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Abstract
Phylogenetic networks represent the evolution of organisms that have undergone reticulate

events, such as recombination, hybrid speciation or lateral gene transfer. An important way

to interpret a phylogenetic network is in terms of the trees it displays, which represent all the

possible histories of the characters carried by the organisms in the network. Interestingly,

however, different networks may display exactly the same set of trees, an observation that

poses a problem for network reconstruction: from the perspective of many inference meth-

ods such networks are indistinguishable. This is true for all methods that evaluate a phylo-

genetic network solely on the basis of how well the displayed trees fit the available data,

including all methods based on input data consisting of clades, triples, quartets, or trees

with any number of taxa, and also sequence-based approaches such as popular formalisa-

tions of maximum parsimony and maximum likelihood for networks. This identifiability prob-

lem is partially solved by accounting for branch lengths, although this merely reduces the

frequency of the problem. Here we propose that network inference methods should only at-

tempt to reconstruct what they can uniquely identify. To this end, we introduce a novel defi-

nition of what constitutes a uniquely reconstructible network. For any given set of

indistinguishable networks, we define a canonical network that, under mild assumptions, is

unique and thus representative of the entire set. Given data that underwent reticulate evolu-

tion, only the canonical form of the underlying phylogenetic network can be uniquely recon-

structed. While on the methodological side this will imply a drastic reduction of the solution

space in network inference, for the study of reticulate evolution this is a fundamental limita-

tion that will require an important change of perspective when interpreting

phylogenetic networks.

Author Summary

We consider here an elementary question for the inference of phylogenetic networks: what
networks can be reconstructed. Indeed, whereas in theory it is always possible to recon-
struct a phylogenetic tree, given sufficient data for this task, the same does not hold for
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phylogenetic networks: most notably, the relative order of consecutive reticulate events
cannot be determined by standard network inference methods. This problem has been de-
scribed before, but no solutions to deal with it have been put forward. Here we propose
limiting the space of reconstructible phylogenetic networks to what we call “canonical net-
works”. We formally prove that each network has a (usually unique) canonical form—

where a number of nodes and branches are merged—representing all that can be uniquely

reconstructed about the original network. Once a canonical network N̂ is inferred, it must
be kept in mind that—even with perfect and unlimited data—the true phylogenetic net-

work is just one of the potentially many networks having N̂ as canonical form. This is an
important difference to what biologists are used to for phylogenetic trees, where in princi-
ple it is always possible to resolve uncertainties, given enough data.

Introduction
Explicit [1] or evolutionary [2, 3] phylogenetic networks are used to represent the evolution of
organisms or genes that may inherit genetic material from more than one source. This may be
caused by events such as hybrid speciation (e.g. in plants and animals [4, 5]), horizontal gene
transfer (e.g. in bacteria [6, 7]), viral reassortment [8], or recombination (e.g. in viruses [9, 10]
or in the genomes of sexually reproducing species [11–13]). They are called “explicit” to distin-
guish them from “implicit” [14], “abstract” [1] or “data-display” [3] phylogenetic networks,
which are used to display collections of alternative evolutionary hypotheses supported by con-
flicting signals in the data. In explicit networks, multiple-inheritance events are represented as
reticulations, that is, nodes where two or more lineages converge to give rise to a new lineage,
whose genetic material is a combination of that of its direct ancestors.

Explicit networks can be interpreted in terms of classic, tree-like evolution: if we focus on a
single, indivisible and thus non-recombining inherited character (for example a single site in a
DNA sequence), its history is still best described by a tree. This observation gives rise to the no-
tion of trees displayed by a network, which are all the possible single-character histories implied
by a phylogenetic network. (See, e.g., Fig. 1, where T1, T2 and T3 are the trees displayed by net-
works N1 and N2. Formal definitions are in the Results section.)

Several works in the last few years have focused on the methodology for phylogenetic net-
work inference, and data-display networks in particular have begun to make a real impact on
the everyday practice of biologists (e.g., [15–17]). There remains, however, a strong demand
for automatic reconstruction of networks that not only display conflicting signals in the data,
but also seek to explain these signals with explicit inferences of past reticulation events (see,
e.g., [18–20]). This is evidenced, for example, by the abundance of manually reconstructed net-
works in the literature [8, 21–27]. As a result of this demand, the inference of explicit networks
is now a rapidly growing field of research [1].

Some paradigms in the proposed methodology are beginning to emerge. Not surprisingly,
the notion of trees displayed by a phylogenetic network plays a central role: the general idea is
to evaluate the fit of a network N with the data indirectly—on the basis of how well the trees
displayed by N explain the data. In the following, we describe how this applies to the two main
approaches for explicit network reconstruction: consistency-based approaches (see [28] for a
survey)—seeking a network consistent with a number of prior evolutionary inferences (typical-
ly trees or groupings of taxa)—and sequence-based approaches, such as standard formulations
of maximum parsimony and maximum likelihood for networks [2, 29–33].

Phylogenetic Networks: What Can Be Reconstructed
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Although evaluating a network via the trees it displays is evolutionarily meaningful, it has a
problematic consequence: from the perspective of these reconstruction methods, all networks
displaying the same set of trees are “indistinguishable”, as the function that these methods seek
to optimize will always assign the same score to all networks displaying the same set of trees, re-
gardless of the input data. In other words, the central parameter of phylogenetic network infer-
ence, the network itself, is in some cases not identifiable.

An Identifiability Problem
As an example, consider again networks N1 and N2 in Fig. 1, which display the same trees T (N)
= {T1, T2, T3}. (In the following, T (N) denotes the set of trees displayed by N.) By displaying
the same trees, these networks display the same clades, the same triples, the same quartets (tri-
ples and quartets are rooted subtrees with 3 leaves and unrooted subtrees with 4 leaves, respec-
tively) and in general the same subtrees with an arbitrary number of leaves. Therefore, any
method that reconstructs a network based on its consistency with collections of such data will
not be able to distinguish between networks N1 and N2. This includes all the methods whose
data consists of clusters of taxa (e.g., [34]), triples (e.g., [35]), quartets (e.g., [36]), or any trees
(e.g., [37]).

