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Abstract—The discovery of informative itemsets is a funda-
mental building block in data analytics and information re-
trieval. While the problem has been widely studied, only few
solutions scale. This is particularly the case when i) the data
set is massive, calling for large-scale distribution, and/or ii) the
length 𝑘 of the informative itemset to be discovered is high.
In this paper, we address the problem of parallel mining of
maximally informative 𝑘-itemsets (miki) based on joint entropy.
We propose PHIKS (Parallel Highly Informative 𝐾-ItemSet) a
highly scalable, parallel miki mining algorithm. PHIKS renders
the mining process of large scale databases (up to terabytes of
data) succinct and effective. Its mining process is made up of
only two efficient parallel jobs. With PHIKS, we provide a set
of significant optimizations for calculating the joint entropies
of miki having different sizes, which drastically reduces the
execution time of the mining process. PHIKS has been extensively
evaluated using massive real-world data sets. Our experimental
results confirm the effectiveness of our proposal by the significant
scale-up obtained with high itemsets length and over very large
databases.

I. INTRODUCTION

Featureset, or itemset, mining [1] is one of the fundamental
building bricks for exploring informative patterns in databases.
Features might be, for instance, the words occurring in a
document, the score given by a user to a movie on a social
network, or the characteristics of plants (growth, genotype,
humidity, biomass, etc.) in a scientific study in agronomics.
A large number of contributions in the literature has been
proposed for itemset mining, exploring various measures ac-
cording to the chosen relevance criteria. The most studied
measure is probably the number of co-occurrences of a set
of features, also known as frequent itemsets [2]. However,
frequency does not give relevant results for a various range
of applications, including information retrieval [3], since it
does not give a complete overview of the hidden correlations
between the itemsets in the database. This is particularly the
case when the database is sparse [4]. Using other criteria
to assess the informativeness of an itemset could result in
discovering interesting new patterns that were not previously
known. To this end, information theory [5] gives us strong
supports for measuring the informativeness of itemsets. One of
the most popular measures is the joint entropy of an itemset.
An itemset 𝑋 that has higher joint entropy brings up more
information about the objects in the database.

Saber Salah - This work was partially supported by the Inria Project Lab
Hemera.

Features Documents
𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 𝑑9 𝑑10

A 1 1 1 1 1 0 0 0 0 0
B 0 1 0 0 1 1 0 1 0 1
C 1 0 0 1 0 1 1 0 1 0
D 1 0 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1 1 1

TABLE I: Features in the documents

We study the problem of Maximally Informative 𝑘-Itemsets
(miki for short) discovery in massive data sets, where infor-
mativeness is expressed by means of joint entropy and 𝑘 is the
size of the itemset [6], [7], [8]. Miki are itemsets of interest
that better explain the correlations and relationships in the data.
Example 1 gives an illustration of miki and its potential for
real world applications such as information retrieval.

Example 1: In this application, we would like to retrieve
documents from Table I, in which the columns 𝑑1, 𝑑10 are
documents, and the attributes 𝐴,𝐵,𝐶,𝐷,𝐸 are some features
(items, keywords) in the documents. The value “1” means that
the feature occurs in the document, and “0” not. It is easy to
observe that the itemset (𝐷,𝐸) is frequent, because features
𝐷 and 𝐸 occur together in almost every document. However,
it provides little help for document retrieval. In other words,
given a document 𝑑𝑥 in our data set, one might look for the
occurrence of the itemset (𝐷,𝐸) and, depending on whether it
occurs or not, she will not be able to decide which document
it is. By contrast, the itemset (𝐴,𝐵,𝐶) is infrequent, as its
member features rarely or never appear together in the data.
And it is troublesome to summarize the value patterns of the
itemset (𝐴,𝐵,𝐶). Providing it with the values < 1, 0, 0 >
we could find the corresponding document 𝑂3; similarly,
given the values < 0, 1, 1 > we will have the corresponding
document 𝑂6. Although (𝐴,𝐵,𝐶) is infrequent, it contains
lots of useful information which is hard to summarize. By
looking at the values of each feature in the itemset (𝐴,𝐵,𝐶),
it is much easier to decide exactly which document they belong
to. (𝐴,𝐵,𝐶) is a maximally informative itemset of size 𝑘 = 3.

Miki mining is a key problem in data analytics with high
potential impact on various tasks such as supervised learning
[9], unsupervised learning [10] or information retrieval [3],
to cite a few. A typical application is the discovery of
discriminative sets of features, based on joint entropy, which
allows distinguishing between different categories of objects.
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Unfortunately, it is very difficult to maintain good results, in
terms of both response time and quality, when the number of
objects becomes very large. Indeed, with massive amounts of
data, computing the joint entropies of all itemsets in parallel
is a very challenging task for many reasons. First, the data is
no longer located in one computer, instead, it is distributed
over several machines. Second, the number of iterations of
parallel jobs would be linear to 𝑘 (i.e., the number of features
in the itemset to be extracted [7]), which needs multiple
database scans and in turn violates the parallel execution of
the mining process. We believe that an efficient miki mining
solution should scale up with the increase in the size of
the itemsets, calling for cutting edge parallel algorithms and
high performance evaluation of an itemset’s joint entropy in
massively distributed environments.

We propose a deep combination of both information theory
and massive distribution by taking advantage of parallel pro-
gramming frameworks such as MapReduce [11] or Spark [12].
To the best of our knowledge, there has been no prior work on
parallel informative itemsets discovery based on joint entropy.
We designed and developed an efficient parallel algorithm,
namely Parallel Highly Informative 𝐾-itemSet (PHIKS in
short), that renders the discovery of miki from a very large
database (up to Terabytes of data) simple and effective. It
performs the mining of miki in two parallel jobs. PHIKS
cleverly exploits available data at each mapper to efficiently
calculate the joint entropies of miki candidates. For more
efficiency, we provide PHIKS with optimizations that allow
for very significant improvements of the whole process of miki
mining. The first technique estimates the upper bound of a
given set of candidates and allows for a dramatic reduction
of data communications, by filtering unpromising itemsets
without having to perform any additional scan over the data.
The second technique reduces significantly the number of
scans over the input database of each mapper, i.e., only one
scan per step, by incrementally computing the joint entropy
of candidate features. This reduces drastically the work that
should be done by the mappers, and thereby the total execution
time.

PHIKS has been extensively evaluated using massive real-
world data sets. Our experimental results show that PHIKS
significantly outperforms alternative approaches, and confirm
the effectiveness of our proposal over large databases contain-
ing for example one Terabyte of data.

