow, and agent Scientist corresponds to the users involved in the dataflow specification. We further 
adjust some relationships between WActivity, RelationSchema, ExecuteActivity, Field, Relation and Value in 
PROV-Wf from [25] (i.e., they are equivalent to the relationships between DataTransformation, 
DataSetSchema, Attribute, DataSet, DataElement and AttributeValue in PROV-Df) to allow for dataflow 
management at the physical and logical levels. These modifications aim at representing data consumption 
and production in a dataflow point of view (i.e., data transformations and data dependencies). 

PROV-Df classes are mapped to tables in the provenance database. For each data set consumed and 
produced in the dataflow, we create a physical table in the chosen DBMS with associated attributes and 
values. Each table is responsible for storing domain-specific data at runtime.  

 
Figure 3. PROV-Df data model [25]. 

Considering the characteristics of the PROV-Df model and the new version of Chiron’s provenance 
database, the users may query consumed and produced data while submitting analytical queries of types 1, 
2 and 3. Thus, users can query the provenance repository to gather information about the entire dataflow 
and its execution (such as start time, end time and errors from the execution of a data transformation). 
Provenance databases provide access to selected raw data files among a large number of generated files 
spread in several workspaces (i.e., directories in different machines). The reference to files is registered in 
the provenance database as pointers (URI), which are also related to the dataflow and domain-specific data 
values (that are actually contents from those files). Thus, users can elaborate analytical queries on the 
provenance database, which involve domain-specific data and dataflow information to identify files and 
data elements within these files to perform deeper analysis. 
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To illustrate the potential of provenance data to access and query files and their domain-specific content 
(i.e., raw data), let us consider again the dataflow from Figure 2. A user may want to know which files are 
produced by the execution where the value of Param1 is 0.035 and the Result is 0.2. Depending on the size 
of the computer simulation, manual querying of this data is infeasible since users have to track and analyze 
all the files generated during the execution of the computer simulation and find a way to relate them through 
their contents. The usage of a dataflow-aware provenance database enables such type of query. However, to 
avoid potential bottlenecks when considering parallel execution, we modify the relationship between 
DataTransformation plan and DataSetSchema entity in order to specify data dependency between data 
transformations. It is important to highlight that this modification in this dataflow provenance database 
allows performing queries of type 3 and improves the elapsed time for running queries of type 2. 

Based on the PROV-Df data model, our approach supports both file flow and data element flow 
management using a single provenance database. We implemented an extended version of Chiron, which 
uses a provenance database that follows the PROV-Df with the aforementioned modifications. Using 
Chiron, users can specify the data dependencies among data transformations, invoke programs for each data 
transformation, access raw data from files and analyze these data using the provenance database at runtime.  

3.3. Raw data extraction in dataflows 

To model a dataflow using Chiron, the users must define the data transformations and their data 
dependencies. Then, the users specify a program invocation for performing each data transformation. 
Considering the dataflow execution, it is important to mention that before each program invocation, 
Chiron’s parallel engine instruments program invocation replacing some labels (i.e., each label represent the 
name of an attribute) by attribute values (known as instrumentation process). In the dataflow specification, 
after a data transformation, the users may further add a program invocation (i.e. with their own code) to 
extract domain-specific data from files (known as extraction process). These programs are named 
extractors, which can be defined as an optional post-processing step for each data transformation. Therefore, 
the execution of a data transformation in Chiron yields the execution of these three steps: instrumentation, 
program invocation and extraction.  

