E. Pennisi, Will Computers Crash Genomics?, Science, pp.666-668, 2011.

E. W. Greisen and M. R. Calabretta, Representations of world coordinates in FITS, Astronomy and Astrophysics, vol.395, issue.3, pp.1061-1075, 2002.

U. Center, , 2014.

H. The and . Group, , 2014.

J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity et al., Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking, International Journal of Computational Science and Engineering (IJCSE), pp.73-87, 2009.

K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs et al., FastBit: interactively searching massive data, Journal of Physics: Conference Series, issue.180, p.12053, 2009.

J. Chou, R. D. Ryne, M. Howison, B. Austin, K. Wu et al., Parallel index and query for large scale data analysis, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p.1, 2011.

S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, Parallel data analysis directly on scientific file formats, 2014 ACM SIGMOD International Conference on Management of Data, pp.385-396, 2014.
DOI : 10.1145/2588555.2612185

I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki, NoDB: efficient query execution on raw data files, p.241, 2012.

M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, Adaptive Query Processing on RAW Data, VLDB Endowment, vol.12, pp.1119-1130, 2014.
DOI : 10.14778/2732977.2732986

URL : https://infoscience.epfl.ch/record/200346/files/raw.pdf

K. Vahi, M. Rynge, G. Juve, R. Mayani, and E. Deelman, Rethinking Data Management for Big Data Scientific Workflows, Workshop on Big Data and Science: Infrastructure and Services, pp.27-35, 2013.
DOI : 10.1109/bigdata.2013.6691724

L. Assuncao and J. C. Cunha, Enabling Global Experiments with Interactive Reconfiguration and Steering by Multiple Users, 14th International Conference on Computational Science, vol.29, pp.2137-2144, 2014.
DOI : 10.1016/j.procs.2014.05.198

URL : https://doi.org/10.1016/j.procs.2014.05.198

S. Bowers, T. Mcphillips, S. Riddle, M. K. Anand, and B. Ludäscher, Kepler/pPOD: Scientific Workflow and Provenance Support for Assembling the Tree of Life, 2nd International Provenance and Annotation Workshop, pp.70-77, 2008.

R. Ikeda, J. Cho, C. Fang, S. Salihoglu, S. Torikai et al., Provenance-Based Debugging and Drill-Down in Data-Oriented Workflows, IEEE 28th International Conference on Data Engineering, pp.1249-1252, 2012.
DOI : 10.1109/icde.2012.118

URL : http://ilpubs.stanford.edu:8090/1008/1/ICDE12_pandademo.pdf

E. Ogasawara, J. Dias, V. Silva, F. Chirigati, D. Oliveira et al., Chiron: A Parallel Engine for Algebraic Scientific Workflows, CCPE, v. 25, n. 16, pp.2327-2341, 2013.
DOI : 10.1002/cpe.3032

M. Mattoso, J. Dias, K. A. Ocaña, E. Ogasawara, F. Costa et al., Dynamic steering of HPC scientific workflows: A survey, 2014.

J. Freire, D. Koop, E. Santos, and C. T. Silva, Provenance for Computational Tasks: A Survey, Computing in Science and Engineering, issue.10, pp.11-21, 2008.
DOI : 10.1109/mcse.2008.79

V. Silva, D. Oliveira, and M. Mattoso, Exploratory analysis of raw data files through dataflows, Workshop on Parallel and Distributed Computing for Big Data Applications, pp.114-119, 2014.
DOI : 10.1109/sbac-padw.2014.32

J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky et al., IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp.65-72, 2011.

B. Ma, A. Shoshani, A. Sim, K. Wu, Y. Byun et al., Efficient Attribute-Based Data Access in Astronomy Analysis, SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC), pp.562-571, 2012.
DOI : 10.1109/sc.companion.2012.80

E. Amazon, , 2010.

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-calero, P. Groth et al., Wings: Intelligent Workflow-Based Design of Computational Experiments, IEEE Intelligent Systems, issue.1, pp.62-72, 2011.

E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez et al., An Algebraic Approach for DataCentric Scientific Workflows, 37th International Conference on Very Large Data Bases (PVLDB), pp.1328-1339, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640431

R. Ikeda, A. D. Sarma, and J. Widom, Logical provenance in data-oriented workflows?, In: 2013 IEEE International Conference on Data Engineering, pp.877-888, 2013.

F. Costa, V. Silva, D. Oliveira, K. Ocaña, E. Ogasawara et al., Capturing and Querying Workflow Runtime Provenance with PROV: A Practical Approach, Joint EDBT/ICDT 2013-Workshops on EDBT'13, pp.282-289, 2013.

P. Missier, K. Belhajjame, and J. Cheney, The W3C PROV family of specifications for modelling provenance metadata, 16th International Conference on Extending Database Technology, pp.773-776, 2013.

R. Brun and F. Rademakers, ROOT-An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.81-86, 1997.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, The cost of doing science on the cloud: the Montage example, SC '08: 2008 ACM/IEEE Conference on Supercomputing, pp.1-12, 2008.

N. Ipac, Two Micron All Sky Survey (2MASS), 2014.

F. Chirigati, V. Silva, E. Ogasawara, D. Oliveira, J. Dias et al., Evaluating Parameter Sweep Workflows in High Performance Computing, 1st International Workshop on Scalable Workflow Enactment Engines and Technologies, p.10, 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00749968

, NACAD: High Performance Computing Center, p.30, 2015.