The rest of the paper is structured as follows. Section II
gives formal definitions of informative itemsets, basic used
notations, and the necessary background is given in Section
III. In Section IV, we propose our PHIKS algorithm, and
depict its whole core mining process. Section V reports on
our experimental validation over real-world data sets. Section
VI discusses related work, and Section VII concludes.

II. DEFINITIONS

The following definitions introduce the basic requirements
for mining maximally informative 𝑘-itemsets [7].

Definition 1: Let ℱ = {𝑓1, 𝑓2, . . . , 𝑓𝑛} be a set of literals
called 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. An 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 𝑋 is a set of 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 from
ℱ , i.e., 𝑋 ⊆ ℱ . The 𝑠𝑖𝑧𝑒 or 𝑙𝑒𝑛𝑔𝑡ℎ of the 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 𝑋 is
the number of 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 in it. A 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇 is a set of
elements such that 𝑇 ⊆ ℱ and 𝑇 ∕= ∅. A 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝒟 is a set
of 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠.

Definition 2: The entropy of a feature 𝑖 in a database
𝒟 measures the expected amount of information needed to
specify the state of uncertainty or disorder for the feature
𝑖 in 𝒟. Let 𝑖 be a feature in 𝒟, and 𝑃 (𝑖 = 𝑛) be the
probability that 𝑖 has value 𝑛 in 𝒟 (we consider categorical
data, where the value will be ’1’ if the object has the feature
and ’0’ otherwise). The entropy of the feature 𝑖 is given by
𝐻(𝑖) = −(𝑃 (𝑖 = 0)𝑙𝑜𝑔(𝑃 (𝑖 = 0))+𝑃 (𝑖 = 1)𝑙𝑜𝑔(𝑃 (𝑖 = 1))),
where the logarithm base is 2.

Definition 3: The binary projection, or projection of an
itemset 𝑋 in a transaction 𝑇 (𝑝𝑟𝑜𝑗(𝑋,𝑇 )) is the set of size
∣𝑋∣ where each item (i.e., feature) of 𝑋 is replaced by ’1’ if
it occurs in 𝑇 and by ’0’ otherwise. The projection counting
of 𝑋 in a database 𝒟 is the set of projections of 𝑋 in each
transaction of 𝒟, where each projection is associated with its
number of occurrences in 𝒟.

Example 2: Let us consider Table I. The projection of
(𝐵,𝐶,𝐷) in 𝑑1 is (0, 1, 1). The projections of (𝐷,𝐸) on the
database of Table I are (1, 1) with nine occurrences and (0, 1)
with one occurrence.

Definition 4: Given an itemset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘} and
a tuple of binary values ℬ = {𝑏1, 𝑏2, . . . , 𝑏𝑘} ∈ {0 1}𝑘. The
joint entropy of 𝑋 is defined as: 𝐻(𝑋) = −∑

ℬ∈{0,1}∣𝑘∣ 𝐽 ×
𝑙𝑜𝑔(𝐽). Where 𝐽= 𝑃 (𝑥1 = 𝑏1, . . . , 𝑥𝑘 = 𝑏𝑘) is the joint
probability of 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘}.

Given a database 𝒟, the joint entropy 𝐻(𝑋) of an itemset
𝑋 in 𝒟 is proportional to its size 𝑘 i.e., the increase in the
size of 𝑋 implies an increase in its joint entropy 𝐻(𝑋). The
higher the value of 𝐻(𝑋), the more information the itemset
𝑋 provides in 𝒟. For simplicity, we use the term entropy of
an itemset 𝑋 to denote its joint entropy.

Example 3: Let us consider the database of Table I. The
joint entropy of (𝐷,𝐸) is given by 𝐻(𝐷,𝐸) = − 9

10 𝑙𝑜𝑔(
9
10 )−

1
10 𝑙𝑜𝑔(

1
10 ) = 0.468. Where the quantities 9

10 and 1
10 respec-

tively represent the joint probabilities of the projection values
(1, 1) and (0, 1) in the database.

Definition 5: Given a set ℱ = {𝑓1, 𝑓2, . . . , 𝑓𝑛} of features,
an itemset 𝑋 ⊆ ℱ of length 𝑘 is a maximally informative 𝑘-
itemset, if for all itemsets 𝑌 ⊆ ℱ of size 𝑘, 𝐻(𝑌 ) ≤ 𝐻(𝑋).
Hence, a maximally informative 𝑘-itemset is the itemset of
size 𝑘 with the highest joint entropy value.

The problem of mining maximally informative 𝑘-itemsets
presents a variant of itemset mining, it relies on the joint
entropy measure for assessing the informativeness brought by
an itemset.

Definition 6: Given a database 𝒟 which consists of a set of
𝑛 attributes (features) ℱ = {𝑓1, 𝑓2, . . . , 𝑓𝑛}. Given a number
𝑘, the problem of miki mining is to return a subset 𝐹 ′ ⊆ 𝐹
with size 𝑘, i.e., ∣𝐹 ′∣ = 𝑘, having the highest joint entropy in
𝒟, i.e., ∀𝐹 ′′ ⊆ 𝐹 ∧ ∣𝐹 ′′∣ = 𝑘 ⇒ 𝐻(𝐹 ′′) ≤ 𝐻(𝐹 ′).
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III. BACKGROUND

A. Miki Discovery in a Centralized Environment

In [7], an effective approach is proposed for miki dis-
covery in a centralized environment. Their ForwardSelec-
tion heuristic uses a "generating-pruning" approach, which
is similar to the principle of Apriori [2]. 𝑖1, the feature
having the highest entropy is selected as a seed. Then, 𝑖1 is
combined with all the remaining features, in order to build
candidates. In other words, there will be ∣ℱ − 1∣ candidates
(i.e., (𝑖1, 𝑖2), (𝑖1, 𝑖3), . . . , (𝑖1, 𝑖∣ℱ−1∣)). The entropy of each
candidate is given by a scan over the database, and the
candidate having the highest entropy, say (𝑖1, 𝑖2), is kept.
A set of ∣ℱ − 2∣ candidates of size 3 is generated (i.e.,
(𝑖1, 𝑖2, 𝑖3), (𝑖1, 𝑖2, 𝑖4), . . . , (𝑖1, 𝑖2, 𝑖∣ℱ−2∣)) and their entropy is
given by a new scan over the database. This process is repeated
until the size of the extracted itemset is 𝑘.