Raw data extraction using Chiron requires the invocation of a user program, which has to access and 
gather relevant domain-specific data from files according to the data elements specified in the modeled 
dataflow. The raw data access can be developed from scratch, where users can use built-in language 
programming libraries. However, depending on the file format, such as binary files, data access is not trivial 
and this task is laborious, tedious and error-prone. Thus, it is more appropriate to use specific libraries for 
these file formats, such as ROOT [27], a data analysis framework, and HDF5DotNet [4]. Moreover, users 
must define the attributes to be gathered (i.e., data elements) in a tabular format (similar to the CSV file 
format with delimiter semicolon), known as ERelation file, using some developed tools. In this file, the first 
line has the attribute names and the remaining lines contain the attribute values (i.e., gathered data 
elements). Chiron gathers data from all ERelation files generated by the executions of a data transformation 
(also known as activations) and stores these data in a physical table (i.e., provenance database). Thus, user's 
developed tools are responsible for accessing and gathering raw data from files, while Chiron’s engine 
automatically creates relations for the domain data, relates them to the provenance model and finally inserts 
these data in the provenance database.  The extraction execution time depends on the tool used to gather raw 
data from files as well as the volume of extracted data. The data extraction occurs at the same computing 
node that produced the raw data file and the corresponding upload at the provenance database is done 
through insert operations using several nodes. 

4. DATAFLOW CASE STUDIES  

In this section, we introduce two dataflows case studies used in our experimental evaluation (Section 5) and 
in the examples provided throughout this paper: the Montage dataflow in astronomy and an Oil and Gas 
dataflow. They are modeled using the Chiron SWfMS and executed in a computer cluster. Using Chiron’s 
algebraic approach, we first modeled the Montage dataflow using an astronomy toolkit named as Montage 
[28]. This toolkit is used for assembling astronomical images into custom mosaics, suitable for large scale 
processing of the sky. Montage provides to astronomers a service to build mosaics in Flexible Image 
Transport System (FITS) format [2], according to common astronomy coordinate systems, arbitrary image 
sizes and rotations, and all World Coordinate System (WCS) map projections. Thus, Montage uses different 
astronomical images to assemble them into custom mosaics, respecting some universal formats. 

The Montage dataflow is composed of nine data transformations as shown in Figure 4. The boxes 
represent data transformations and <<stereotypes>> represent algebraic operators that rule the data 
transformations. Sometimes, the input data set of a data transformation is a projection of the attributes from 
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the output data set of preceding data transformation (i.e., a subset of the pre-defined attributes). The first 
data transformation (List FITS) extracts several FITS files from a compressed file (obtained from an external 
astronomy repository - 2MASS [29]). Each input FITS file has 20 types of domain-specific data, which are 
defined as attributes in the data sets in Chiron’s algebra [23]. The second data transformation (Projection) 
computes the projection of these astronomy-positioning references into a specific plane (extraction of 2 
attributes and propagation of 19 previous attributes). Then, Select Projections joins FITS projection files that 
are associated to the same mosaic (extraction of 2 attributes). Create Uncorrected Mosaic creates a mosaic 
without overlap interferences and color corrections and, as a result, it creates a JPG image (extraction of 1 
attribute, the JPG file). The other data transformations from the Montage dataflow are defined to consider 
overlap interferences and color corrections in order to create a corrected custom mosaic. 

 
Figure 4. The Montage dataflow specification with associated algebraic operations and operands. 

In Figure 5, we simplify Montage to show the algebraic relations – or data sets – only for some 
representative data transformations (programs), List FITS and Projection. Data transformation List FITS 
consumes the mosaic identifier (MOSAIC_ID) and file rep1.tar.gz (REPOSITORY) as input data set 
(represented as RListFITS). For each file in this compressed file, the data transformation List FITS creates a 
new data element in the output data set (known as RProjection). Each data element contains the mosaic 
identifier (MOSAIC_ID), a FITS file identifier (CNTR) (in order to trace back) and 2 extracted elements 
(CRVAL1 and CRVAL2) that represent two coordinate values to determine a position in the native image 
coordinate system (e.g., RA, Dec). Note that these extracted attribute values are within files. Then, data 
transformation Projection processes each data element of the data set RProjection and for each one, extracts 
2 new attribute values from raw data files (i.e., HDU_AREA, which records the region covered in output 
pixel space by the input file to generate a mosaic, and HDU_FILE, which records the reprojected FITS file 
after a projection to a specific mosaic configuration). To extract these attribute values, we developed an 
extractor program, named extractDiffs, which is invoked during dataflow execution. There are other 
attributes that are extracted after the execution of data transformation Projection, to allow users to analyze 
the raw data. 