The same holds for many, sequence-based, maximum parsimony and maximum likelihood
approaches proposed in recent papers. For maximum parsimony, a practical approach [2, 29–
31] is to consider that the input is partitioned in a number of alignments A1, A2, . . ., Am, each
from a different non-recombining genomic region (possibly consisting of just one site each),
and then take, for each of these alignments, the best parsimony score Ps(TjAi) among all those
of the trees displayed by a network N. The parsimony score of N is then the sum of all the parsi-
mony scores thus obtained. Formally, we have

PsðNjA1;A2; . . . ;AmÞ ¼
Xm

i¼1

min
T2T ðNÞ

PsðTjAiÞ:

It is clear that if two networks display the same set of trees (as in Fig. 1), then their parsimony
score with respect to any input alignments will be the same—because they take the minimum

Fig 1. Indistinguishable network topologies. The network topologies N1 andN2 are indistinguishable to
most current approaches for network reconstruction, as they display the same tree topologies T1, T2 and T3.

doi:10.1371/journal.pcbi.1004135.g001
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value over the same set T (N)—and thus they are indistinguishable to any method based on the
maximum parsimony principle above.

As for maximum likelihood (ML), Nakhleh and collaborators [2, 32, 33, 38] have proposed
an elegant framework whereby a phylogenetic network N is not only described by a network to-
pology, but also edge lengths and inheritance probabilities associated to the reticulations of N.
As a result, any tree T displayed by N has edge lengths—allowing the calculation of its likeli-
hood Pr(AjT) with respect to any alignment A—and an associated probability of being ob-
served Pr(TjN). The likelihood function with respect to a set of alignments A1, A2, . . ., Am,
each from a different non-recombining genomic region, is then given by:

PrðA1;A2; . . . ;AmjNÞ ¼
Ym

i¼1

PrðAijNÞ ¼
Ym

i¼1

X

T2T ðNÞ
PrðAijTÞ PrðTjNÞ:

Note that an important difference with the consistency-based and parsimony methods de-
scribed above is that any tree T displayed by a network has now edge lengths and an associated
probability Pr(TjN).

Unfortunately, this ML framework is also subject to identifiability problems. For example, it
does not allow us to distinguish between networks with topologies N1 and N2 in Fig. 1: for
every assignment of edge lengths and inheritance probabilities to N1, there exist corresponding
assignments to N2 that make the resulting networks indistinguishable, that is, displaying the
same trees, with the same edge lengths and the same probabilities of being observed (see the
last section in the Supporting Information, S1 Text). As a result, the likelihoods of these two
networks will be identical, regardless of the data, and no method based on this definition of
likelihood will be able to favour one of them over the other. We refer to S1 Text for a more de-
tailed discussion about networks with inheritance probabilities and likelihood-
based reconstruction.

In general, we believe that these identifiability problems affect all network inference meth-
ods which seek consistency with unordered collections of sequence alignments or pre-inferred
attributes such as clusters, triples, quartets or trees.

The Importance of Edge Lengths
In this paper, as in the ML framework above, we adopt networks and trees with edge lengths as
the primary objects of our study. The primary motivation for this is that this choice makes our
results directly relevant to the statistical approaches for network inference, all of which need
edge lengths to measure the fit of a phylogeny with the available data. In addition to ML, these
approaches include distance-based and Bayesian methods [39], which are also promising for
future work.

However, there is another motivation for our choice: accounting for edge lengths solves
some of the identifiability problems outlined above, as in some cases it allows to distinguish be-
tween networks with different topologies, which would be otherwise impossible to tell apart.
For example, consider the three network topologies in Fig. 2 (top), where taxon o is an out-
group used to identify the root of the phylogeny for a, b and c. These networks show three very
different evolutionary histories: in N1 taxon b is the only one issued of a reticulation event—in
other words the genome of b is recombinant—whereas in N2 and N3, it is a and c, respectively,
that are recombinant. However, N1, N2 and N3 display the same tree topologies—those of T1

and T2—and thus would be indistinguishable to any approach that does not model
edge lengths.

If instead edge lengths are accounted for (e.g. in a ML context) and the data supports T1 and
T2 with the edge lengths in Fig. 2, then the only network fitting perfectly the data is N2, with

Phylogenetic Networks: What Can Be Reconstructed
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the edge lengths in Fig. 2 (bottom right). It is easy to check that N2 now displays T1 and T2 with
the shown edge lengths, whereas no edge length assignment to N1 or N3 can make these net-
works display T1 and T2.

We note that, throughout this paper, as in classical likelihood approaches, edge lengths mea-
sure evolutionary divergence, for example in terms of expected number of substitutions per
site. No molecular clock is assumed, meaning that we do not expect edge lengths to be propor-
tional to time.

Remaining Identifiability Problems, and a Proposed Solution
Unfortunately, accounting for edge lengths only solves some of the identifiability problems for
phylogenetic networks. Consider networks N1 and N2 in Fig. 3: for any set of edge lengths for
N1, there exist an infinity of edge length assignments for N2 that make these two networks dis-
play exactly the same set of trees with the same edge lengths. In the following, we say that net-
works such as N1 and N2 are indistinguishable.

In fact it is not difficult to construct other examples of indistinguishable networks: each
time a network has a reticulation v giving birth to only one edge (i.e. with outdegree 1), then we
can reduce by Δλ the length of this edge and correspondingly increase by Δλ the lengths of the
edges ending in v, without altering the set of trees displayed by the network. Note that this op-
eration, which we refer to as “unzipping” reticulation v, can result in v coinciding with a specia-
tion node or a leaf when Δλ is taken to equal the length of the edge going out of v. For example
in Fig. 3, one may fully unzip the two reticulation nodes in N1, thus obtaining the network N0

of Fig. 4. As expected, N1 and N0 display the same set of trees ({T1, T2, T3}) and are thus indis-
tinguishable. What is most interesting in this example is that, if we fully unzip the two reticula-
tions in N2 (the other network in Fig. 3, also displaying {T1, T2, T3}), then we eventually end up
obtaining N0 again. As we shall see in the following, this is not a coincidence: the unzipping
transformations described above lead to what we call the canonical form of a network; under
mild assumptions, two networks are indistinguishable if and only if they have the same

Fig 2. Edge lengths are informative to distinguish among different network topologies. The only
network topology, among N1, N2 andN3 that can display simultaneously T1 and T2 with the indicated edge
lengths is N2: see for example the edge lengths assignment in the bottom right corner.

doi:10.1371/journal.pcbi.1004135.g002
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canonical form (e.g. N1, N2 in Fig. 3 have the same canonical form N0; formal definitions and
statements in the Results section).