B. MapReduce and Job Execution

MapReduce has gained increasing popularity, as shown
by the tremendous success of Hadoop [13], an open-source
implementation. Initially proposed in [11], it was popularized
by Hadoop [14], an open-source implementation. The idea
behind MapReduce is simple and elegant. Given an input file,
and two functions map and reduce, each MapReduce job is
executed in two main phases: map and reduce. One map task is
created per input split. Each map task reads its corresponding
input split, applies the map function on each input pair and
generates intermediate key-value pairs. Once the map task is
completed, the master is notified about the location of the
generated intermediate key-values. In the reduce phase, each
intermediate key is assigned to one of the reduce workers.
Each reduce worker retrieves the values corresponding to its
assigned keys from all the map workers, and merges them
using an external merge-sort. Then, it groups pairs with the
same key and calls the reduce function on the corresponding
values. This function will generate the final output results.

IV. PHIKS ALGORITHM

In a massively distributed environment, a possible naive
approach for miki mining would be a straightforward im-
plementation of ForwardSelection [7] (see Section III-A).
However, given the "generating-pruning" principle of this
heuristic, it is not suited for environments like Spark [12] or
MapReduce [11] and would lead to very bad performances.
The main reason is that each scan over the data set is done
through a distributed job (ı.e., there will be 𝑘 jobs, one for
each generation of candidates that must be tested over the
database). Our experiments, in Section V, give an illustration
of the catastrophic response times of ForwardSelection in
a straightforward implementation on MapReduce (the worst,
for all of our settings). This is not surprising since most
algorithms designed for a centralized itemset mining do not
perform well in massively distributed environments in a direct
implementation [15], [16], [17], and miki don’t escape that
rule.

Such an inadequacy calls for new distributed algorithmic
principles. To the best of our knowledge, there is no previous
work on distributed mining of miki. However, we may build on
top of cutting edge studies in frequent itemset mining, while
considering the very demanding characteristics of miki.

Interestingly, in the case of frequent itemsets in MapReduce,
a mere algorithm consisting of two jobs outperforms most
existing solutions [18] by using the principle of SON [19],
a divide and conquer algorithm. Unfortunately, despite its
similarities with frequent itemset mining, the discovery of miki
is much more challenging. Indeed, the number of occurrences
of an itemset 𝑋 in a database 𝒟 is additive and can be easily
distributed (the global number of occurrences of 𝑋 is simply
the sum of its local numbers of occurrences on subsets of
𝒟). Entropy is much more combinatorial since it is based on
the the projection counting of 𝑋 in 𝒟 and calls for efficient
algorithmic advances, deeply combined with the principles of
distributed environments.

A. Distributed Projection Counting

Before presenting the details of our contribution, we need to
provide tools for computing the projection of an itemset 𝑋 on
a database 𝒟, when 𝒟 is divided into subsets on different
splits, in a distributed environment, and entropy has to be
encoded in the key-value format. We have to count, for each
projection 𝑝 of 𝑋 , its number of occurrences on 𝒟. This can
be solved with an association of the itemset as a key and
the projection as a value. On a split, for each projection of an
itemset 𝑋 , 𝑋 is sent to the reducer as the key coupled with its
projection. The reducer then counts the number of occurrences,
on all the splits, of each (key:value) couple and is therefore
able to calculate the entropy of each itemset. Communications
may be optimized by avoiding to emit a 𝑘𝑒𝑦 : 𝑣𝑎𝑙 couple
when the projection does not appear in the transaction and is
only made of ’0’ (on the reducer, the number of times that
a projection 𝑝 of 𝑋 does not appear in 𝒟 is determined by
subtracting the number projections of 𝑋 in 𝐷 from |𝒟|).

Example 4: Let us consider 𝒟, the database of Table I, and
the itemset 𝑋 = (𝐷,𝐸). Let us consider that 𝒟 is divided
into two splits 𝑆1 = {𝑑1..𝑑5} and 𝑆2 = {𝑑6..𝑑10}. With one
simple MapReduce job, it is possible to calculate the entropy
of 𝑋 . The algorithm of a mapper would be the following: for
each document 𝑑, emit a couple (𝑘𝑒𝑦 : 𝑣𝑎𝑙) where 𝑘𝑒𝑦 =
𝑋 and 𝑣𝑎𝑙 = 𝑝𝑟𝑜𝑗(𝑋, 𝑑). The first mapper (corresponding
to 𝑆1) will emit the following couples: ((𝐷,𝐸) : (1, 1)) 4
times and ((𝐷,𝐸) : (0, 1)) once. The second mapper will
emit ((𝐷,𝐸) : (1, 1)) 5 times. The reducers will do the sum
and the final result will be ((𝐷,𝐸) : (1, 1)) occurs 9 times
and (((𝐷,𝐸) : (0, 1)) once.

B. Discovering miki in Two Rounds

Our heuristic will use at most two MapReduce jobs in order
to discover the 𝑘-itemset having the highest entropy. The goal
of the first job is to extract locally, on the distributed subsets
of 𝒟, a set of candidate itemsets that are likely to have a
high global entropy. To that end, we apply the principle of
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Split A B C D E
𝑆1 0 0 1 0 0

0 1 0 0 0
1 0 1 0 0
1 1 0 0 0
0 1 1 0 1
1 0 0 0 0

𝑆2 0 0 0 0 1
0 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 0 0 1 1

TABLE II: Local Vs. global entropy

ForwardSelection locally, on each mapper, and grow an itemset
by adding a new feature at each step. After the last scan, for
each candidate itemset 𝑋 of size 𝑘 we have the projection
counting of 𝑋 on the local data set. A straightforward ap-
proach would be to emit the candidate itemset having the
highest local entropy. Then the reducers would collect the
local miki and we would check their global entropy on 𝒟
by means of a second MapReduce job. Unfortunately, this
approach would not be correct, since an itemset might have the
highest global entropy, while actually not having the highest
entropy in each subset. Example 5 gives a possible case where
a global miki does not appear as a local miki on any subset of
the database.

Example 5: Let us consider 𝒟, the database given by Table
II, which is divided into two splits of six transactions. The
global miki of size 2 in this database is (𝐴,𝐵,𝐸). More
precisely, the entropy of (𝐴,𝐵,𝐸) on 𝒟 is given by − 1

12 ×
𝑙𝑜𝑔( 1

12 )×4− 2
12×𝑙𝑜𝑔( 2

12 )×4 = 2.92. However, if we consider
each split individually, (𝐴,𝐵,𝐸) always has a lower entropy
compared to at least one different itemset. For instance, on the
split 𝑆1, the projections of (𝐴,𝐵,𝐸) are (0, 0, 0), (0, 1, 0),
(1, 1, 0) and (0, 1, 1) with one occurrence each, and (1, 0, 0)
with two occurrences. Therefore the entropy of (𝐴,𝐵,𝐸) on
𝑆1 is 2.25 (i.e., − 1

6 × 𝑙𝑜𝑔( 16 ) × 4 − 2
6 × 𝑙𝑜𝑔( 26 ) = 2.25).

