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1. INTRODUCTION
In the context of the cloud, we are witnessing a prolifer-

ation of data management solutions, including NoSQL data
stores (e.g. Hbase, MongoDB, Neo4J), file systems (e.g.
HDFS) and parallel processing frameworks (e.g. MapRe-
duce, Spark). This makes it very hard for a user to ac-
cess and analyze efficiently her data sitting in different data
stores, e.g. RDBMS, NoSQL and HDFS. Processing queries
against heterogeneous data sources has long been studied
in the context of multidatabase systems and data integra-
tion systems [9]. However, these solutions no longer ap-
ply in the cloud, primarily because of the wide variety of
models and languages of cloud data stores (key-value, doc-
ument, table, graph, etc.). To address this problem, mul-
tistore systems,[4, 5, 6, 8, 10] have been recently proposed
to provide integrated access to multiple, heterogeneous data
stores through a single query engine. However, most mul-
tistore systems trade data store autonomy for performance
and work only for certain categories of data stores, typically
with RDBMS.

In the CoherentPaaS project [2], we are developing the
Cloud Multidatastore Query Language (CloudMdsQL) [7].
CloudMdsQL is a functional SQL-like language, capable of
querying multiple heterogeneous data stores within a sin-
gle query that may contain embedded invocations to each
data store’s native query interface. The query engine has
a fully distributed architecture, which allows query engine
nodes to be collocated with data store nodes in a computer
cluster. Compared to current multistore systems, Cloud-
MdsQL is more general as it can be used to access any kind
of data store, while respecting their autonomy. The major
innovation of CloudMdsQL is that a query can exploit the
full power of the local data stores, by simply allowing some
local data store native queries (e.g. a breadth-first search
query against a graph database) to be called as functions,
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integrated in SQL-like statements.

2. PROBLEM DEFINITION
In this thesis, we address the problem of efficient query

processing of multiple data stores with CloudMdsQL. What
makes this problem difficult is the capability of CloudMd-
sQL to allow function calls to the data stores to be expressed
in the native source languages. The problem is the optimiza-
tion and efficient execution of nested queries, where a query
on a data source may use inputs or parameters produced by
a function call to another data source. In particular, the
materialization of intermediate results to be exchanged be-
tween different data sources needs to be carefully studied as
it may require specific data transfer and storage techniques.

The query optimization problem can be expressed as fol-
lows : Let Q(S1, S2, Sn) be a nested query of the form
Q1(S1)− > Q2(S2)− > ...Qn(Sn) , over n data stores, each
with a different data model and query language, and in some
cases (e.g. a document store, a graph data store) a different
API, propose an approach to translate Q into an optimized
query execution plan (QEP), with efficient management of
intermediate results.

The fully distributed architecture of the query engine pro-
vides important opportunities for optimization, in particu-
lar, minimizing data shipping between nodes, select push-
down, bind join, and join ordering. However, compared to
traditional distributed query processing, we must address
several issues to fully exploit this architecture. First, the
lack of cost models in some NoSQL data stores and the lim-
ited capability to build database statistics do not allow for
defining a precise cost model for query optimization. Sec-
ond, native functions (expressed in the native data store
languages) can be long running and need specific attention.
Third, CloudMdsQL supports specific operators, such as
Map, Filter and Reduce, to be able to use parallel process-
ing frameworks. The use of these operators in conjunction
with SQL-like statements requires new rewrite rules for op-
timization.

3. RELATED WORK
We can divide multistore systems between loosely-coupled,

tightly-coupled and hybrid. Loosely-coupled multistore sys-
tems provide support for autonomous data stores, much like
multidatabase systems, e.g. DISCO [11]. For instance, Big-
Integrator [13] integrates data from NoSQL big data, such
as Google’s Bigtable, and relational databases. The sys-
tem relies on mapping a limited set of relational operators
to native queries expressed in GQL (Google Bigtable query



language). Since GQL represents a subset of SQL, this is
easy but only works for Bigtable-like systems.

Tightly-coupled multistore systems trade autonomy for
performance. For instance, Odyssey [6] enables storing and
querying data within HDFS and RDBMS, using opportunis-
tic materialized views. JEN [12] allows joining data from two
data stores, HDFS and RDBMS, with specific parallel join
algorithms, in particular, an efficient zigzag join algorithm,
and techniques to minimize data movement. As the data
size grows, executing the join on the HDFS side appears to
be more efficient.

Hybrid systems are similar to tightly-coupled systems,
e.g. integrating HDFS and RDBMS in a shared-nothing
cluster, except that the HDFS data is accessed through a
data processing framework like MapReduce. For instance,
HadoopDB [3] provides Hadoop MapReduce/HDFS access
to multiple single-node RDBMS servers (e.g. PostgreSQL or
MySQL) deployed across a cluster, as in a shared-nothing
parallel DBMS. It interfaces MapReduce with RDBMS by
database connectors that execute SQL queries to return key-
value pairs.

Our work fits in the hybrid system category. However, it
is not limited to MapReduce to access HDFS data, as we
can support other frameworks like Spark. Furthermore, it
does not give up data store’s autonomy, yet allowing for op-
timization through the use of native subqueries and operator
ordering.

4. APPROACH
To address the problem defined in Section 2, we exploit

the declarativity of CloudMdsQL and the distributed archi-
tecture of the query engine [1]. In particular, the fact that
the query engine nodes can directly communicate with each
other, by exchanging code (QEPs) and data, allows impor-
tant optimizations (e.g. minimizing data transfers by mov-
ing the smallest intermediate data for subsequent processing
by one particular node).

As for declarative query languages (e.g. SQL), a QEP
can be abstracted as a tree or DAG of operators and com-
munication (send/receive) operators to exchange data and
commands between query engine nodes. This allows us to
reuse and extend the techniques from distributed query pro-
cessing, which we adapt to our fully distributed architecture.
In particular, we strive to:

• Minimize local execution time in the data stores, by
pushing down select operations in the data store sub-
queries and exploiting bind join by query rewriting;

• Minimize global execution time by operator ordering;

• Minimize communication cost and network traffic by
reducing data transfers between nodes.

To compare alternative rewritings of a query, we start with
a simple catalog, which is replicated at all nodes in primary
copy mode. The catalog provides basic information about
data store collections such as cardinalities, attribute selectiv-
ities and indexes, and a simple cost model. Such information
can be given with the help of the data store administrators.
The query language provides the possibility for the user to
define cost and selectivity functions whenever they cannot
be derived from the catalog, mostly in the case of using na-
tive subqueries.

The search space explored for optimization is the set of
all possible rewritings of the initial query, by pushing down
select operations, expressing bind joins and ordering opera-
tors. For subqueries represented by sequences of map/filter/
reduce (MFR) operations, we apply MFR rewrite rules to
determine the optimal place for inclusion of pushed down
operations within the MFR operator chain.

Unlike in traditional query optimization where many dif-
ferent permutations are possible, this search space is not
very large, so we can use a simple exhaustive search strat-
egy.
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