Here, we propose to deal with the identifiability issues for phylogenetic networks in the fol-
lowing way: since no data will ever enable any of the standard inference methods described
above to prefer a network over all of its indistinguishable equivalents, we propose that these
methods should only attempt to reconstruct what they can uniquely identify, that is, networks in

Fig 3. Two networks with edge lengthsN1,N2 displaying the same set of trees T (N1) = T (N2) = {T1, T2, T3}. For any choice of edge lengths λ1, λ2, . . ., λ12
for N1, we define a family of edge length assignments for N2, parameterized by x, y (with -y< x<min{λ6, λ5 + λ8}, 0< y< λ7).

doi:10.1371/journal.pcbi.1004135.g003

Fig 4. Canonical form ofN1 andN2 in Fig. 3.

doi:10.1371/journal.pcbi.1004135.g004
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canonical form. This is a radical shift, not only for the developers of phylogenetic inference
methods, who will see a drastic reduction of the solution space of their algorithms, but also for
evolutionary biologists, who should abandon their hopes of seeing a network such as N1 or N2

in Fig. 3 being reconstructed by these inference methods.

Previous Work and Comparison
Limiting the scope of network reconstruction to topologically-constrained classes of networks
has been a recurring theme and an important goal in the literature on phylogenetic networks.
Examples of such classes include galled trees [40, 41], galled networks [42], level-k networks [43],
tree-child networks [44], tree-sibling networks [45], networks with visible reticulations [1]. Al-
though the ultimate goal should be to establish what can be inferred from biological data, most
of the proposed definitions are computationally-motivated: in general the rationale behind
these classes is the possibility of devising an efficient algorithm to solve some formalization of
the reconstruction problem. None of these definitions claims to have biological significance.

Our goals are more basic: starting from the observation that not all phylogenetic networks
are identifiable, since many of them are mutually indistinguishable with most inference ap-
proaches, we aim to define a class of networks that is (existence goal) large enough that every
phylogenetic network has an equivalent (i.e. indistinguishable) network within this class and
(distinguishability goal) small enough that no two networks within this class are indistinguish-
able. From our standpoint, the computationally-motivated definitions above are at the same
time too broad and too restrictive. Too broad, because they determine a set of networks that in-
cludes many pairs of indistinguishable networks: for example the three indistinguishable net-
works in Fig. 2 are all galled trees—and thus belong to every single one of the classes
mentioned above (which are all generalizations of galled trees). Too restrictive, because these
classes of networks do not include simple networks that it should be possible to reconstruct
from real data. For example, Fig. 5a shows a network N with edge lengths that is not tree-sib-
ling, nor has the visible property, and thus is not galled, nor tree-child (for definitions, see [1]),
but which in practice should be reconstructible: apart from the lengths of three edges (x, y, z),
N is uniquely determined by the trees that it displays (a consequence of the formal results that
we will show in the following), meaning that, given large amounts of data strongly supporting
each of these (seven) trees with their correct edge lengths, any method for network inference
properly accounting for edge lengths (e.g. based on ML) should be able to reconstruct N, or its
canonical form N0.

Fig 5. Examples of networks that can be uniquely recovered from the data they generate, despite
being excluded by many proposed definitions of reconstructible networks. (a) A networkN, and its
canonical form N0, whose topologies are not galled trees, nor galled, tree-child, tree-sibling or regular
networks, nor networks with visible reticulations. N, however, is uniquely determined by the trees it displays,
with the exception of x, y and z, which can assume any value between 0 and 0.1. Because of the impossibility
to determine these values, the canonical form N0 has the corresponding edges collapsed. As N0 is a network
in canonical form satisfying the mild conditions of Corollary 2, N0 is uniquely determined by the trees it
displays. Note that N provides the biological interpretation for N0. (b) The network topology ofN0 0 is such that
there exists no regular network displaying the same set of (two) tree topologies as N0 0. Thus, restricting the
scope of phylogenetic inference to regular networks would be very limiting. In our framework, N0 0 is a network
in canonical form and thus uniquely determined by the trees it displays.

doi:10.1371/journal.pcbi.1004135.g005
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To the best of our knowledge, only three classes of networks have claims of unique identifia-
bility: reduced networks [46, 47], regular networks [48] and binary galled trees with no gall con-
taining exactly 4 nodes [49]. These approaches bear some resemblances to ours, but do not
include edge lengths in the definition of a network. Moreover, we argue that these classes of
networks are still too narrow to be biologically relevant. We briefly describe and comment
these previous works below.

Moret et al. [46] defined notions of reconstructible, indistinguishable and reduced networks
that resemble concepts that we will introduce here. Although some of their results were flawed
[47, 50], some of the arguments in this introduction are inspired by their paper. Particularly
relevant to the current paper is a reduction algorithm to transform a network into its reduced
version. (However, the exact definition of the reduced version is unclear: as one of the authors
later pointed out [47], “the reduction procedure of Moret et al. [46] is, in fact, inaccurate” and
“in this paper we do not attempt to fix the procedure”.) The concept of reduced version is anal-
ogous to that of canonical form here, as the authors claim that networks displaying the same
tree topologies have the same reduced version (up to isomorphism; Theorem 2 in [46]). This is
somehow a weaker analogue of one of our results (Corollary 1); weaker, because it does not
claim that, conversely, networks with the same reduced version display the same tree topolo-
gies. To have an idea of the difference between our canonical form and the reduced version of
Moret and colleagues, in Fig. 6 we compare the canonical form and the reduced version of the
same network N1. (N1 and its reduced version are taken from Fig. 15 of [46] to avoid possible
issues with the reduction algorithm.) As one can see, the canonical form retains more of the
complexity of the original network.

Another reduction procedure on network topologies has been studied by Gambette and
Huber [49], who prove that if two network topologies reduce to the same topology, then they
must display the same tree topologies. Again, this is analogous to, but somehow weaker than
our results, since it only provides a sufficient condition for networks to be indistinguishable
(which in their context means to display the same tree topologies). This means that there can
be irreducible networks that are indistinguishable (e.g. those in Fig. 2) thus failing to achieve
the distinguishability goal. Moreover, Gambette and Huber [49] show that a particular class of
network topologies (binary galled trees with no gall containing exactly 4 nodes) are uniquely
identified by the tree topologies they display. It is clear that this class is too small to achieve the
existence goal.