On the other hand, the projections of (𝐴,𝐵,𝐶) on 𝑆1 are
(0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1) and (1, 0, 0) with
one occurrence each, and the entropy of (𝐴,𝐵,𝐶) on 𝑆1 is
2.58 (i.e., − 1

6 × 𝑙𝑜𝑔( 16 ) × 6 = 2.58). This is similar on 𝑆2

where the entropy of (𝐴,𝐵,𝐸) is 2.25 and the entropy of
(𝐴,𝐵,𝐷) is 2.58. However, (𝐴,𝐵,𝐶) and (𝐴,𝐵,𝐷) both
have a global entropy of 2.62 on 𝒟, which is lower than 2.92,
the global entropy of (𝐴,𝐵,𝐸) on 𝒟.

Since it is possible that a global miki is never found as a
local miki, we need to consider a larger number of candidate
itemsets. This can be done by exploiting the set of candidates
that are built in the very last step of ForwardSelection. This
step aims to calculate the projection counting of ℱ − 𝑘
candidates and then compute their local entropy. Instead of
only emitting the itemset having the larger entropy, we will
emit, for each candidate 𝑋 , the projection counting of 𝑋 on
the split, as explained in Section IV-A. The reducers will then
be provided with, for each local candidate 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑚,

where 𝑚 is the number of mappers, or splits), the projection
counting of 𝑋 on a subset of 𝒟. The main idea is that the
itemset having the highest entropy is highly likely to be in
that set of candidates. For instance, in the database given
by Table II and 𝑘 = 3, the global miki is (𝐴,𝐵,𝐸), while
the local miki are (𝐴,𝐵,𝐶) on 𝑆1 and (𝐴,𝐵,𝐷) on 𝑆2.
However, with the technique described above, the itemset
(𝐴,𝐵,𝐸) will be a local candidate, and will be sent to the
reducers with the whole set of projections encountered so
far in the splits. The reducer will then calculate its global
entropy, compare it to the entropy of the other itemsets, and
(𝐴,𝐵,𝐸) will eventually be selected as the miki on this
database.

Unfortunately, it is possible that 𝑋 has not been generated
as a candidate itemset on the entire set of splits (consider a
biased data distribution, where a split contains some features
with high entropies, and these features have low entropies on
the other splits). Therefore, we have two possible cases at this
step:

1) 𝑋 is a candidate itemset on all the splits and we are
able to calculate its exact projection counting on 𝒟, by
means of the technique given in Section IV-A.

2) There is (at least) one split where 𝑋 has not been
generated as a candidate and we are not able to calculate
its exact projection counting on 𝒟.

The first case does not need more discussion, since we
have collected all the necessary information for calculating
the entropy of 𝑋 on 𝒟. The second case is more difficult
since 𝑋 might be the miki but we cannot be sure, due to
lack of information about its local entropy on (at least) one
split. Therefore, we need to check the entropy of 𝑋 on 𝒟
with a second MapReduce job intended to calculate its exact
projection counting. The goal of this second round is to check
that no local candidate has been ignored at the global scale. At
the end of this round, we have the entropy of all the promising
candidate itemsets and we are able to pick the one with the
highest entropy. This is the architecture of our approach, the
raw version of which (without optimization) is called Simple-
PHIKS. So far, we have designed a distributed architecture and
a miki extraction algorithm that, in our experiments reported
in Section V outperforms ForwardSelection by several orders
of magnitude. However, by exploiting and improving some
concepts of information theory, we may significantly optimize
this algorithm and further accelerate its execution at different
parts of the architecture, as explained in the following sections.

C. Candidate Reduction Using Entropy Upper Bound

One of the shortcomings of the basic version of our two
rounds approach is that the number of candidate itemsets,
which should be processed in the second job, may be high
for large databases as it will be illustrated by our experiments
in Section V. This is particularly the case when the features
are not uniformly distributed in the splits of mappers. These
candidate itemsets are sent partially by the mappers (i.e., not
by all of them), thus we cannot compute their total entropy in
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the corresponding reducer. This is why, in the basic version
of our approach, we compute their entropy in the second job
by reading again the database.

Here, we propose an efficient technique for significantly re-
ducing the number of candidates. The main idea is to compute
an upper bound for the entropy of the partially sent itemsets,
and discard them if they have no chance to be a global miki.
For this, we exploit the available information about the miki
candidates sent by the mappers to the corresponding reducer.

Let us describe formally our approach. Let 𝑋 be a partially
sent itemset, and 𝑚 be a mapper that has not sent 𝑋 and its
projection frequencies to the reducer 𝑅 that is responsible for
computing the entropy of 𝑋 . In the reducer 𝑅, the frequency
of 𝑋 projections for a part of the database is missing, i.e.,
in the split of 𝑚. We call these frequencies as missing
frequencies. We compute an upper bound for the entropy of
𝑋 by estimating its missing frequencies. This is done in two
steps. Firstly, finding the biggest subset of 𝑋 , say 𝑌 , for
which all frequencies are available and secondly, distributing
the frequencies of 𝑌 among the projections of 𝑋 in such a
way that the entropy of 𝑋 be the maximum.

1) Step 1: the idea behind the first step is that the frequen-
cies of the projections of an itemset 𝑋 can be derived from the
projections of its subsets. For example, suppose two itemsets
𝑋 = {𝐴,𝐵,𝐶,𝐷} and 𝑌 = {𝐴,𝐵}, then the frequency of
the projection 𝑝 = (1, 1) of 𝑌 is equal to the sum of the
following projections in 𝑋: 𝑝1 = (1, 1, 0, 0), 𝑝2 = (1, 1, 0, 1),
𝑝3 = (1, 1, 1, 0) and 𝑝4 = (1, 1, 1, 1). The reason is that in
all these four projections, the features 𝐴 and 𝐵 exist, thus the
number of times that 𝑝 occurs in the database is equal to the
total number of times that the four projections 𝑝1 to 𝑝4 occur.
This is stated by the following lemma.

Lemma 4.1: Let the itemset 𝑌 be a subset of the itemset
𝑋 , i.e., 𝑌 ⊆ 𝑋 . Then, the frequency of any projection 𝑝 of 𝑌
is equal to the sum of the frequencies of all projections of 𝑋
which involve 𝑝.
Proof. The proof can be easily done as in the above discussion.

