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Abstract
Designing or renovating inheritance hierarchies in the do-
main of programming or in the domain of modeling still
remains a tricky task. It involves integrating domain con-
cepts sometimes with no clear frontier, finding the good ab-
stractions and avoiding duplicated information. In this paper,
we review research work that addressed this topic with the
use of Formal Concept Analysis (concept lattices) since the
seminal paper of R. Godin and H. Mili at OOPSLA’93. We
overview the different attempts, the explored limits, and the
current issues.
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1. Introduction
Since the beginnings of the object-oriented approaches, the
design of inheritance hierarchies (more commonly called
specialization/generalization hierarchies in the modeling do-
main) has been a major concern. Many controversies and is-
sues lay on single versus multiple inheritance (Cargill 1991;
Waldo 1991) or between natural modeling versus sub-typing
(Castagna 1997; Ducournau 2002). Each approach has its
own vision of what a correct inheritance hierarchy should
be: main approaches for supporting automated design (and
analysis) have considered eliminating duplications, improv-
ing abstraction by introducing more general artifacts, in par-
ticular super-types or super-classes, and establishing well-
founded inheritance links. In the following sections, we will

outline the landscape of these works since the 1990s. The ob-
jective is not to provide an exhaustive survey, but rather out-
lining the main landscape components. We will show how
lattices, and more particularly Galois/concept lattices played
a central role. Two main periods can be observed. In the
first period (Section 2), inheritance hierarchies from object-
oriented source code and object-oriented database schemas
were the focus of attention. Several ad-hoc algorithms have
been developed during this period, in parallel with propos-
als explicitly based on lattices. In the second period (Section
3), the need to take into account elaborate overloading and
to generalize to modeling languages (like UML), have re-
sulted in extending the initial single-lattice-based framework
to take into account several categories of entities that can be
the subject of specialization. This results in a multiple-lattice
framework, which is the most advanced theoretical approach
as far as we know. We conclude and give some perspectives
in Section 4.

2. The single-lattice period: languages,
databases, specifications

In the first period, several directions have been studied for
eliminating duplication and fostering the appearance of new
abstractions. Roughly speaking, the main objective is to
eliminate (or to avoid introducing) multiple declarations of a
property (attribute or operation). An effective manner of re-
moving such a multiple declaration involves, in simple cases,
introducing a copy of this property in a super-class and re-
moving the other copies. In more complex cases, part of the
description of the property (like an abstract signature) is put
in a super-class, and specializations (like concrete methods)
remain in the sub-classes. This may require the addition of a
new super-class, often addressing a lack of abstraction.

Some existing work deals with local addition of a class
(Casais 1992; Godin et al. 1995; Dicky et al. 1995, 1996).
While this addition is done, some local pre-existing multi-
ple declarations may be detected and removed and above all,
none is introduced. The second strategy flattens an existing



hierarchy to rebuild it entirely. Authors have considered then
which characteristics the classes own (Casais 1991; Cook
1992; Godin and Mili 1993) or have limited the analysis
to characteristics the classes use (Snelting and Tip 1998,
2000). Some work focused on extracting interfaces (Cook
1992; Godin and Mili 1993), while others focused on re-
structuring a set of classes (Moore 1996; Casais 1992) or a
database schema (Missikoff and Scholl 1989; Rundensteiner
1992; Yahia et al. 1996, 1997; Lammari et al. 1998; Cherfi
and Lammari 2002). These different points of view explain
on which description the methods rely: attribute names only
(Astudillo 1997; Yahia et al. 1996, 1997), method signatures
only (Cook 1992), attribute names, attribute types, as well
as method signatures (Chen and Lee 1996; Moore 1995,
1996; Huchard and Leblanc 2000), constraints (Lammari
et al. 1998; Cherfi and Lammari 2002), attribute or parame-
ter types (Missikoff and Scholl 1989; Rundensteiner 1992).
Information on the method body is used by Moore (1996);
Casais (1992) to find common expressions, while descrip-
tions of method specialization are used by Godin and Mili
(1993); Godin et al. (1995, 1998); Dicky et al. (1995, 1996);
Casais (1992)