Finally, a regular network is a network topology N in which, among other requirements, no
two distinct nodes have the same set of descendant leaves (see [48] for a formal definition and
characterizations). This requirement implies, among other things, that N cannot contain any
reticulation v with outdegree 1 (v and its direct descendant would have the same descendant
leaves), which in turn implies that regular networks are special cases of our canonical networks
(the latter however also specify edge lengths). In fact regular networks satisfy a property that is
analogous to the one we prove here for canonical networks: a regular network N is uniquely de-
termined by the tree topologies that it displays [51], meaning that there can be no other regular
network N0 displaying exactly the same set of tree topologies. Willson [51] shows this construc-
tively by providing an algorithm that, given the (exponentially large) set of tree topologies dis-
played by a regular network R, reconstructs R itself. However, unlike for our canonical forms,
for a given network there may exist no regular network displaying the same set of trees (e.g.
consider the topology of N00 in Fig. 5b), thus failing to meet the existence goal. Regularity is in
fact a very restrictive constraint for a network. For example, none of the networks in Fig. 5 and
Fig. 7 is regular, despite the fact that their topologies are uniquely determined by the trees with
edge lengths that they display (a consequence of our results further below). Finally, going back
to Fig. 6, collapsing the edge above taxa c and d in R(N1) yields the regular network displaying

Phylogenetic Networks: What Can Be Reconstructed
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the same tree topologies as N1 and N2. Again, this shows that the canonical form retains more
of the complexity of the original network than its regular counterpart.

Results
Our main result consists of formally proving that for every network N there exists a network N0

in canonical form, indistinguishable from N; moreover, if we restrict ourselves to networks

Fig 6. Comparison between the reduced version and the canonical form of a network.N1 is the network topology in Fig. 15a of [46], where edges
leading to extinct taxa are shown in grey, and reticulation events are represented by horizontal lines connecting the involved edges. N2 is a phylogenetic
network on the same set of taxa displaying the same evolutionary history, and showing edge lengths. R(N1) is the reduced version of N1 (Fig. 15b of [46]).N0

2

is the canonical form of N2. Comparing R(N1) andN0
2 reveals the difference in expressive power between reduced versions and canonical forms. Collapsing

the edge above c and d in R(N1) yields the regular network displaying the same tree topologies as N1 andN2. Clearly, the reduced form R(N1) (and the
regular form) retain less of the complexity of the original networkN1 than the canonical form N0

2. For example in R(N1) there remains no sign of the reticulate
events ancestral to taxon e.

doi:10.1371/journal.pcbi.1004135.g006
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satisfying a mild condition (the NELP property below), such canonical form N0 is unique (see
Theorem 1). In other words, although in general a phylogenetic network N is not uniquely re-
coverable from the data it generates, there always exists a canonical version N0 of N that is in-
deed determined by the data. Informally, N0 is all that can be reconstructed about N.

In order to formally state this result, we here introduce a theoretical framework for explicit
phylogenetic networks with branch lengths. A directed acyclic graph (DAG) is a simple direct-
ed graph that is free of directed cycles. A DAG is rooted if it contains precisely one node of
indegree 0, called the root. All nodes of outdegree 0 in a DAG are called leaves. A weighted root-
ed phylogenetic network N = (V, E, φ, Λ) on X (in this paper also called a network for simplicity)
consists of a rooted DAG (V, E) whose leaves are bijectively labeled (via φ:X! V) with the ele-
ments of X (called taxa). Moreover, each edge e 2 E is associated to a set of positive weights,
called lengths, Λ(e)� R>0. Figs. 3, 4, 5 contain examples of networks. A reticulation of a net-
work N is a node v 2 V with indegree greater than 1. A weighted phylogenetic tree on X (a tree
for simplicity) is a network on X with no reticulations and such that each edge e has a unique
length (jΛ(e)j = 1), which we denote by λ(e). Below, we discuss the biological justification of
various aspects of the definitions above.

Let v be a node with indegree 1 and outdegree 1 in a tree. Node v is said to be suppressible.
Suppressing vmeans removing the in-edge e = (u, v) and the out-edge f = (v, w) and then creat-
ing a new edge g = (u, w) with length λ(g) = λ(e) + λ(f). Let N = (V, E, φ, Λ) be a network on X.
A tree contained in N is a tree T = (V0,E0,φ0,λ) on the same taxon set X such that: (1) the roots
of T and N coincide, (2) the nodes and edges of T are also nodes and edges of N, that is V0 � V
and E0 � E, (3) taxon labels are unchanged, that is φ0 = φ, and (4) the edge lengths of T are also
edge lengths of N, that is, for every edge e 2 E0, λ(e) 2 Λ(e). A tree displayed by N is a tree T0

that can be obtained (up to isomorphism) by suppressing all suppressible nodes from a tree
contained in N. The set of trees displayed by N is denoted by T (N). In Fig. 7, T ðN 0

2Þ is the set of
trees isomorphic to T 0

1 and T
0
2. Two networks N1 and N2 are said to be indistinguishable if they

Fig 7. Trees displayed by a network. A rooted networkN0
2, and the trees it displays (T 0

1 and T 0
2), obtained by

removing a segment of length 0.5 from the outgroup lineage of N2 in Fig. 2. In our formal setting, a network
such as N2 in Fig. 2 can either be represented as N0

2 (by omitting the outgroup lineage, or part of it), or by
rooting it in its outgroup (not shown).

doi:10.1371/journal.pcbi.1004135.g007
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display the same set of trees, that is T (N1) = T (N2). For example, N1 and N2 in Fig. 3 are indis-
tinguishable, as they display the same set of trees (T1, T2 and T3, up to isomorphism).

Definition 1. Given a network N, a funnel is a node with indegree greater than 0 and outde-
gree 1. A funnel-free network, or canonical network, is a network that does not contain funnels.
A canonical form of a network N is a network that is funnel-free and indistinguishable from N.

In Fig. 3, N1 and N2 each contain two funnels, and thus are not funnel-free. The network N0

in Fig. 4 is a canonical form of N1 and N2 in Fig. 3, as N0 is funnel-free and indistinguishable
from N1 and N2. Similarly, N 0

2 in Fig. 6 is a canonical form of N2. Note that nodes with indegree
1 and outdegree 1 are funnels. This implies that for trees the funnel-free condition coincides
with the exclusion of suppressible nodes, which is a standard requirement in the definition of
phylogenetic trees. It is thus appropriate to view the funnel-free condition as a natural exten-
sion of this requisite to networks.

Definition 2. A weighted path in a network N = (V, E, φ, Λ) is a pair (π, λ), where π is a di-
rected path in the graph (V, E) and λ is a function that associates each edge e in π with a length
λ(e) 2 Λ(e). The length of a weighted path is the sum of the lengths assigned to its edges. A net-
work satisfies the NELP (no equally long paths) property if no pair of distinct weighted paths
having the same endpoints have the same length.

