
HAL Id: lirmm-01198399
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01198399

Submitted on 12 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parsimonious Kinematic Control of Highly Redundant
Robots

Viniçius Mariano Gonçalves, Philippe Fraisse, André Crosnier, Bruno Vilhena
Adorno

To cite this version:
Viniçius Mariano Gonçalves, Philippe Fraisse, André Crosnier, Bruno Vilhena Adorno. Parsimonious
Kinematic Control of Highly Redundant Robots. IEEE Robotics and Automation Letters, 2016, 1
(1), pp.65-72. �10.1109/LRA.2015.2506259�. �lirmm-01198399�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01198399
https://hal.archives-ouvertes.fr

Parsimonious Kinematic Control of Highly Redundant Robots

Vinicius Mariano Gonçalves1, Philippe Fraisse2, André Crosnier2, Bruno Vilhena Adorno1

Abstract— When a robot is highly redundant in comparison
to the task to be executed, current control techniques are not
“economic” in the sense that they demand, most of the time
unnecessarily, all the joints to move. Such behavior can be
undesirable for some applications. In this direction, this work
proposes a new control paradigm based on linear programming
that intrinsically provides a parsimonious control strategy, that
is, one in which few joints move. In addition to a formal stability
proof, the paper presents simulation and experimental results
on the HOAP-3 humanoid robot. Finally, a comparison is made
with a least-square method based on the pseudoinverse of the
task Jacobian, showing that the proposed method indeed uses
fewer joints than the classic one.

I. INTRODUCTION

The use of redundant robots is on the rise not only in in-
dustrial environments [1] but also in human-robot interaction
applications, where frequently humanoid robots or mobile
manipulators are used. The robot kinematic control strategies
are widely based on the pseudoinverse of the task Jacobian
([2], [3], [4]) or, when there are constraints, usually convex
quadratic programming solvers are used (see [5], [6], [7]).

Under redundancy, however, these strategies may generate
movements that are not very economic in the sense that
a huge amount of actuators must be needlessly activated
to achieve the desired task. For instance, the traditional
pseudoinverse approach generates a trajectory in which all
joints move, but intuitively, in some cases a task represented
by a certain amount of degrees of freedom (DOF) in the
task-space can be solved with at most the same number of
DOF in the joint space.

This paper is concerned with the development and analysis
of a control paradigm that induces “economic” movements
in face of highly redundant (overactuated) systems. The
idea is to exploit the redundancy of the system to generate
control laws that demand as few actuators as possible, which
could provide several benefits. For instance, recent research
suggests that parsimonious control can potentially provide
more natural human-like movements [8], [9], which could
improve human-robot interactions. Moreover, parsimonious
control also provides easier networked control by reduc-
ing the amount of control data exchanged during wireless
communication (see [10] and the references therein) and, in
addition, it could provide reduced feedback-induced negative
effects, such as excitation of non-modeled dynamics. The

This work has been supported by CAPES, CNPq, and FAPEMIG.
1Vinicius Mariano Gonçalves (mariano@cpdee.ufmg.br) and

Bruno Vilhena Adorno (adorno@ufmg.br) are with Universidade
Federal de Minas Gerais (UFMG), Brazil.

2André Crosnier (crosnier@lirmm.fr) and Philippe Fraisse
(fraisse@lirmm.fr) are with Laboratoire d’Informatique, de Robo-
tique et de Microélectronique de Montpellier (LIRMM), France.

latter is justified by the fact that in kinematic control the
inertial parameters, which depend on the robot configuration,
are not taken into consideration. Therefore, the less these
configurations change the less the imprecise parameters will
play a relevant role in the system and, consequently, the less
will be the induced disturbance in the control. In this sense,
some recent works, specially in model predictive control,
exploit techniques borrowed from compressed sensing to
generate control actions with the sparse property (see [11],
[12]).