What is really remarkable about almost all approaches,
is the similarity in the intended structure. As all the ap-
proaches attempt to eliminate duplication, they are guided by
the need to factorize characteristics (1), to establish links that
correspond to inclusion or refinement of characteristics (2),
and to ensure a fairly compact structure (3). For example, a
structure where each characteristic is introduced in a specific
class would not be compact, because many classes would be
necessary. Theory tells us that there is a unique structure that
satisfies the three needs. This structure, firstly introduced in
the object-oriented domain by Godin and Mili (1993), is the
AOC-poset, a particular sub-order of the concept lattice that
classifies the classes depending on their characteristics. For-
mal Concept Analysis (FCA) gives the basics for these con-
ceptual structures (Ganter and Wille 1999). It considers data
composed of formal objects (here classes) described by for-
mal attributes (here characteristics like class attributes, class
methods, etc.). The input data is a formal context indicat-
ing which formal object (class) owns which formal attribute
(characteristic). The concept lattice organizes by inclusion
the concepts that correspond to all maximal class groups
that share a maximal characteristic set. In the concept lat-
tice (also called Galois lattice), a characteristic (resp. a class)
is introduced by a unique concept and inherited top-down
(resp. bottom-up). The AOC-poset is the concept lattice re-
stricted to the concepts introducing at least one character-
istic or at least one class. It drastically reduces the com-
plexity, because for ncl classes and nch characteristics, the
concept lattice may have 2min(ncl,nch) concepts, while the
AOC-poset has less than ncl+nch concepts. The AOC-poset
is also known under the names of pruned lattice, or Galois
sub-hierarchy. In our context, concepts of these conceptual

structures are interpreted as classes. Concepts that introduce
only characteristics are new super-classes. The specializa-
tion links in the concept lattice are interpreted as inheri-
tance. The mathematical construction ensures that all the
inheritance links are present and consistent. As several de-
scriptions need comparing characteristics and representing
specialization between characteristics, this is embedded in
formal contexts with taxonomic characteristics. Taxonomic
characteristics are sets of characteristics provided with a spe-
cialization order. When a class owns a characteristic of one
taxonomy, it owns automatically its more general character-
istics.

Most of the existing approaches can be compared using
this theoretical framework. Some of them build the entire lat-
tice (Missikoff and Scholl 1989; Rundensteiner 1992; Yahia
et al. 1996; Snelting and Tip 2000). The majority builds the
AOC-poset (Godin and Mili 1993; Godin et al. 1995, 1998;
Dicky et al. 1995, 1996; Huchard et al. 2000) or an ap-
proximate structure (Cook 1992; Moore and Clement 1996;
Chen and Lee 1996; Yahia et al. 1996; Cherfi and Lammari
2002). In some references, including Cook (1992); Moore
and Clement (1996); Chen and Lee (1996), the underlying
conceptual structure is not identified by the authors, but it
has been characterized later in Huchard et al. (2000). Robert
Godin proposed to consider the use of conceptual structures
as the equivalent of building a normal form in the domain
of databases (Godin and Valtchev 2005). Metrics that com-
pare an inheritance hierarchy to such FCA normal form have
been designed in this spirit (Dao et al. 2002).

We outline the FCA approach with a simple example
(without taxonomic attributes). Figure 1 shows an initial
class model with classes (e.g., FishConsumer), attributes
(e.g., caloryCount) and roles (e.g., prefers). This class
model can be encoded for an FCA analysis by establishing
a formal context where classes are described by the names
of the attributes and roles that they own. From commonal-
ities between classes that appear in the class lattice, a new
class model, shown in Figure 2, can be derived. New super-
classes can be seen (names are given afterwards with hu-
man intervention): People (factorizes attributes name and
age), Consumer (factorizes role prefer), OrgProducer
(factorizes attribute labelType), Dish (factorizes attribute
caloryCount and role prefer), Food (factorizes attributes
allergen and nutriV alue), and OrgFood (factorizes role
isProducedBy).