As we explain below, the NELP property is a mild condition to satisfy, unless edge lengths
are taken to represent time. The following result states that if we restrict ourselves to networks
satisfying the NELP property, then every network has exactly one canonical form. An outline
of its proof can be found in the Methods section, including an algorithm showing how to re-
duce a network to canonical form. The detailed proof is presented in S1 Text.

Theorem 1. (i) Every network N has a canonical form. Moreover, (ii) if N has the NELP prop-
erty, then there exists a unique canonical form of N among networks satisfying the NELP proper-
ty (up to isomorphism).

(The notion of isomorphism between networks is only used for mathematical rigor and is
defined in S1 Text.) The following result provides a necessary and sufficient condition for two
networks satisfying the NELP property to be indistinguishable.

Corollary 1. Let N1 and N2 be networks with the NELP property and let N 0
1 and N

0
2 be their

unique canonical forms satisfying the NELP property. Then N1 and N2 are indistinguishable if
and only if N 0

1 and N
0
2 are the same network (up to isomorphism).

The following result states that a canonical network with the NELP property is uniquely de-
termined by the trees it displays:

Corollary 2. Let N be a canonical network satisfying the NELP property. Then N is the unique
(up to isomorphism) canonical network satisfying the NELP property that displays (all and only)
the trees in T (N).

We now discuss the biological significance of a number of technical aspects of
our framework.

Definition of Networks and Trees Displayed by a Network
All the phylogenies considered here—trees or networks—are rooted. This is because we assume
that the analysis uses an outgroup (possibly consisting of multiple taxa, and with no reticula-
tions) for rooting. For simplicity, outgroup lineages are not included in our phylogenies (an ex-
ception to this is in Fig. 2). Note however that, because our phylogenies have edge lengths, and
because omitting the outgroup is just a convention, the omitted lineages must have the same
lengths for a network and all the trees it displays. For example, if we wish to omit the outgroup
from N2 in Fig. 2 and from the trees that it displays (T1 and T2 in Fig. 2), then what we obtain
are N 0

2;T
0
1 and T

0
2 in Fig. 7. This has a notable consequence: the trees displayed by a rooted
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network with edge lengths may have a root with outdegree 1 (e.g. T 0
1 in Fig. 7). For flexibility,

we also allow a network to have a root with outdegree 1.
Moreover, we allow multiple lengths for an edge in a network, but not in a tree. For example,

in Fig. 6, network N 0
2 has an edge with two lengths (λ7 + λ12 + λ14 and λ7 + λ11 + λ13 + λ14). The

motivation behind multiple lengths lies in the observation that, whereas each edge in a phylo-
genetic tree describing the evolution of non-reticulating organisms trivially corresponds to a
unique evolutionary path in the underlying real evolutionary history, when reticulate events
have occurred this is not necessarily true: Fig. 8 and Fig. 9 show that some evolutionary scenari-
os can either be represented using multiedges (multiple edges with the same endpoints) or
edges with multiple lengths. Although these two options are mathematically equivalent, graphi-
cally the second one leads to more compact representations, and this is why we choose to allow
multiple lengths rather than multiedges. For our purposes we only need to consider the case
where e has a finite set of lengths (Λ(e) = {λ1(e), . . ., λk(e)}).

Another unconventional aspect of our networks is the possibility of having nodes with in-
degree and out-degree both greater than one. (See, e.g., the last common ancestor of c and d in
N 0

2 in Fig. 6.) Traditionally, the internal nodes in a phylogenetic network are constrained to be-
long to one of two different categories: reticulate nodes, with more than one incoming edge
and just one outgoing edge, and speciation (or coalescence) nodes, with one incoming edge

Fig 8. A non-reticulating evolutionary history (left) and a reticulating evolutionary history (right). The
black lineages are those leading to a sampled set of taxa X. The horizontal jagged lines represent reticulation
events. Note that, whereas representing the scenario on the left with a phylogenetic tree on X is
straightforward, for the one on the right several options are possible. We show three alternative
representations in Fig. 9.

doi:10.1371/journal.pcbi.1004135.g008

Fig 9. Alternative network representations for the evolutionary scenario in Fig. 8 (right). In our
framework onlyN2 is a network.

doi:10.1371/journal.pcbi.1004135.g009
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and multiple outgoing edges. Because reticulate and speciation events are clearly distinct, it is
reasonable to constrain internal nodes to only fall in the two categories above. In our frame-
work, this requirement is dropped, and some networks, notably those in canonical form, may
have nodes that both represent reticulate and speciation events. In this case, it is important to
understand that these nodes represent a potentially complex (and unrecoverable) reticulate
scenario, followed by one or more speciation events. Compare, for example, network N and its
canonical form N0 in Fig. 5, or N2 and N 0

2 in Fig. 6. (In the latter, it is especially instructive to
consider the reticulate history above the direct ancestor of taxon e.)

The NELP Property
We use network N1 of Fig. 3 to illustrate the NELP property. In N1 there are three distinct
weighted paths having as endpoints the root of N1 and the direct ancestor of b. The lengths of
these paths are ℓ1 = λ1 + λ6, ℓ2 = λ2 + λ3 + λ5 + λ8 and ℓ3 = λ2 + λ10 + λ9 + λ8. Moreover, there is
another pair of paths having the same endpoints: those of lengths ℓ4 = λ3 + λ5 and ℓ5 = λ10 + λ9.
Thus N1 has the NELP property if and only if the three numbers ℓ1, ℓ2 and ℓ3 are all different
(note that this implies that also ℓ4 and ℓ5 are different). If edge lengths are taken to represent
evolutionary change, rather than time, this is a very mild requirement: when edge lengths are
drawn at random from a continuous distribution, the probability that two paths get exactly the
same length is zero.

On the other hand, the NELP property does not hold for phylogenetic networks where edge
lengths are taken to represent time. For these networks, canonical forms may not be unique
(see Fig. 10 for an example of this). Even in this case, we believe that inference methods should
only consider phylogenetic networks in their canonical form, as this allows to reduce the solu-
tion space without any loss in “expressive power”: since every network N has (at least one) ca-
nonical form that displays exactly the same set of trees—and therefore has the same fit with the
data as N—restricting the solution space to canonical forms always leaves at least one optimal
network within this space. The real weakness of using canonical forms in a molecular clock
context is that if a canonical form is not unique, then it cannot be considered representative of
all the networks indistinguishable from it. As an example of this, consider the indistinguishable
networks in Fig. 10: none of these is representative of all the others.