 Due to the huge volume of raw data files produced during Montage dataflow execution, it would be 
impossible to analyze such raw data without the support of the provenance repository. In Section 5.2, we 
present an experimental evaluation of the Montage dataflow execution with and without raw data extraction. 
Furthermore, we show how provenance helps raw data file and dataflow (i.e., file flow and data element 
flow) analyses using this dataflow. We highlight that the Montage dataflow in real execution does not need 
raw data extraction, since the dataflow is normally defined by the chaining of components (i.e., programs) 
from the Montage toolkit. Therefore, the Montage dataflow modeling without raw data extraction can 
present the same data transformations from Figure 4, however it only considers the relationship between the 
consumed and produced files by each astronomy program. In this paper, we present raw data extraction as a 
contribution for managing dataflow execution, which is an optional feature while users are modeling 
dataflows. Consequently, the extracted raw data are stored in our provenance database. 
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Figure 5. An excerpt of the raw data indexing using provenance for the Montage dataflow 

The second case study is a synthetic dataflow whose execution behavior is based on an Oil and Gas 
simulation [23]. This synthetic dataflow was developed using a Scientific Workflow Benchmark (SWB) 
[30] where data transformations are configured to present an equivalent behavior to the real computer 
simulation, as presented in Figure 6. This synthetic dataflow has seven data transformations, which present 
different algebraic operators implemented by Chiron. It also performs raw data extraction for most of the 
data transformations. Although it is not a real execution of the Oil and Gas dataflow, the file production is 
emulated by SWB, thus allowing for data extraction. 

 
Figure 6. The synthetic dataflow specification with associated dataflow in the algebra expressions. 

The dataflow starts its execution in data transformation A, which is ruled by the SplitMap operator. 
Therefore, the input dataset has to define a split factor [30], which can be described by the number of data 
elements produced after the consumption of an input data element for this data transformation. In our 
experiments, we fix the value of the split factor as 240. Then, the dataflow has two data transformations (B 
and C) executed in sequence and ruled by a Map operator. Since data transformation C is executed 
completely, two other data transformations (D and E) are invoked in parallel. The Filter operator rules these 
data transformations, which require two filter factors. We consider a filter selectivity of 60% and 80%, 
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respectively. Once data transformations D and E have finished their execution, the data transformation F 
(ruled by MRQuery operator) joins the data elements produced by the previous data transformations. This 
data transformation specifies 𝑆𝑄𝐿!!"#$ by the respective query specification: select R4.ID, R4.REDUCE, 
R4.REDUCEVALUE from R4, R5 where R4.ID = R5.ID. Finally, data transformation G is ruled by the 
Reduce operator with REDUCEVALUE as an aggregation attribute.  

5. EXPERIMENTAL EVALUATION 

In this section, we evaluate our approach for analyzing raw data through dataflow. Our experiments are 
based on the two dataflows (i.e., Montage and Oil and Gas Extraction) introduced in Section 4. In these 
experiments, we measure the performance with and without raw data analysis support. 

5.1. Environment Setup 

We use a SGI Altix ICE 8400 cluster of the High Performance Computing Center - NACAD/UFRJ [31]. 
This cluster has 1.28 TBytes of distributed RAM memory and 72 TBytes of shared disk under a Suse Linux 
Enterprise Server operating system. The network is configured using QDR and DDR Infiniband switches. 
This computing environment also consists of two separated job queues. In our experiment executions, we 
consider the job queue with 64 CPUs Quad Core Intel Xeon X5355 (Clovertown), 2.66 GHz (256 Cores). 