A. Compressed sensing

The proposed approach is inspired on the recent devel-
opments in compressed sensing in the setting of signal
processing (see [13]). In this setting, it is desired to represent
a signal as a linear combination of previously-defined basis
functions, and the challenge is to represent the signal in
the most memory-efficient way possible without losing too
much (if any) information. The signal is then sampled in a
way that the number of samples is much smaller than the
number of basis signals. The values of the reconstructed
signal and the original one must match in these samples
and therefore the problem of finding the coefficients of the
linear combination consists of solving a highly undetermined
linear system Ax = b. There are many possible solutions
to this equation, but it is of special interest to find one that
is sparse, or parsimonious, which means a low number of
non-zero coefficients. The reasoning for that in the signal
processing setting is that memory can be saved by storing
only the non-zero coefficients. Such sparse decomposition
is often possible, as experience shows that usually prac-
tical signals have significant energy only in some sparse
frequencies along the spectrum. There is a similar intuition
in robotics: for highly redundant robots, tasks can often be
completed without using all available joints, differently from
what happens when conventional approaches are used, where
usually all joints are used simultaneously.

The problem of compressed sensing and finding sparse
control inputs for trajectory generation/control under the
differential inverse kinematics approach have exactly the
same mathematical nature, an undetermined system. Indeed,
in the latter equations of the form Jq̇ = ėd appear, in
which J is the task Jacobian, q̇ is the target joint velocity
(the control input) and ėd is a desired velocity in the
task/operational space. When the system is redundant and the
matrix J has a number of columns considerably greater than
the number of rows, there is the possibility of finding sparse
solutions q̇. In the specific context of robotics, the widely
popular choice for solving this problem, which is based on

the pseudoinverse of the Jacobian, most often generates non-
parsimonious solutions. Although the mathematical structure
used in the context of compressed sensing and in the control
of redundant robots are essentially the same, the theoretical
challenges are different. In the control context, for instance,
there is the necessity to prove stability for the closed loop
induced by this approach, an issue nonexistent in the signal
processing setting.

Finding the smallest number of non-zero coefficients for
the solution of a linear system Ax = b is NP hard (see
[14]). Mathematically, the formulation is given by

argmin
x

‖x‖0

subject to Ax = b
(1)

in which ‖·‖0 is the “norm” that counts the number of non-
zero entries.

However, adequate solutions can be found very efficiently
if relaxations are done. For instance, using a specific convex
positive definite error metric between Ax and b, namely
the 1-norm, the optimization problem can be reduced to a
linear program. Linear programs can be solved by using the
Simplex algorithm, which has the property of intrinsically
generating reasonably sparse solutions, even though it may
be not the minimum amount of nonzero entries as in Prob-
lem 1. This approach has the benefit that linear programs
can be solved, in average, very efficiently with the Simplex
method [15]. The formulation will be valid even when it is
not possible to have Ax = b (the system is not redundant),
giving in this case the best possible solution in the 1-norm
sense. Indeed, even when parsimony is not possible at all,
the benefit of reduced computational time should remain.

B. Linear programming for inverse differential kinematics
problems

It is not the first time that linear programming is proposed
to solve inverse differential kinematic problems although,
interestingly, none of the previous works neither made the
connection with compressed sensing nor observed the poten-
tial of having sparse solutions. Formal guarantee of stability
was also absent. Ho et al. [16] proposed a particular case
of the general formulation proposed in the present paper,
which aims at generating trajectories for human-like 3D
models. They note that linear programming can be efficient,
in terms of computation effort, to generate trajectories when
the system has inequality constraints. Indeed, according to
their simulations, in some settings even in the unconstrained
case it outperforms the classic pseudoinverse approach by
taking much less computational effort, and this is as truer as
the number of constraints and degrees of freedom grow. The
authors of [17] also propose that a general convex function
can be used as a metric, and explicitly mention the ‖·‖1
norm, but also do not show simulation results with norms
other than the Euclidean one.