Fig 10. Different (non-isomorphic) but indistinguishable funnel-free networks. All edges are assumed
to have the (unique) length 1 unless otherwise displayed. These networks do not satisfy the NELP property,
showing that this is a necessary condition for the uniqueness of canonical forms (Theorem 1(ii)). The ellipsis
at the end represents the fact that an infinite number of such networks can be obtained by adding any number
of copies of the subgraph in grey in the last network.

doi:10.1371/journal.pcbi.1004135.g010
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Discussion
Our results are both negative and positive. The bad news is that any method that scores the fit
between a network N and the available data—which may be sequences, distances, splits, trees
(with or without edge lengths)—based on the set of trees displayed by Nmust face an impor-
tant theoretical limitation: regardless of the amount of available data from the taxa under con-
sideration, some parts of the network representing their evolutionary history may be
impossible to recover—most notably the relative order of consecutive reticulate events (see,
e.g., Fig. 3). The good news is that, when edge lengths are taken into account, we can set precise
limits to what is recoverable: the canonical form of a network N is a simplified version of N
that excludes all the unrecoverable aspects of N. In a canonical form, reticulate events are
brought as forward in time as possible, causing the collapse of multiple consecutive nodes.
(Compare again network N2 and its canonical form N 0

2 in Fig. 6.) The importance of the canon-
ical form N0 of a network N lies in the fact that, if we restrict our consideration to networks
with the NELP property, N0 is the unique canonical network consistent with perfect and unlim-
ited data from the taxa in N.

There is an interesting analogy between soft polytomies in classical phylogenetics and col-
lapsed nodes in a canonical network. Both represent lack of knowledge about the order of evo-
lutionary events: speciations or more generally lineage splits in the first case, and reticulate
events in the second. However, there is also an important difference between them: whereas in
principle polytomies can be resolved by collecting further data from the taxa in the tree (for ex-
ample, by extensive sequencing of their genomes [52]), the standard network inference meth-
ods considered here cannot resolve collapsed nodes in a canonical network, irrespective of the
amount of data from the taxa under consideration. This difference is mitigated by the observa-
tion that increased taxon sampling may indeed permit to resolve the collapsed nodes, when the
new lineages break adjacencies between reticulate nodes. However, such lineages may not al-
ways exist or they may be difficult to sample.

The present work has several consequences that should be of interest both to the biologists
concerned by the use of methods for phylogenetic network inference, and to the researchers in-
terested in the development of these methods. We illustrate these consequences starting from a
well-known problem of network inference methods, that of multiple optima. It has been noted
before that many of the inference methods that have been recently proposed—especially those
solely based on topological features—often return multiple optimal networks: Huson and Scor-
navacca show a striking example of this (Fig. 2 in [53]), where the problem of finding the sim-
plest network displaying two given tree topologies admits at least 486 optimal solutions.

The existence of multiple optimal networks for a given data set is essentially due to two rea-
sons: insufficient data and non-identifiability. For the example of 486 optimal solutions, this
large number may be partly due to the fact that the goal was to achieve consistency with only
two tree topologies. More data may enable to discriminate among the 486 returned networks.
Non-identifiability, which occurs when none of the allowed data can discriminate between two
or more networks, is a more serious problem than insufficient data, as it cannot be solved by
simply increasing the size of the input sample. Another interesting example appears in a paper
by Albrecht et al. [54], which we reproduce here in Fig. 11. Here, there are only three optimal
networks, essentially differing for which of the three clades {A.bicornis, A.longissima, A.sharo-
nensis}, {A.uniaristata, A.comosa} and {A.tauschii} is considered as a hybrid (in this example
reticulations represent hybridizations). This pattern is entirely analogous to that of the three
networks in Fig. 2 (with a, b and c replaced by the three clades above), meaning that these three
networks are indistinguishable to methods not accounting for edge lengths. Therefore, in this
example, the existence of multiple optimal solutions is entirely due to non-identifiability.
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All this motivates three recommendations:

1. It is important to use data in a way that causes non-identifiability to be as limited as possi-
ble. For example, as we have seen, accounting for edge lengths solves some cases of non-
identifiability (e.g., in Fig. 2) although it does not eliminate this problem altogether (e.g., in
Fig. 3).

2. Given an inferred network N̂ , it is important to know the set of networks that are theoreti-

cally impossible to distinguish from N̂ : no matter the amount of data, they will all receive

the same support as N̂ . We may call this set the indistinguishable class of N̂ . The biologist

using an inference method must be aware that N̂ is not the only network supported by
the data.

3. It would be highly useful to devise inference methods that instead of searching for (or di-
rectly constructing) solutions in the space of all possible networks, only considers one ele-
ment per indistinguishable class. This has the potential to significantly speed up
the inference.

Correspondingly, we recommend that edge lengths should be accounted for in the analyses
(point 1) and, for each of the indistinguishable classes resulting from this choice, we identify a
canonical network that, for all practical purposes, can be considered to be unique. Most impor-

tant to the end users, we propose that a canonical network N̂ is what should be given as the re-

sult of the inference, with the caveat that N̂ is a way to represent a class of networks that are all

equally supported (point 2). In a canonical form N̂ , the aspects that are not common to all net-
works in this class are collapsed, as described above. This will help the evolutionary biologist to

Fig 11. Real-world example of indistinguishable network topologies. (Reproduced from [54], Fig. 4.) Three network topologies that display the two tree
topologies in Fig. 3 of [54]. Note that these three networks are analogous to N1, N2 andN3 in Fig. 2 of the current paper: they each contain a reticulation cycle
with three outgoing edges leading to the same three clades: {A.bicornis, A.longissima, A.sharonensis}, {A.uniaristata, A.comosa} and {A.tauschii} (in Fig. 2
instead of three clades we have three taxa a, b and c).

doi:10.1371/journal.pcbi.1004135.g011
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locate the uncertainties in the phylogeny, and possibly to choose further taxa to resolve them.
Finally, we propose that inference methods only attempt to search among—or construct—phy-
logenetic networks in their canonical form (point 3).

We note that accounting for yet more characteristics of the data may reduce (or eliminate
altogether) the identifiability issues for phylogenetic networks. In the case of sequence-based
methods, one may take into account the natural order of sites within a sequence [11–13, 55,
56]. Similarly, for reconstruction methods based on collections of subtrees, one could observe
and use the relative position of the different genomic regions supporting the input trees. How-
ever, these relative positions must be conserved across the genomes being analyzed, a condition
which may hold for recombining organisms (e.g. individuals within a population or different
viral strains), but which is not obvious when studying a group of taxa that have undergone re-
ticulate events (e.g., hybridization) at some point in a distant past.