In Step 1, among the available subsets of itemset 𝑋 , i.e.,
those for which we have all projection frequencies, we choose
the one that has the highest size. The reason is that its
intersection with 𝑋 is the highest, thus our estimated upper
bound about the entropy of 𝑋 will be closer to the real one.

2) Step 2: let 𝑌 be the biggest available subset of 𝑋 in
reducer 𝑅. After choosing 𝑌 , we distribute the frequency of
each projection 𝑝 of 𝑌 among the projections of 𝑋 that are
derived from 𝑝. There may be many ways to distribute the
frequencies. For instance, in the example of Step 1, if the
frequency of 𝑝 is 6, then the number of combinations for
distributing 6 among the four projections 𝑝1 to 𝑝4 is equal to
the solutions which can be found for the following equation:
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 6 when 𝑥𝑖 ≥ 0. In general, the number
of ways for distributing a frequency 𝑓 among 𝑛 projections is
equal to the number of solutions for the following equation:

𝑥1 + 𝑥2 + ...+ 𝑥𝑛 = 𝑓 𝑓𝑜𝑟 𝑥𝑖 ≥ 0 (1)

Obviously, when 𝑓 is higher than 𝑛, there is a lot of
solutions for this equation. Among all these solutions, we
choose a solution that maximizes the entropy of 𝑋 . The
following lemma shows how to choose such a solution.

Lemma 4.2: Let 𝒟 be a database, and 𝑋 be an itemset.
Then, the entropy of 𝑋 over 𝒟 is the maximum if the possible
projections of 𝑋 over 𝒟 have the same frequency.
Proof. The proof is done by implying the fact that in the
entropy definition (see Definition 2), the maximum entropy
is for the case where all possible combinations have the
same probability. Since, the probability is proportional to the
frequency, then the maximum entropy is obtained in the case
where the frequencies are the same. □

The above lemma proposes that for finding an upper bound
for the entropy of 𝑋 (i.e., finding its maximal possible
entropy), we should distribute equally (or almost equally)
the frequency of each projection in 𝑌 among the derived
projections in 𝑋 . Let 𝑓 be the frequency of a projection in 𝑌
and 𝑛 be the number of its derived projections, if (𝑓 modulo
𝑛) = 0 then we distribute equally the frequency, otherwise we
first distribute the quotient among the projections, and then
the rest randomly.

After computing the upper bound for entropy of 𝑋 , we
compare it with the maximum entropy of the itemsets for
which we have received all projections (so we know their real
entropy), and discard 𝑋 if its upper bound is less than the
maximum found entropy until now.

D. Prefix/Suffix

When calculating the local miki on a mapper, at each step
we consider a set of candidates having size 𝑗 that share a
prefix of size 𝑗 − 1. For instance, with the database of Table
II and the subset of split 𝑆1, the corresponding mapper will
extract (𝐴,𝐵) as the miki of size 2. Then, it will build 3
candidates: (𝐴,𝐵,𝐶), (𝐴,𝐵,𝐷) and (𝐴,𝐵,𝐸). A straight-
forward approach for calculating the joint entropy of these
candidates would be to calculate their projection counting by
means of an exhaustive scan over the data of 𝑆1 (i.e., read the
first transaction of 𝑆1, compare it to each candidate in order
to find their projections, and move to the next transaction).
However, these candidates share a prefix of size 2: (𝐴,𝐵).
Therefore, we store the candidates in a structure that contains
the prefix itemset, of size 𝑗 − 1, and the set of ∣ℱ − 𝑗∣ suffix
features. Then, for a transaction 𝑇 , we only need to i) calculate
𝑝𝑟𝑜𝑗(𝑝, 𝑇 ) where 𝑝 is the prefix and ii) for each suffix feature
𝑓 , find the projection of 𝑓 on 𝑇 , append 𝑝𝑟𝑜𝑗(𝑓, 𝑇 ) to
𝑝𝑟𝑜𝑗(𝑝, 𝑇 ) and emit the result. Let us illustrate this principle
with the example above (i.e., first transaction of 𝑆1 in Table II).
The structure is as follows: {prefix=(𝐴,𝐵):suffixes=𝐶,𝐷,𝐸}.
With this structure, instead of comparing (𝐴,𝐵,𝐶), (𝐴,𝐵,𝐷)
and (𝐴,𝐵,𝐸) to the transaction and find their respective
projections, we calculate the projection of (𝐴,𝐵), their prefix,
i.e., (0, 0), and the projection of each suffix, i.e., (1), (0) and
(0) for 𝐶, 𝐷, and 𝐸 respectively. Each suffix projection is
then added to the prefix projection and emitted. In our case, we
build three projections: (0, 0, 1), (0, 0, 0) and (0, 0, 0), and the
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mapper will emit ((𝐴,𝐵,𝐶) : (0, 0, 1)), ((𝐴,𝐵,𝐷) : (0, 0, 0))
and ((𝐴,𝐵,𝐸) : (0, 0, 0)).

E. Incremental Entropy Computation in Mappers

In the basic version of our two rounds approach, each
mapper performs many scans over its split to compute the
entropy of candidates and finally find the local miki. Given 𝑘
as the size of the requested itemset, in each step 𝑗 of the 𝑘
steps in the local miki algorithm, the mapper uses the itemset
of size 𝑗 − 1 discovered so far, and builds ∣𝐹 ∣ − 𝑗 candidate
itemsets before selecting the one having the highest entropy.
For calculating each joint entropy, a scan of the input split
is needed in order to compute the frequency (and thus the
probability) of projections. Let ∣𝐹 ∣ be the number of features
in the database, then the number of scans done by each mapper
is 𝑂(𝑘 ∗ ∣𝐹 ∣). Although the input split is kept in memory, this
high number of scans over the split is responsible for the main
part of the time taken by the mappers.

In this section, we propose an efficient approach to sig-
nificantly reduce the number of scans. Our approach that
incrementally computes the joint entropies, needs to do in each
step just one scan of the input split. Thus, the number of scans
done by this approach is 𝑂(𝑘).

To incrementally compute the entropy, our approach takes
advantage of the following lemma.