5.2. Experimental Results 

We performed three experimental evaluations with the following goals: 

• Extraction cost (named as COST): Measurement of the cost for instrumenting and extracting raw 
data using the Montage dataflow. The extraction cost considers the elapsed time to process a raw data 
file, extract the specific information and store this data in the provenance database; 

• Workload analysis for raw data extraction (named as WORKLOAD): Evaluation of the raw data 
extraction cost using the Oil and Gas dataflow with different workloads. In this situation, we consider 
two analyses that evaluate different execution times for data transformation following a Gamma 
distribution [30], and dataflow execution varying the size of raw data files; 

• Query Processing (named as QUERY): Analyses of the raw data query processing support. We 
present examples to analyze domain-specific file contents; multiple files related by simulation 
programs and specific related elements from multiple raw data files. 

We now present each evaluation in more detail. 

 COST. We modeled and executed the Montage dataflow with 1,585 FIT files downloaded from the Two 
Micron All Sky Survey [29]. The execution lasted approximately for 2 hours and 30 minutes using 96 cores 
on the Uranus cluster. This dataflow represents a data-intensive execution since it manages almost 166,000 
files and 500 gigabytes of data. In this evaluation, two versions of the Montage dataflow were developed 
and executed as presented in Figure 7. The first version is modeled without extractors, i.e., Chiron only 
manages the file flow. The second version considers the raw data extraction for each data transformation, 
since we aim at computing the cost of the extraction process using Chiron, i.e., the cost to manage the data 
element flow. For each version of the Montage dataflow, we consider the average elapsed time of three 
dataflow executions. The Montage dataflow without extractors ran for 137.85 minutes, while the same 
dataflow with extractors ran for 143.15 minutes. When executing the Montage dataflow, extracting and 
indexing the content of files through the provenance database it yields an increase of 3.84% in total elapsed 
time. 

Considering these results, we note that the raw data extraction represents 3.7% (5.3 minutes) of the total 
elapsed time for the Montage dataflow execution with extractors. This is the time necessary to invoke all 
extractors (third party programs), gather raw data from files and load it into the provenance database. If we 
use a complementary solution (such as FastBit) coupled to Chiron, extraction cost may be close to that for 
parsing and building a representation of the raw data. Furthermore, the extraction cost pays off with some 
advantages, since the user is able to analyze domain-specific data in this domain-data provenance database 
and correlate this data with information about dataflow execution and the dataflow transformations at 
runtime. The query processing advantages are discussed in more detail in the QUERY evaluation.   

One of the main difficulties in scientific dataflow executions is fine-tuning the configuration of the 
dataflow, such as parameters and programs invoked for data transformations. For example, in Montage 
astronomers often need to adjust input data elements and parameter values from the Montage computer 
simulations in order to improve the result quality (i.e., custom mosaic image). This adjustment in the input 
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data elements increases the complexity of the simulation programs to be performed and thus the dataflow 
elapsed time, since the chosen programs may require more computations to guarantee a better precision. 
Thus, depending on the configuration of the dataflow, the percentage of the elapsed time associated to the 
raw data extraction in comparison with the dataflow total elapsed time may decrease, since raw data 
extraction elapsed time may decrease as less extraction data is needed to fine tune the dataflow. We further 
evaluate the extraction cost of our solution, when we increase the size of raw data files using the synthetic 
Oil & Gas dataflow on the WORKLOAD evaluation. 

     
Figure 7. Montage dataflow executions without and with extractors. 

 WORKLOAD. In this experiment, we use the Oil and Gas Extraction dataflow to evaluate the 
extraction cost, while varying the complexity to execute a data transformation and the size of raw data files. 
As discussed in Section 4, we fix the values of the split and filter factors. In the first analysis of this 
experiment, we only modify the Data Transformation Cost Factor (DTCF), which represents the average 
elapsed time for each data transformation execution. According to the defined DTCF, the execution time 
follows a Gamma distribution Γ(κ, θ), where κ = 2DTCF and θ = 1, for DTCF ≥ 0.  