C. Contributions

The main contribution of this paper is the formulation of
the inverse differential kinematics as a linear program and

the associated formal guarantees of Lyapunov stability. It
is also shown that parsimonious behavior is obtained when
the optimization problem is solved by using the Simplex
method, which has low computational cost. Both simulations
and experimental results in the HOAP-3 humanoid robot are
shown to illustrate the proposed methodology.

II. LINEAR PROGRAMMING FOR ROBOT MOTION
GENERATION

For task-solving approaches using differential inverse
kinematics and task functions ([18]), control actions in the
joint space often follow as a result of optimization problems.
These optimizations problems seem to be, mostly, quadratic
programming ones (see [2], [3], [4], [5], [6], [7]), for which
solutions can be computed explicitly when there are no
constraints. To exemplify, let q be the variable in the joint
space and e(q) = 0 a description of a desired configuration.
Hence, the goal is to drive e(q(t)) to 0. Since ė(q)=J(q)q̇,
setting the target ėd to −ηe(q), for η > 0, aiming for an
exponential convergence of the error, one can obtain the
target q̇(t) by solving the following optimization problem

min
q̇

‖Jq̇− ėd‖2 =⇒ min
q̇

‖Jq̇+ ηe‖2 (2)

in which J , J(q) and e , e(q).
The minimal 2-norm solution to the previous optimization

problem can be given by using the pseudoinverse as q̇ =
−ηJ+e. However, as mentioned in Section I, this approach
frequently implies a solution in which all joints move, since
q̇ in this case frequently has few, if any, non-zero entries.

In case that some constraints for q̇ (e.g., speed limits or
obstacle avoidance) are imposed in the form W(q)q̇ ≤
w(q), dense solutions may arise in the solution of the
problem

min
q̇

‖Jq̇+ ηe‖2

subject to Wq̇ ≤ w.
(3)

in which W , W(q) and w , w(q). Problem 3 has no
closed-form solution and the problem, which is a convex
quadratic program, needs to be solved with a numerical
solver.

If parsimony is sought, an approach that can also poten-
tially generate parsimonious behavior, when possible, will be
discussed in the next section.

A. Parsimony

This section shows that the problem of inverse differential
kinematics can be posed as a linear program, which in
addition of being computationally efficient to solve, also
provides parsimony as long as an appropriate solver is used.
The problem can be seen as follows

min
q̇

‖Jq̇+ ηe‖1

subject to Wq̇ ≤ w,
(4)

where q̇ ∈ Rm, J ∈ Rk×m, e ∈ Rk, W ∈ Rs×m and
w ∈ Rs.

The formulation in Problem 4 by itself does not guarantee
parsimony. However, since it can be transformed into a linear
program, the well-known Simplex algorithm can be used to
solve it and then, thanks to the intrinsic properties of that
algorithm, parsimony appears whenever possible. To explain
this behavior, let g, c ∈ Rv , B ∈ Ru×v , b ∈ Ru, and c ∈ R.
Consider the canonical form of linear programs

min
g

cTg + c

subject to Bg = b;

g ≥ 0.

(5)

It is important to note that all linear programs can be written
in this form. If one uses the Simplex algorithm to solve linear
programs, at most u entries of the v ones in g will be non-
zero. This is due to how the Simplex algorithm works (see
[19]): at each step, the vector g is split in u basic variables
and v− u nonbasic variables. All the nonbasic variables are
set to 0 while the basic ones may or may not be 0. Thus,
when possible, linear programming implements parsimony
intrinsically when Simplex algorithm is used.