Lemma 4.3: Let 𝑋 be an itemset, and suppose we make an
itemset 𝑌 by adding a new feature 𝑖 to 𝑋 , i.e., 𝑌 = 𝑋 + {𝑖}.
Then, for each projection 𝑝 in 𝑋 two projections 𝑝1 = 𝑝.0,
and 𝑝2 = 𝑝.1 are generated in 𝑌 , and the sum of the frequency
of 𝑝1 and 𝑝2 is equal to that of 𝑝, i.e., 𝑓(𝑝) = 𝑓(𝑝1) + 𝑓(𝑝2).
proof. The projections of 𝑌 can be divided into two groups:
1) those that represent transactions containing 𝑖; 2) those
representing the transactions that do not involve 𝑖. For each
projection 𝑝1 in the first group, there is a projection 𝑝2 in
the second group, such that 𝑝1 and 𝑝2 differ only in one bit,
i.e., the bit that represents the feature 𝑖. If we remove this bit
from 𝑝1 or 𝑝2, then we obtain a projection in 𝑋 , say 𝑝, that
represents all transactions that are represented by 𝑝1 or 𝑝2.
Thus, for each project 𝑝 in 𝑋 , there are two projections 𝑝1
and 𝑝2 in 𝑌 generated from 𝑝 by adding one additional bit,
and the frequency of 𝑝 is equal to the sum of the frequencies
of 𝑝1 and 𝑝2. □

Our incremental approach for miki computing proceeds as
follows. Let 𝑋 be the miki in step 𝑗 . Initially, we set 𝑋 = {},
with a null projection whose frequency is equal to 𝑛, i.e., the
size of the database. Then, in each step 𝑗 (1 ≤ 𝑗 ≤ 𝑘), we
do as follows. For each remaining feature 𝑖 ∈ 𝐹 − 𝑋 , we
create a hash map ℎ𝑖,𝑗 containing all projections of the itemset
𝑋 + {𝑖}, and we initiate the frequency of each projection to
zero. Then, we scan the set of transactions in the input split
of the mapper. For each transaction 𝑡, we obtain a set 𝑆 that
is the intersection of 𝑡 and 𝐹 −𝑋 , i.e., 𝑆 = 𝑡∩ (𝐹 −𝑋). For
each feature 𝑖 ∈ 𝑆, we obtain the projection of 𝑡 over 𝑋+{𝑖},
say 𝑝2, and increment by one the frequency of the projection
𝑝2 in the hash map ℎ𝑖,𝑗 . After scanning all transactions of the
split, we obtain the frequency of all projections ending with 1.

For computing the projections ending with 0, we use Lemma
4.3 as follows. Let 𝑝.0 be a projection ending with 0, we find
the projection 𝑝.1 (i.e., the projection that differs only in the
last bit), and set the frequency of 𝑝.0 equal to the frequency
of 𝑝 minus that of 𝑝.1, i.e., 𝑓(𝑝.0) = 𝑓(𝑝) − 𝑓(𝑝.1). By this
way, we compute the frequency of projections ending with 0.

After computing the frequencies, we can compute the en-
tropy of itemset 𝑋 + {𝑖}, for each feature 𝑖 ∈ 𝐹 − 𝑋 . At
the end of each step, we add to 𝑋 the feature 𝑖 whose joint
entropy with 𝑋 is the highest. We keep the hash map of the
selected itemset, and remove all other hash maps including
that of the previous step. Then, we go to the next step until
finishing step 𝑘. Notice that to obtain the frequency of 𝑝 in
step 𝑗, we use the hash map of the previous step, i.e., 𝐻𝑖,𝑗−1,
this is why, at each step we keep the hash map of the selected
miki.

Let us now prove the correctness of our approach using
the following Theorem.

Theorem 4.4: Given a database 𝒟, and a value 𝑘 as the size
of requested miki. Then, our incremental approach computes
correctly the entropy of the candidate itemsets in all steps.
proof. To prove the correctness of our approach, it is sufficient
to show that in each step the projection frequencies of 𝑋+{𝑖}
are computed correctly. We show this by induction on the
number of steps, i.e., 𝑗 for 1 ≤ 𝑗 ≤ 𝑘.

Base. In the first step, the itemset 𝑋 + {𝑖} = {𝑖} because
initially 𝑋 = {}. There are two projections for {𝑖} : 𝑝1 = (0)
and 𝑝2 = (1). The frequency of 𝑝2 is equal to the number of
transactions containing 𝑖. Thus during the scan of the split,
we correctly set the frequency of 𝑝2. Since there is no other
projection for 𝑖, the frequency of 𝑝1 is equal to 𝑛 − 𝑓(𝑝2),
where 𝑛 is the size of the database. This frequency is found
correctly by our approach. Thus, for step 𝑗 = 1 our approach
finds correctly the projection frequencies of 𝑋 + {𝑖}.

Induction. we assume that our approach works correctly in
step 𝑗− 1, then we prove that it will work correctly in step 𝑗.
The proof can be done easily by using Lemma 4.3. According
this lemma, for each projection 𝑝 in step 𝑗 − 1 there are
two projections 𝑝1 = (𝑝.0), and 𝑝2 = (𝑝.1) in step 𝑗. The
frequency of 𝑝2 is computed correctly during the scan of the
split. We assume that the frequency of 𝑝 has been correctly
computed in step 𝑗 − 1. Then, Lemma 4.3 implies that the
frequency of 𝑝1 has been also well computed since we have
𝑓(𝑝) = 𝑓(𝑝1) + 𝑓(𝑝2). □
F. Complete Approach

Our approach depicts the core mining process of Parallel
Highly Informative 𝐾-itemSet Algorithm (PHIKS). The major
steps of PHIKS algorithm for miki discovery are summarized
in Algorithms 1 and 2. Algorithm 1 depicts the mining process
of the first MapReduce job of PHIKS, while Algorithm 2
depicts the mining process of its second MapReduce job.

V. EXPERIMENTS

To evaluate the performance of our PHIKS algorithm, we
have carried out extensive experimental tests. In section V-A,
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Algorithm 1: PHIKS: Job1

Input: 𝑛 data splits 𝒮 = {𝑆1, 𝑆2, . . . , 𝑆𝑛} of a database
𝒟, 𝐾 the size of miki

Output: A miki of Size 𝐾

//Mapper Class 1
map( 𝑘𝑒𝑦: Line Offset: 𝒦1, 𝑣𝑎𝑙𝑢𝑒 = Whole 𝑆𝑖: 𝒱1 )

- ℱ𝑖 ← the set of features in 𝑆𝑖

- ∀𝑓 ∈ ℱ𝑖 compute 𝐻(𝑓) on 𝑆𝑖, using prefix/suffix
- 𝑛← 1 // current size of itemsets
- HInFS ← 𝑚𝑎𝑥(𝐻(𝑓)),∀𝑓 ∈ ℱ𝑖

// HInFS is the itemset of size 𝑛
// having the highest entropy
while 𝑖 ∕= 𝑘 do

- 𝑛++
- 𝒞𝑛 ← BuildCandidates(HInFS, ℱ𝑖∖HInFS)
- ∀𝑐 ∈ 𝒞𝑝, 𝐻(𝑐𝑖)← ComputeJointEntropy(𝑐, 𝑆𝑖)
- HInFS ← 𝑚𝑎𝑥(𝐻(𝑐)),∀𝑐 ∈ 𝒞𝑛