We consider the following values for DTCF: 5, 7 and 8. Table 1 gives the experimental results for the 
execution of each DTCF configuration using 96 cores. As dataflow elapsed time, we consider the average 
elapsed time and standard deviation of three dataflow executions. We also ensure a confidence level higher 
than 95% for dataflow elapsed time. In these executions, this dataflow was submitted in the same conditions, 
while extraction yield a similar elapsed time for all dataflow executions with a specific configuration. In 
addition, extraction elapsed time considers the computational processing time for executing extractor 
programs and loading raw data into the provenance database. In Table 1, we observed that the highest 
extraction elapsed time occurs when we are using DTCF = 5, since its elapsed time is the lowest of all 
DTCF configurations. Moreover, as we increase the DTCF value (i.e., we increase the single data 
transformation elapsed time), we also increase the total dataflow elapsed time. This way, if we also consider 
the same raw data extraction in relation to computational processing efforts, its elapsed time becomes 
negligible as the dataflow elapsed time increases, but the output data is the same (i.e., we consider the same 
raw data extracted from files). For every configuration associated to a compute-intensive dataflow (i.e., with 
high execution time for data transformations), it is possible to note that the extraction elapsed time is less 
than 0.50%. 

 The second analysis also considers the Oil and Gas Extraction dataflow. However, we define a fixed 
DTCF value for every execution (i.e., DTCF = 6) and vary the size of raw data files, in order to evaluate 
extraction cost in the presence of larger raw data files. Thereby, we only modify the File Size Factor (FSF) 
in each dataflow execution, which represents the size of generated raw data files during dataflow execution. 
According to the defined FSF, the size of raw data files (∂) changes as follows: ∂ = 2FSF, for FSF ≥ 0. We 
consider the following values for FSF: 7, 8, 9 and 10 using 64 cores on Uranus cluster. Figure 8 presents the 
execution elapsed time in percentage for the dataflow execution (i.e., dark gray bars) and the extraction cost 
that is composed by two aspects: the elapsed time to invoke the extraction programs (i.e., black bars), and 
the data loading on the provenance database (i.e., light gray bars).  

Table 1. Oil and Gas Extraction dataflow executions varying data transformation cost. 
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DTCF 
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Extraction 
Elapsed  

Time  
(in minutes) 

Extraction 
Elapsed 

Time (%) 

5	 32 40.89 2.39 0.010 2.42 
7 128 122.79 8.53 0.006 0.41 
8 256 242.31 9.36 0.007 0.22 

 

In Figure 8, we observe that the data-loading cost is negligible (in percentage) in comparison with the 
dataflow elapsed time and the invocation of the extractor program. The cost for executing the extractor 
program depends on the raw data file properties as well as the program chosen for extractions. As expected, 
the time of the extraction program increases as the size of raw data files also increases, since the external 
program has to manage more raw data. Therefore, the performance of the programs developed by users for 
extracting raw data can be directly associated to the extraction elapsed time, since it represents most of the 
time needed to access files and to gather raw data. We further highlight that these programs, as well as the 
amount of data to be extracted and registered along the dataflow, are chosen by the user. Depending on this 
cost, the user may choose to limit the dataflow queries and decide to analyze the raw data file contents 
isolated, outside Chiron. In this case, the user will still need to wait for this extractor program to execute to 
query the desired data element. Therefore, the time saved from not doing it with Chiron would be just the 
time of the data loading on the provenance database, which is negligible.  

 
Figure 8. Oil and Gas Extraction dataflow executions varying size of raw data files. 

 QUERY. Both dataflow case studies gather domain-specific data from raw data files. We now focus on 
the version of the Montage dataflow with extractors to analyze the potential of dataflow queries to debug, 
fine tune the dataflow execution and perform some domain-specific analyses. All queries were performed on 
relations that contain raw data extracted from files. We executed three SQL queries to represent each query 
type from Section 1, as shown in Figure 5.  