3. The multi-lattice period: class models
When the problem switched from programming languages
to modeling languages, it became more clear that using only
FCA, even with taxonomic characteristics, was not sufficient
to deal with the complexity of extracting hidden abstrac-
tions. This issue already existed, for example if classes C1

and C2 had attributes whose type was classes C3 and C4 re-
spectively, and if C3 and C4 themselves had attributes with



Figure 1. Initial class model on consumers, producers, dishes and food

Figure 2. Final class model built with the help of FCA. New abstractions of classes are shown in grey. Roles are integrated as
attributes

same type, information could not be taken into account to
make a superclass of C1 and C2, because it has to be built
by iterating on abstraction extraction: firstly, a super-class of
C3 and C4 has to be built, and only afterwards, this allows to
recognize that C1 and C2 share attributes whose type is this
new super-class.

Relational Concept Analysis (RCA), that extends FCA,
has been designed to deal with that iterative abstraction ex-
traction (Dao et al. 2004). It has been later extended to make
data mining with any sort of relational data (Hacène et al.
2013). The data model is no more restricted to classes (for-
mal objects) and their characteristics (formal attributes, be-
ing attributes, methods, etc. with possible taxonomies). It
may now be composed of several categories of formal ob-
jects (classes, associations, attributes, roles, operations, pa-
rameters, etc.). These formal objects are described by for-

mal attributes (their names, technical properties like being
abstract, static, etc.) in object-attribute relations. Besides,
they are described in object-object relations like class-owns-
attribute, class-owns-role, association-owns-role, operation-
owns-parameter. Let us remark that this data model is sim-
ilar to the meta-model of a programming language (like
Java, C++, Smalltalk), or of a modeling language (like OMT,
Entity-Relationship, or UML). The formal objects are the in-
stances of this meta-model. The object-object relations come
from the meta-relations. The object-attribute relations corre-
spond to the meta-attributes. The chosen data model encodes
the entities the data analysis focuses on. The more complete
it is, the deeper the analysis is, at the cost of a possible com-
plexity in the results.

Then RCA iteratively builds concept lattices. Each for-
mal object category has its own lattice. Classes are classified



in the class lattice, attributes in the attribute lattice, roles in
the role lattice, associations in the association lattice, and so
on. The concepts from the various lattices are connected by
relational attributes that abstract the object-object relations.
In class lattices, the concepts are interpreted as classes (pos-
sibly new super-classes of existing classes); In attribute lat-
tices, the concepts are interpreted as attributes (possibly new
attributes abstractions are built, like ”attributes with same
name ”age” and same type ”int”); etc. At the initial step, ini-
tial lattices are built using only the object-attribute relations.
During the next steps, iteration allows us to propagate the
discovered abstractions. Concepts built at step n − 1 are in-
tegrated in the object-object relations by a scaling process,
causing the emergence of new concepts at step n. This is
done until a fix-point is reached. Let us look at a very simple
example. When two attributes aC1 and aC2 with same name
a are found in classes C1 and C2, at Step 0, an attribute con-
cept Ca is built to group them. At Step 1, C1 and C2 can be
grouped because they own an attribute from the Ca group. In
RCA, several types of scaling process have been defined. For
the purpose of class model analysis, the existential scaling is
used.

A simple encoding of the class model of Figure 1 with
RCA can consider the following object categories: classes,
attributes, roles and the object-object relations: hasAttribute,
hasRole and hasTypeEnd. From the class lattice, the at-
tribute lattice and the role lattice, the class model of Figure
3 can be built. Thanks to the reification of all model ele-
ments, their connections and to the iterative approach, new
super-classes have been discovered: OrgDish (factorizes
role contains towards OrgFood) OrgConsumer (factor-
izes role prefers towards OrgDish). Besides more detailed
information is given on role ends: isProducedBy ends to
OrgProducer, prefers (of Consumer) ends to Dish,
prefers (of OrgConsumer) ends to OrgDish, contains
(of Dish) ends to Food, contains (of OrgDish) ends to
OrgFood. It was not possible to find that with the basic
FCA approach, because some relation ends cannot be known
at the beginning of the process.