// 𝒞𝑘 contains all the candidate itemsets of size 𝑘
// and ∀𝑐 ∈ 𝒞𝑘, the joint entropy of 𝑐 is in 𝐻(𝑐𝑖)
for 𝑐 ∈ 𝒞𝑘 do

- 𝒫𝑐 ← projections(𝑐, 𝑆𝑖)
for 𝑝 ∈ 𝒫𝑐 do

- emit(𝑘𝑒𝑦 = 𝑐 : 𝑣𝑎𝑙𝑢𝑒 = 𝑝)

//Reducer Class 1
reduce( 𝑘𝑒𝑦: itemset 𝑐,

𝑙𝑖𝑠𝑡(𝑣𝑎𝑙𝑢𝑒𝑠): projections(𝑐) )
if 𝑐 has been emitted by all the mappers then

// We have all the projections of 𝑐 on 𝒟
// we store its entropy in a file "complete"
- 𝐻(𝑐)← IncrJointEntropy(𝑐,projections(𝑐))
- emit(𝑐,𝐻(𝑐)) in a file Complete

else
// Missing nformation. We have to estimate
// the upper bound of c’s joint entropy
// and store it in a file "Incomplete"
- 𝐸𝑠𝑡← UpperBound(𝑐,projections(𝑐))
- emit(𝑐, 𝐸𝑠𝑡) in a file "Incomplete"

close( )
- 𝐶𝑚𝑎𝑥 ← CandidateWithMaxEntropy("Complete")
- emit(𝐶𝑚𝑎𝑥, 𝐻(𝐶𝑚𝑎𝑥))

in a file "CompleteMaxFromJob1"
for 𝑐 ∈ "Incomplete" do

if 𝐸𝑠𝑡(𝑐) > 𝐻(𝐶𝑚𝑎𝑥) then
// c is potentially a miki, it has
// to be checked over 𝒟
- emit(c,Null) in a file "ToBeTested"

Algorithm 2: PHIKS: Job2
Input: Database 𝒟, 𝐾 miki Size
Output: Tested miki of Size 𝐾

//Mapper Class 2
map( 𝑘𝑒𝑦: Line Offset: 𝒦1, 𝑣𝑎𝑙𝑢𝑒 = Transaction: 𝒱1 )

- Read file ’ToBeTested’ from Job1 (once) in the
mapper
- ℱ ← set of itemsets in ’ToBeTested’
for 𝑓 ∈ ℱ do

- 𝑝← projections(𝑓 , 𝒱1)
emit (𝑘𝑒𝑦: 𝑓 , 𝑣𝑎𝑙𝑢𝑒: 𝑝)

//Reducer Class 2
reduce( 𝑘𝑒𝑦: itemset 𝑓 ,

𝑙𝑖𝑠𝑡(𝑣𝑎𝑙𝑢𝑒𝑠): projections(𝑓 ) )
// we have all the projections of 𝑓 on 𝒟 that come
// from all mappers
// we compute its joint entropy and we write the
result to a file
// "CompleteFromJob2"
- 𝐻(𝑓)← IncrJointEntropy(𝑓 ,projections(𝑓 ))
- write(𝑓 , 𝐻(𝑓)) to a file "CompleteFromJob2" in
HDFS
// optional, we emit the result of use later, from the
close() method
- emit (𝑘𝑒𝑦: 𝑓 , 𝑣𝑎𝑙𝑢𝑒: 𝐻(𝑓))

close( )
// emit miki having highest joint entropy
- read file "CompleteMaxFromJob1"
- read file "CompleteFromJob2"
- Max ← max("CompleteMaxFromJob1",

"CompleteFromJob2")
- emit(miki,Max)

we depict our experimental setup, and in section V-B we
investigate and discuss the results of our different experiments.

A. Experimental Setup

We implemented PHIKS algorithm on top of Hadoop-
MapReduce using Java programming language version 1.7 and
Hadoop [13] version 1.0.3.

To better evaluate the performance of PHIKS algorithm,
we used two real-world data sets. The first one is the 2014
English Wikipedia data set articles [20], having a total size of
49 Gigabytes and composed of 5 million articles. The second
data set is a sample of ClueWeb English data set [21] with size
of around one Terabyte and having 632 million articles. For
each data set, we performed a data cleaning task; we removed
all English stop words from all articles, and obtained data sets
where each article represents a transaction (features are the
corresponding words in the article).

For comparison, we implemented a parallel version of
Forward Selection [7] algorithm. To specify each presented
algorithm, we adopt the notations as follow. We denote by
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Fig. 1: Runtime and scalability on English Wikipedia data set
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Fig. 2: Runtime and scalability on ClueWeb data set
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’PFWS’ a parallel implementation of Forward Selection algo-
rithm, by ’Simple-PHIKS’ an implementation of our basic two
rounds algorithm without any optimization, and by ’Prefix’
an extended version of Simple-PHIKS algorithm that uses
the Prefix/Suffix method for accelerating the computations
of the projection values. We denote by ’Upper-B’ a version
of our algorithm that reduces the number of candidates by
estimating the joint entropies of miki based on an upper bound
joint entropy. We denote by ’Upper-B-Prefix’ an extended
version of Upper-B algorithm that employs the technique
of prefix/suffix. Lastly, we denote by ’PHIKS’ an improved
version of Upper-B-Prefix algorithm that uses the method of
incremental entropy for reducing the number of data split scans
at each mapper.

We carried out all our experiments on the Grid5000 [22]
platform, which is a platform for large-scale data processing.
In our experiments, we have used clusters of 16 and 48
nodes respectively for Wikipedia and ClueWeb data sets.
Each machine is equipped with Linux operating system, 64
Gigabytes of main memory, Intel Xeon X3440 4 core CPUs
and 320 Gigabytes SATA hard disk. In our experiments, we
measured the response time of the compared algorithms, which
is the time difference between the beginning and the end of a
maximally informative 𝑘-itemsets mining process.