 The first query (Figure 9) allows for selecting domain-specific file content (type 1). In this case, we 
select the CRVAL2 that corresponds to a CRVAL1 attribute greater than 210. Its result is shown in Figure 10. 
These raw data values are extracted from a FITS file that was generated by a projection simulation program, 
and loaded into the RProjection table of the provenance database. This query will operate on RProjection, 
which represents a reduced view of the original raw data file. Alternatively, the result of this type 1 query 
can also be obtained without Chiron, by using a solution such as FastQuery [7], NoDB [9] and RAW [10]. 
However, our approach has several advantages. First, we allow for queries on selected FITS file attributes, 
through RProjection, while the simulation program is generating it. This feature may show to the user that 
the projection might not be going on the right direction or is producing anomalies, or even that needs to fine 
tune the configuration and the execution should be interrupted, the sooner the better. Another advantage is to 
avoid having to parse the FITS file after its generation to obtain the access path. In our approach, the 
selected attributes are gathered to the database while they were being written in the FITS file. Like the other 
approaches, we do not load the whole FITS file into our provenance database, just some selected attributes 
and pointers to files. These domain data stored in the provenance database may be seen as an index to the 
raw data file. Existing solutions do not support queries that consider file flow and data element flow. 

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

128# 256# 512# 1024#
Extrac0on#Program#Execu0on# 0.11# 0.66# 13.77# 39.35#
Data#Loading#on#Provenance#Database# 0.34# 0.61# 0.89# 1.05#
Workflow#Elapsed#Time# 99.89# 99.34# 86.23# 60.65#

Ex
ec
u&

on
)T
im

e)
(%

))

Size)of)raw)data)files)

Workflow#Elapsed#Time# Data#Loading#on#Provenance#Database# Extrac0on#Program#Execu0on#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

128# 256# 512# 1024#
Extrac0on#Program#Execu0on# 0.11# 0.66# 13.77# 39.35#
Data#Loading#on#Provenance#Database# 0.34# 0.61# 0.89# 1.05#
Workflow#Elapsed#Time# 99.89# 99.34# 86.23# 60.65#

Ex
ec
u&

on
)T
im

e)
(%

))

Size)of)raw)data)files)

Workflow#Elapsed#Time# Data#Loading#on#Provenance#Database# Extrac0on#Program#Execu0on#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

128# 256# 512# 1024#
Extrac0on#Program#Execu0on# 0.11# 0.66# 13.77# 39.35#
Data#Loading#on#Provenance#Database# 0.34# 0.61# 0.89# 1.05#
Workflow#Elapsed#Time# 99.89# 99.34# 86.23# 60.65#

Ex
ec
u&

on
)T
im

e)
(%

))

Size)of)raw)data)files)

Workflow#Elapsed#Time# Data#Loading#on#Provenance#Database# Extrac0on#Program#Execu0on#

%"

%"

%"

%"

%"

%"

%"

%"

%"

%"

%"

%"



 
 
 
 

 14 

 
Figure 9. Query for analyzing domain-specific file content. 

 
Figure 10. Results for the first query. 

 The second query selects the produced files according to specific criteria (Figure 11). It selects the 
produced HDU files that have CRVAL1 > 210.00 and CRVAL2 < 60.00, considering simulation programs 
that present at least one projection result. Users may execute this query at runtime and check, as soon as 
possible, if these conditions occur for any data element in dataflow. It is important to note that this query 
requires a file flow that relates different raw data files, since FITS files need to be tracked in each step of the 
projection simulation. Furthermore, this query also supports the analysis of two extracted attributes 
(CRVAL1 and CRVAL2) from raw data files, since we gather results according to these attributes. Therefore, 
this query reinforces the potential of our approach to track the manipulated files along the dataflow with a 
domain-specific criteria. 

 
Figure 11. Query for tracing files based on domain-specific criteria. 