As reported in Guédi et al. (2013b), first experiments
showed serious limitations because of the complexity of
the result (Roume 2004; Hacène 2005; Falleri et al. 2008).
The analysis of these experiments and a more systematic
experiment done on 15 versions of a class model (Guédi
et al. 2013a) allowed us to identify a feasible approach: (1)
by avoiding encoding technical aspects that generate useless
abstractions, (2) by limiting the scope of analyzed relations
(to navigable roles only, or by stopping the process at one
step). We are currently focusing on AOC-poset use with
a possible risk of non-convergence and on exploratory use
of RCA. To give a simple example of the importance of
making a good tuning, in experiments reported in Guédi
et al. (2013a); Miralles et al. (2015) on the same class model
containing '170 classes, using lattice structure and a bad

configuration may lead at Step 6 to '10000 concepts in the
class lattice, while using AOC-poset and good configuration
leads to '200 concepts in the class lattice (at the same Step
6).

In parallel to studies about feasibility, some attempts have
been made to tackle issues linked to the names of the model
elements: how to recognize hyponyms/hyperonyms, name
conflict, synonyms, etc. Initial work was done in Rouane
et al. (2007) and focuses on synonyms and name conflicts.
It uses similarity measures based on WORDNET (Fellbaum
1998) and LUCENE1. The second approach analyzes identi-
fiers with different techniques including Part of Speech Tag-
ging and dependence analysis to organize terms in lexical
views (Falleri et al. 2009, 2010). Despite these positive de-
velopments, taking into account information conveyed by
terms is still under study. Another interest of using the nat-
ural language processing techniques would be to propose
names for the new discovered abstractions. This is still an
open question.

4. Conclusion and perspectives
Even if we overviewed work that spanned over two decades,
we think that the design of inheritance (or specialization/gen-
eralization) hierarchies is still a complex issue that should
benefit from tool assistance with the approaches that we pre-
sented above. Among the current work, we are designing
ways of efficiently presenting the results to the designers.
The progress of ontology engineering and the possibility
to combine knowledge from ontologies with knowledge in-
cluded in source code, UML models or information systems
models bring new perspectives for improving class hierar-
chy design. The multiplication of models on same topics
and domains and the necessity to communicate information
between various software systems also prompted the need
for aligning class models, an issue which could be investi-
gated with the help of RCA.
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Figure 3. Final class model built with the help of RCA. New abstractions of classes and roles are shown in grey. The most
specialized roles are not presented for the sake of readability (for example the role prefers which connects FishConsumer
and FishDish is not drawn here, although it is still present). They can be introduced in UML, with ”subsets” modifier, for
example the most specialized role OrgCheese-isProducedBy-OrgBreeder must be declared ”subsets isProducedBy” to
indicate it must be a specialization of OrgFood-isProducedBy-OrgProducer. Data of the illustrative example can be found
at: http://www.lirmm.fr/recherche/equipes/marel/datasets/dataset-consumers-producers-dishes-food
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E. A. Rundensteiner. A Class Classification Algorithm For Sup-
porting Consistent Object Views. Technical report, University
of Michigan, 1992.

G. Snelting and F. Tip. Reegineering class hierarchies using conept
analysis. In SIGSOFT ’98, pages 99–110, Novembre 1998.

G. Snelting and F. Tip. Understanding class hierarchies using con-
cept analysis. ACM Transactions on Programming Languages
and Systems, 22(3):540–582, May 2000.

J. Waldo. Controversy: The case for multiple inheritance in C++.
Computing Systems, 4(2):157–171, 1991.

A. Yahia, L. Lakhal, R. Cicchetti, and J. Bordat. iO2, An Algorith-
mic Method for Building Inheritance Graphs in Object Database
Design. In Proceedings of the 15th International Conference on
Conceptual Modeling ER’96, 1996.

A. Yahia, L. Lakhal, and J. Bordat. Designing Class Hierarchies
of Object Database Schemas. In 13 ièmes journées Bases de
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