B. Runtime and Scalability

Figures 1 and 2 show the results of our experiments on
both English Wikipedia and ClueWeb data sets. Figures 1(a)
and 1(b) report our experimental results on the whole English
Wikipedia data set. Figure 1(a) reports the performance results
for an itemset of size 𝑘 varying from 2 to 8. We see that
the response time of Forward Selection algorithm (PFWS)
grows exponentially and gets quickly very high compared to
other presented algorithms. Above a size 𝑘 = 5 of itemsets,
PFWS cannot continue scaling. This is due to the multiple
database scans that it performs to determine an itemset of size
𝑘 (i.e., PFWS needs to perform 𝑘 MapReduce jobs). In the
other hand, the performance of Simple-PHIKS algorithm is
better than PFWS; it continues scaling with higher 𝑘 values.
This difference in the performance between the two algorithms
illustrates the significant impact of itemset mining in the two
rounds architecture.

Moreover, by using further optimizing techniques, we
clearly see the improvements in the performance. In par-
ticular, with an itemset having size 𝑘 = 8, we observe a
good performance behavior of Prefix comparing to Simple-
PHIKS. This performance gain in the runtime reflects the
efficient usage of Prefix/Suffix technique for speeding up miki
parallel extraction. Interestingly, by estimating miki at the first
MapReduce job, we record a very good response time as
shown by Upper-B algorithm. In particular, with 𝑘 = 8 we see
that Upper-B algorithm roughly outperforms Simple-PHIKS
by a factor of 3. By coupling the Prefix/Suffix technique with
Upper-B algorithm, we see very good improvements in the
response time, which is achieved by Upper-B-Prefix. Finally,
by taking advantage of our incremental entropy technique

for reducing the number of data split scans, we record an
outstanding improvement in the response time, as shown by
PHIKS algorithm.

Figure 1(b) highlights the difference between the algorithms
that scale in Figure 1(a). Although Upper-B-Prefix continues to
scale with 𝑘 = 8, it is outperformed by PHIKS algorithm. With
itemsets of size 𝑘 = 15, we clearly observe a big difference
in the response time between Upper-B-Prefix and PHIKS.
The significant performance of PHIKS algorithm illustrates
its robust and efficient core mining process.

In Figures 2(a) and 2(b), similar experiments have been
conducted on the ClueWeb data set. We observe that the same
order between all algorithms is kept compared to Figures
1(a) and 1(b). In particular, we see that PFWS algorithm
suffers from the same limitations as could be observed on
the Wikipedia data set in Figure 1(a). With an itemset size
of 𝑘 = 8, we clearly observe a significant difference between
PHIKS algorithm performance and all other presented alter-
natives. This difference in the performance is better illustrated
in Figure 2(b). By increasing the size 𝑘 of miki from 8 to 11,
we observe a very good performance of PHIKS algorithm.
Although, Upper-B-Prefix algorithm scales with 𝑘 = 11, it is
outperformed by PHIKS.

C. Data Communication

Figure 3 gives a complete overview on the total number
of miki candidates being tested at the second MapReduce job
for both Simple-PHIKS and PHIKS algorithms. Figure 3(a)
illustrates the number of miki candidates being validated at
the first MapReduce job on the Wikipedia data set. By varying
the parameter size 𝑘 of itemsets from 2 to 8, we observe a
significant difference in the number of miki candidates being
sent by each algorithm to its second MapReduce job. With 𝑘 =
8, Simple-PHIKS algorithm sends to its second job roughly 6
times more candidates than PHIKS. This important reduction
in the number of candidates to be tested in the second job
is achieved due to our efficient technique for estimating the
joint entropies of miki with very low upper bounds. Likewise,
in Figure 3(b), we record a very good performance of PHIKS
comparing to Simple-PHIKS. This outstanding performance
of Simple-PHIKS algorithm reflects its high capability and its
effectiveness for a very fast and successful miki extraction.

VI. RELATED WORK

In data mining literature, several endeavors have been made
to explore informative itemsets (or featuresets, or set of
attributes) in databases [2] [23] [4] [7]. Different measures
of itemset informativeness (e.g., frequency of itemset co-
occurrence in the database etc.) have been used to identify and
distinguish informative itemsets from non-informative ones.
Mining itemsets based on the co-occurrence frequency (e.g.,
frequent itemset mining) measure does not capture all depen-
dencies and hidden relationships in the database, especially
when the data is sparse [4]. Therefore, other measures must be
taken into account. Low and high entropy measures of itemsets
informativeness were proposed [4]. The authors of [4] propose
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the use of tree based structure without specifying a length
𝑘 of the informative itemsets to be discovered. However, as
the authors of [4] mentioned, such an approach results in a
very large output. [7] suggests to use a heuristic approach to
extract informative itemsets of length 𝑘 based on maximum
joint entropy. Such maximally informative itemsets of size 𝑘 is
called miki. This approach captures the itemsets that have high
joint entropies. An itemset is a miki if all of its constructing
items shatter the data maximally. The items within a miki
are not excluding, and do not depend on each other. [7]
proposes a bunch of algorithms to extract miki. A brute force
approach consists of performing an exhaustive search over the
database to determine all miki of different sizes. However,
this approach is not feasible due to the large number of
itemsets to be determined, which results in multiple database
scans. Another algorithm proposed in [7] consists of fixing a
parameter 𝑘 that denotes the size of the miki to be discovered.
This algorithm proceeds by determining a top 𝑛 miki of size 1
having highest joint entropies, then, the algorithm determines
the combinations of 1-miki of size 2 and returns the top 𝑛 most
informative itemsets. The process continues until it returns the
top 𝑛 miki of size 𝑘.

The problem of extracting informative itemsets was not only
proposed for mining static databases. There have been also
interesting works in extracting informative itemsets in data
streams [24] [25]. The authors of [8] proposed an efficient
method for discovering maximally informative itemsets (i.e.,
highly informative itemsets) from data streams based on
sliding window.

Parallel mining of informative itemsets from large databases
based on frequency informativeness measure has received
much attention recently [26] [27] [28]. However, and to the
best of our knowledge, there has been no prior work on parallel
discovery of maximally informative 𝑘-itemsets from massive,
distributed, databases.

VII. CONCLUSION

In this paper, we proposed a reliable and efficient MapRe-
duce based parallel maximally informative 𝑘-itemset algorithm
namely PHIKS, that has shown significant efficiency in terms
of runtime and scalability. PHIKS elegantly determines miki
in very large databases with at most two rounds. With PHIKS,
we propose a bunch of optimizing techniques that renders
the miki mining process very fast. These techniques concern
the architecture at a global scale, but also the computation
of entropy on distributed nodes, at a local scale. The result
is a fast and efficient discovery of miki with high itemset
size. Such ability to use high itemset size is mandatory when
dealing with Big Data and particularly one Terabyte like what
we have done in our experiments. Our results show that PHIKS
algorithm outperforms other alternatives by several orders of
magnitude, and makes the difference between an inoperative
and a successful miki extraction.
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