 As a third query, we specify and run a type 3 query to identify all linear transformations (i.e., attributes 
FA and FB in relation RFitPlane) involved in projection simulation programs from Montage dataflow, 
considering specific mosaic input repositories (i.e., attribute REPOSITORY in relation RListFITS). Based on 
this definition, this query analyzes the contents of linear transformations in custom mosaic generation, 
considering the data element flow between different data transformations (i.e., List FITS, Projection, 
Calculate Overlaps, Extract Differences, Calculate Difference and Fit Plane). The tables involved in this 
dataflow query are presented in Figure 12. Therefore, this query traces back all the files along its derivation 
flow (i.e., file flow management), while it also needs to consider the data element flow from different 
attributes among data transformations. For example, data element flow between data transformations List 
FITS and Projection is defined by attribute MOSAIC_ID, which is split in some tuples in relation 
RProjection for each FITS file in a mosaic repository (i.e., Split Map operator). Meanwhile, data element 
flows is managed by attributes MOSAIC_ID and CNTR among data transformations Projection and 
Calculate Overlaps. Data element flow management is also ensured by attribute MOSAIC_ID to merge all 
projected FITS files (i.e., attribute TNAME) and their linear transformations, and generate the custom mosaic 
in JPG file format (i.e., attribute MOSAIC_JPG). Moreover, the third query may help users debugging 
dataflows at runtime, since it is possible to check on attributes from different data transformations (e.g., 
attributes FA, FB, CRVAL1 and CRVAL2) before or during the custom mosaic generation in JPG file format 
(i.e., attribute MOSAIC_JPG).  

SELECT CRVAL1, CRVAL2 
FROM RProjection 
WHERE CRVAL1 > 210.00; 

SELECT p.CRVAL1, p.CRVAL2, sp.HDU_AREA, sp.HDU_FILE  
FROM RProjection p, RSelectProjections sp 
WHERE sp.MOSAIC_ID = p.MOSAIC_ID 
AND sp.ewkfid = p.ewkfid 
AND sp.CNTR = p.CNTR 
AND p.CRVAL1 > 210.00 
AND p.CRVAL2 < 60.00 
AND p.ewkfid = 1; 
 



 
 
 

 
 
15 

 
Figure 12. Data element flow for querying linear transformations in Montage dataflow. 

6. CONCLUSION 

Analyzing results in data-intensive computer simulations can be very hard. Users commonly have to 
analyze the domain-specific content from several thousands of files in order to confirm or refute a scientific 
hypothesis. At the same time, users also need to trace back the obtained results by relating the content of 
different files produced in the dataflow. This paper proposes an approach for raw data extraction in files 
consumed and produced in computer simulations. The proposed approach directly accesses domain-specific 
data stored in the produced data files represented in heterogeneous formats without having to first load all 
data into a DBMS. Just selected raw data is extracted and loaded into a provenance database to be further 
queried. The main advantage of the proposed approach is that element data is gathered at the same time it is 
being generated, instead of parsing the raw data file to allow for querying a posteriori. In addition to the 
domain-specific data gathering process, the workflow engine also registers the flow of transformations of 
the files and selected elements. Thus, our approach ensures file flow and data element flow management 
with support for complex domain data queries involving file and data element flow. 

To evaluate the proposed approach, we used two dataflows as case studies: a Montage dataflow from 
astronomy and a synthetic dataflow based on Oil and Gas applications. One advantage of the proposed 
approach is that it benefits from the parallelism available in an HPC environment since several extractions 
can be performed concurrently. It speeds up the file processing by using more computing nodes when 
needed and the local cache. When executing the Montage dataflow, extracting and indexing the content of 
files through the provenance database yields an increase of 3.84% in total elapsed time. However, this cost 
for raw data extraction is paid off by the new capability of performing both file flow and data element flow 
analyses by querying data transformations. The Oil and Gas dataflow revealed a small cost for extraction 
process when it is data-intensive (i.e., workloads with higher size of raw data files). In our experimental 
results for both dataflows, we noted a maximum cost for the extraction process of 3.7%. Overall, this 
experimental evaluation shows that important capabilities for raw data analysis can be provided at marginal 
cost through provenance management. 
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