The main conclusion of the present study is the following: unless one abandons any optimi-
zation criterion that scores a network solely based on the trees it displays, the reconstruction
should be carried out in a reduced space of networks: that of the canonical forms defined here.
The motivation for this lies in the fact that canonical networks are guaranteed to be uniquely

determined, if sufficient data are available. Once a canonical form N̂ is inferred, it must be kept
in mind that even assuming that the inference is free of statistical error, the true phylogenetic

network is just one of the many networks having N̂ as canonical form. Compared to what biol-
ogists are used to for phylogenetic trees—where in principle it is always possible to resolve un-
certainties—it is clear that this requires an important change of perspective.

Methods
The following three subsections describe the proofs of Theorem 1 part (i), of Theorem 1 part
(ii), and of their corollaries, respectively. In the case of Theorem 1 part (ii), only the gist of the
proof is provided here. The proof in full detail is deferred to S1 Text.

Reduction Algorithm
In order to prove that any network N has a canonical form, we describe an algorithm to trans-
form N into a canonical network indistinguishable from N. The algorithm simply consists of
repeatedly applying to N = (V, E, φ, Λ) one of the following two reduction rules, until neither
can be executed (see Fig. 12):

Funnel suppression (R1). Given a funnel v with k� 1 in-edges (u1, v), (u2, v), . . ., (uk, v)
and out-edge (v, w), remove v and all these edges from N and introduce k new edges (u1, w),
(u2, w), . . ., (uk, w). For all i 2 {1, 2, . . ., k} assign to (ui, w) the lengths Λ((ui, w)): = Λ((ui, v)) +
Λ((v, w)), where the sum of two sets of numbers A and B is defined as A + B = {a + b: a 2 A,
b 2 B}.

Multiedge merging (R2). Given a collection of multi-edges (u, w) with multiplicity k and

lengths L0
1;L

0
2; . . . ;L

0
k, replace these edges with a single edge with lengths

Sk
i¼1 L

0
i.

An example of the reduction of a network to its canonical form is shown in Fig. 13. Note
that, even if the algorithm may temporarily produce multi-edges, the network produced in the
end obviously does not have any multi-edge (otherwise we could still apply rule R2).

Proof of part (i) of Theorem 1. We must prove that any network N = (V, E, φ, Λ) has a ca-
nonical form. For this, we apply the reduction algorithm described above, thus obtaining a se-
quence N0 = N, N1, . . ., Nm, where each Ni+1 is obtained from Ni by applying either R1 or R2.
Neither R1 nor R2 can be applied to Nm. We prove that Nm is a canonical form of N. Although,
strictly speaking, Ni may not be a network (as it potentially contains multi-edges), the notion of
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trees displayed by Ni, and thus that of indistinguishability, trivially extends to these
multigraphs.

First, note that the algorithm terminates after a finite number of iterations (m). This is true
because at each iteration the size of E is reduced by at least one. Moreover, the resulting net-
work Nm is funnel-free, since no reduction of type R1 can be applied to it.

What is left to prove is that Nm is indistinguishable from N = N0. To this end we prove that,
at each iteration, Ni and Ni+1 are indistinguishable, i.e. T (Ni) = T (Ni+1). In other words any tree
T is displayed by Ni if and only if T is displayed by Ni+1.

Let T be displayed by Ni. Then T can be obtained by suppressing all suppressible nodes
from a tree Ti contained in Ni. We consider three cases. (1) If none of the edges in Ti is involved

Fig 12. The two rules at the basis of the canonical reduction algorithm.

doi:10.1371/journal.pcbi.1004135.g012

Fig 13. Reduction of a network to its canonical form. All edges are assumed to have the (unique) length 1
unless otherwise displayed. Gray edges are those to which the next reduction rule is applied.

doi:10.1371/journal.pcbi.1004135.g013
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in the reduction transforming Ni into Ni+1, then clearly Ti is still contained in Ni+1 and thus T
is still displayed by Ni+1. (2) If Ti is involved in a R1 reduction, then it contains a funnel v and it
contains one of the in-edges of the funnel, say (uj, v), with length λj 2 Λj = Λ((uj, v)), along
with the out-edge (v, w), with length λ0 2 Λ0 = Λ((v, w)). Now, let Ti+1 be the tree obtained
from Ti by suppressing the suppressible node v and thus creating a new edge (uj, w) with length
λj + λ0. Because the R1 reduction creates a new edge (uj, w) with length set Λj + Λ0, containing
the value λj + λ0, then Ti+1 is contained in Ni+1. Moreover, it easy to see that T can still be ob-
tained by suppressing all suppressible nodes from Ti+1. Thus T is still displayed by Ni+1. (3) If
Ti is involved in a R2 reduction, then it contains one of the edges of a multi-edge (u, w), with a
length λ belonging to one of the length sets Λ0

1;Λ
0
2; . . . ;Λ

0
k associated to the k copies of (u, w).

Thus we have that l 2 Sk
i¼1 Λ

0
i, which implies that Ti is still contained in Ni+1 and thus T is still

displayed by Ni+1. This concludes the proof of T (Ni)� T (Ni+1).
In order to prove that, conversely, T (Ni+1)� T (Ni), one can proceed in a similar way as

above: if T is displayed by Ni+1, then T can be obtained by suppressing all suppressible nodes
from a tree Ti+1 contained in Ni. By considering three cases analogous to the ones above regard-
ing the involvement of Ti+1 in the reduction transforming Ni into Ni+1, we can prove that in all
these cases T is already displayed by Ni. Thus Ni and Ni+1 are indistinguishable, which con-
cludes our proof. &

We note informally that the order of application of the possible reductions in the algorithm
above is irrelevant to the end result. To see this, it suffices to show that if two different reduc-
tions are applicable to a network, then the result of applying them is the same irrespective of
the order of application. As we do not need this remark for the other results in this paper, we
do not give a formal proof of it.

Lemma 1. Let N be a network and N0 a canonical form of N obtained by applying the reduc-
tion algorithm. If N satisfies the NELP property, then N0 satisfies the NELP property.