In order to use the Simplex algorithm, Problem 4 must
first be transformed into a linear program. In statistics, this
problem is known as constrained least absolute deviation re-
gression and many different formulations as linear programs
have been proposed. According to experiments done in [20],
the most efficient formulation, for computational purposes,
is the following one:

min
(q̇,y)

1T (2y − (Jq̇+ ηe))

subject to Jq̇− y ≤ −ηe;
Wq̇ ≤ w;

y ≥ 0,

(6)

in which 1 is a vector of ones of appropriate dimension.
To write Problem 6 in the canonical form (5), q̇ must be

somehow rewritten, since all variables are nonnegative in (5).
For handling this, let q̇P and q̇N be nonnegative variables.
One can write without loss of generality that q̇ = q̇P − q̇N .

This decomposition is not only useful to transform Prob-
lem 6 into the canonical one, but also to avoid a “flaw”
in the formulation of Problem 4: it does not guarantee that
q̇ = 0 when e = 0 (i.e., the task is achieved). This implies
that when the robot achieves the task it may still continue to
move its joints, which may be undesirable. Such a concern
is nonexistent with the pseudoinverse approach because it
implicitly minimizes ‖q̇‖2 and then, clearly, q̇ = 0 when
e = 0. There are many ways that this problem can be
handled, but a simple one, and convenient in the linear
programming case, is to choose a positive definite function
β(e) and impose that ‖q̇‖1 ≤ β(e). This way, if e = 0 one
has necessarily q̇ = 0. This constraint can be implemented
very simply as a linear constraint using the previously-
introduced decomposition q̇ = q̇P − q̇N . Indeed, clearly
‖q̇‖1 = ‖q̇P − q̇N‖1 ≤ ‖q̇P ‖1 + ‖q̇N‖1 = 1T q̇P + 1T q̇N ,
because q̇P and q̇N are nonnegative. Thus, the constraint
1T q̇P + 1T q̇N ≤ β(e) implies ‖q̇‖1 ≤ β(e), as desired.

By introducing slack variables zA, zB , zC , letting g =
[q̇TP q̇TN yT zTA zTB zC]

T , and imposing the additional
constraint 1T q̇P +1T q̇N ≤ β(e), one can recast Problem 6
as

min
g

[−1TJ 1TJ 2·1T 0T 0T 0]g − η1Te

subject to

[
J −J −I I 0 0
W −W 0 0 I 0
1T 1T 0 0 0 1

]
g=

[
−ηe
w

β(e)

]
g ≥ 0,

(7)
Problem 7 has the canonical form of the linear program

(5). In this case, the number of rows of matrix B ∈ Ru×v
is u=k+s+1, which means that if the Simplex algorithm
is used, at most k+s+1 entries of g will be non-zero and
hence at most k+s+1 entries of (q̇P − q̇N) = q̇ ∈ Rm
will be non-zero. This implies the sparsity property when
m>k+s+1.

Note that in the previous analysis, from u=k+s+1 DOF
that can possibly be used to solve the task, s+1 are used due
to inequality constraints, in which s DOF are required by the
s inequalities in Wq̇ ≤ w and one DOF is required by the
constraint 1T q̇P +1T q̇N ≤ β(e). However, it turns out that
some of these constraints may be not overly stringent and be
fulfilled with strict inequality when the problem is solved. In
this case, no DOF for that particular inequality is taken and
then the number of nonzero entries may be smaller. Such
behavior is observed in simulation and experimental results,
as shown in Section III.

It is important to stress that the previous result guarantees
that q̇(t) always has at most k+s+1 non-zero entries, but
it does not mean that during the entire trajectory the same
k+s+1 entries of q̇(t) will be non-zero. In fact, along the
trajectory different sets of k+s+1 variables may be non-zero,
which means that the solution of (7) guarantees sparsity only
locally, not globally. Nevertheless, as the experimental and
simulation results of Section III show, this sparsity can be
global and, if it is not, it may still be the case that there are
some joints that are never used during the whole trajectory,
achieving some partial global sparsity.