Proof: We prove that for each basic step of the reduction algorithm—transforming Ni into
Ni+1 via a reduction rule R1/R2—if Ni satisfies the NELP property, then Ni+1 also satisfies it.
Suppose the contrary; then, Ni+1 contains two distinct weighted paths ρ1, ρ2 with the same end-
points u and v and same lengths. Because R1/R2 cannot create new nodes, u and v are also
nodes in Ni. Moreover, it is easy to see that each weighted path ρ in Ni from u to v gives rise to
exactly one weighted path f(ρ) in Ni+1 from u to v, with exactly the same length as ρ. Now take
two weighted paths in Ni, one in the preimage f−1(ρ1) and the other in the preimage f−1(ρ2).
These two weighted paths in Ni are distinct (as ρ1 6¼ ρ2), have the same endpoints (u and v) and
the same length. But then Ni violates the NELP property, leading to a contradiction. We thus
have that if Ni satisfies the NELP property, then Ni+1 also satisfies it. By iterating the argument
above for each step in the reduction algorithm, the lemma follows. &

Uniqueness of the Canonical Form for Networks Satisfying the NELP
The proof of Theorem 1, part (ii), is rather technical. In this section, we introduce a number of
new concepts and state the main intermediate results that are necessary to obtain this result.
We leave their detailed proofs to S1 Text, together with the obvious definitions of basic con-
cepts such as that of isomorphic networks, sub-network and union of two networks.

Definition 3. (Root-leaf path, prefix, postfix, wishbone, crack.) Let N be a network on X and
(π, λ) be a weighted path in N from the root of N to a leaf labelled by x 2 X. Now consider the
sub-network P = (V(π), E(π), φj{x}, λ) on {x} consisting of all the nodes and edges in π and asso-
ciated labels. Any sub-network of N such as P is called a root-leaf path of N. Given a root-leaf
path P and a node v belonging to it, any weighted path formed by all the ancestors [descen-
dants] of v in P is a prefix [suffix] of P. Note that a prefix [suffix] only consists of one node
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when v is the root [leaf] of P. A wishbone of N is any sub-network of N formed by taking the
union of two root-leaf paths that have in common only a prefix. A crack of N is any sub-net-
work of N formed by taking the union of two root-leaf paths that have in common only a prefix
and a suffix.

Fig. 14 illustrates the definitions above. Note that any root-leaf path P is both a wishbone
and a crack, as P is the result of the union of P with itself, and P has a common prefix and a
common suffix with P. Moreover, any sub-network R that can be obtained from a root-leaf
path by attributing two lengths to one of its edges e is a crack. Finally, note that wishbones and
cracks are networks, and thus the notion of isomorphism (Definition 5 in S1 Text) can be ap-
plied to them.

The proof of part (ii) in Theorem 1 depends on two important results (Propositions 1 and 2
below), whose proofs can be found in S1 Text. The first states that a network with the NELP
property is uniquely determined by the wishbones and cracks it contains.

Proposition 1. Two networks N1 and N2 with the NELP property are isomorphic if and
only if they contain the same wishbones and cracks (up to isomorphism).

Proposition 1 is interesting on its own as it suggests an enumerative algorithm to verify
whether two networks with the NELP property are isomorphic. Unfortunately this algorithm
would be impractical, as the number of wishbones (or cracks) in a network is not polynomial
in the size of the network. Also note that we require N1 and N2 to satisfy the NELP property be-
cause there exist non-isomorphic networks containing the same wishbones and cracks: for ex-
ample the networks in the bottom line of Fig. 10. The second result that we need is the
following:

Proposition 2. Let N1 and N2 be two indistinguishable funnel-free networks, satisfying the
NELP property. Then they contain the same wishbones and cracks (up to isomorphism).

Proof of part (ii) of Theorem 1. Let N be a network with the NELP property and N0 a canoni-
cal form of N obtained by applying the reduction algorithm. By Lemma 1, N0 satisfies the
NELP property. Now suppose that there exists another canonical form of N, called N00, satisfy-
ing the NELP property. By transitivity, N0 and N00 are indistinguishable. Because N0 and N00 are
indistinguishable, funnel-free and with the NELP property, N0 and N00 must contain the same

Fig 14. Illustration of Definition 3. P (edges in black) is a root-leaf path ofN and thus both a wishbone and a
crack of N. R and S (black) are cracks of N.Q (black) is a wishbone ofN. All edges are assumed to have the
(unique) length 1 unless otherwise displayed.

doi:10.1371/journal.pcbi.1004135.g014
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wishbones and cracks (because of Proposition 2). But then, because of Proposition 1, N0 and
N00 are isomorphic. &

We note that some of our arguments in S1 Text lead us to conjecture that a funnel-free net-
work satisfying the NELP property cannot be indistinguishable from a funnel-free network vio-
lating the NELP property. This claim would allow us to simplify the statement of Theorem 1:
networks with the NELP property would be guaranteed to have a unique canonical form (not
just among networks with the NELP property, but among all networks). Unfortunately, to this
date, we were unable to prove this conjecture. Nonetheless, note that the reduction algorithm
returns, for any network with the NELP property, its unique canonical form with the NELP
property (by Lemma 1).

Corollaries
It remains to prove the two corollaries at the end of the Results section. The first one states that
two networks N1 and N2 satisfying the NELP property are indistinguishable if and only if their
unique canonical forms with the NELP property, N 0

1 and N
0
2 respectively, are isomorphic. By

Lemma 1, N 0
1 and N

0
2 can be obtained by applying the reduction algorithm to N1 and N2.

Proof of Corollary 1. The if part trivially follows from the transitivity of indistinguishability.
As for the only if part, note that (again by transitivity) N 0

1 is indistinguishable from N2. As it is
also funnel-free, N 0

1 is a canonical form of N2. Because N2 can only have one canonical form
satisfying the NELP property (by Theorem 1 (ii)), N 0

1 and N
0
2 must be the same network (up to

isomorphism). &
As for Corollary 2, we recall that it states that a canonical network N with the NELP proper-

ty is uniquely determined by the trees it displays.
Proof of Corollary 2. Let N and N0 be indistinguishable canonical networks satisfying the

NELP property. Then, N and N0 are both canonical forms of N satisfying the NELP. But then,
by Theorem 1(ii), N and N0 must be the same network (up to isomorphism). &

Supporting Information
S1 Text. Supporting Information: a mathematical theory of explicit phylogenetic networks
with edge lengths. This document provides an introduction to the mathematical theory of ex-
plicit phylogenetic networks with edge lengths, leading in particular to the proofs of Proposi-
tions 1 and 2, which are necessary for the proof of Theorem 1, part (ii). In the last section,
we consider networks with inheritance probabilities and their relevance for likelihood-
based reconstruction.
(PDF)
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