B. Stability analysis

A natural concern is about the closed-loop stability when
the input q̇ is generated by solving the optimization Prob-
lem 4 with the additional constraint ‖q̇‖1 ≤ β(e), where β
is a positive definite function, which is equivalent to

min
q̇∈A(q)

‖Jq̇+ ηe‖1 (8)

with

A(q) = {p : Wp ≤ w} ∩ {p : ‖p‖1 ≤ β (e (q))} , (9)

in which W ,W(q) and w , w(q).
Considering the system as a pure integrator, q̇(t)=q̇d(t),

in which the target velocity q̇d(t) is a minimizer of Prob-
lem 8, stability analysis can be performed. It is important
to note that the target specification is written as e(q(t))=0.
Also, q̇(t)=q̇d(t) is indeed a dynamical system that depends

on q because when the optimization problem is solved in a
given step by finding q̇d(t), this value is integrated (or, in
the real robot, this velocity is applied to the joints and they
move) and therefore q changes. When q changes, so does
e(q), J(q) and the set A(q) (the latter changes because
W(q),w(q) and β(e(q)) change). Hence, the parameters
are changed in Problem 8 and it has to be solved again in
the next loop.

However, the set of all minimizers q̇d(t) of Problem 8 is
usually not a singleton (a set with a single member) so the
dynamical system generated is not an ordinary differential
equation of the form q̇(t)=f(q(t)), but a differential inclu-
sion q̇(t) ∈ F(q(t)) since the function F : Rm 7→ 2R

m

is set-valued (it is a correspondence between Rm and Rm).
More specifically, in the case of Problem 8,

F(q) = argmin
p∈A(q)

‖J(q)p+ ηe(q)‖1 . (10)

In order to study stability for this differential inclusion, it
is necessary to establish three lemmas.

Lemma 1: Let e(q) and J(q) be continuous functions for
all q. Let A(q) be continuous, non-empty, compact-valued
and convex-valued for all q. Then, the correspondence F(q)
in (10) is non-empty, convex-valued, compact-valued and
upper semicontinuous.

Proof: The function (q,p) 7→ ‖J(q)p+ ηe(q)‖1 is
clearly convex in p. Furthermore, due to the assumptions on
J(q) and e(q) it is also continuous for all q and p.

Using this fact and the assumptions in A(q), the proof
can be concluded directly from an extended form of Berge’s
maximum theorem found in [21].1

Lemma 2: Let φ be a convex function, η a scalar, v a
vector and e(q) a differentiable function with Jacobian J(q).
Let V (q) , φ(ηe(q)), and (∂φ)(u) be the subgradient of
φ evaluated at u. Then, there exists a vector zL(q,v) ∈
(∂φ)(ηe(q)) such that

lim inf
ε→0+

V (q+ εv)− V (q)

ε
≤ η(J(q)v)T zL(q,v). (11)

Proof: It is known that for any convex function φ and
vectors r, s (see [22])

∀z ∈ (∂φ)(r) , φ(r)− φ(s) ≤ (r− s)T z. (12)

Consider r=ηe(q + εv) and s=ηe(q) in the previous
expression, in order to conclude that

∀z ∈ (∂φ)(ηe(q+ εv)),

V (q+ εv)− V (q) ≤ η(e(q+ εv)− e(q))T z, (13)

in which the definition V (q) = φ(ηe(q)) was used. Take a
positive sequence εn, n ∈ Z+ of ε’s that converges to 0, and a

1The theorem deals with maximum of functions, but an analogous to
minima easily follows.

convergent sequence zn ∈ (∂φ)(ηe(q+εnv)).2 Furthermore,
divide both sides of (13) by εn (the inequality will keep the
direction because εn > 0) and take the lim infn→∞, which
also preserves the direction of the inequality. Hence

lim inf
n→∞

V (q+ εnv)− V (q)

εn
≤

lim inf
n→∞

η

(
e(q+ εnv)− e(q)

εn

)T
︸ ︷︷ ︸

A

zn︸︷︷︸
B

. (14)

The limit inferior in the right-hand side of (14) can be
replaced by the ordinary limit and distributed between the
two terms A and B because both limits of A and B exist
(e(q) is differentiable and the sequence zn is convergent).

Using the chain rule for differentiation, the limit of A
reduces to J(q)v since ∂e/∂q=J. In the calculation of the
limit of B, one notes that subgradients of convex functions
are upper semicontinuous correspondences (see [22]). Since
e is continuous, the correspondence (∂φ)(ηe(q)) is also
upper semicontinuous on q. Therefore, since the sequence
zn is convergent, limn→∞ zn exists and, by the definition of
upper semicontinuity of correspondences, this limit belongs
to (∂φ)(ηe(q)) (remember that limn→∞ q+εnv = q).
Defining zL(q,v) , limn→∞ zn, the proof is concluded.

Lemma 3: If φ(u) is a convex function and (∂φ)(u) is its
subgradient evaluated at u, then for any x and y

∀z ∈ (∂φ)(y) , xT z ≤ φ(x+ y)− φ(y). (15)

Proof: Let r = y and s = x + y in (12) and
multiply both sides of the inequality by −1, and the proof
is concluded.

The following result, established in [23], is important
to establish Lyapunov stability by using non-differentiable
functions.

Theorem 1: (see [23]) Let F(q) be a non-empty,
compact-valued, convex-valued upper semicontinuous corre-
spondence. If there exists a function V (q) which is positive
definite to a set S (zero in the set and positive outside it)
and locally Lipschitz such that

∀q̇ ∈ F(q) , lim inf
ε→0+

V (q+ εq̇)− V (q)

ε
≤ 0 (16)

then the differential inclusion q̇ ∈ F(q) is Lyapunov stable
to S. �

The closed-loop stability is now proved in the next propo-
sition.

Proposition 1: Consider the following differential inclu-
sion

q̇(t) ∈ argmin
p∈B(q(t))

‖J(q(t))p+ ηe(q(t))‖1 ,

q(0) = q0,
(17)

2Such convergent sequence always exists. Suppose there is a bounded
sequence zn (clearly the sequence can be chosen to be bounded since
all members of the subgradient are bounded) and it is not convergent.
Then Bolzano-Weierstrass theorem guarantees that there exists a convergent
subsequence of zn. This convergent subsequence can be taken along with
the respective subsequence of εn.

in which e(q) and J(q)=∂e(q)/∂q are continuous func-
tions, e(q) is locally Lipschitz, η > 0, and B(q) is a
continuous, compact-valued, convex-valued and non-empty
correspondence with 0 ∈ B(q) for all q. Then the set
S , {q : e(q) = 0} is Lyapunov stable.

Proof: Let q̇ be any particular member of the corre-
spondence in the right side of (17), henceforth denoted by
F(q).

From the definition of argmin, the optimal p = q̇ from
the feasible set B attains the minimum value of the objective
function H(p) , ‖Jp+ ηe‖1 (for the sake of notation,
all dependencies on q will be dropped). In special, the
value of H(q̇) is not greater than H(0), since p = q̇
globally minimizes H and p = 0 is in the feasible set B
by assumption. Consequently,

‖Jq̇+ ηe‖1︸ ︷︷ ︸
H(q̇)

≤ ‖ηe‖1︸ ︷︷ ︸
H(0)

=⇒ ‖Jq̇+ ηe‖1−‖ηe‖1 ≤ 0. (18)

Consider φ(u) = ‖u‖1, which is a convex function. Apply
Lemma 3 with x = Jq̇ and y = ηe, together with (18), to
conclude that

∀z ∈ (∂φ)(ηe), (Jq̇)T z ≤ ‖Jq̇+ ηe‖1−‖ηe‖1 ≤ 0. (19)

Since η > 0, then

∀z ∈ (∂φ)(ηe) , η(Jq̇)T z ≤ 0. (20)

Considering Lemma 2 with v = q̇, and the fact that
zL(q, q̇) ∈ (∂φ)(ηe), one can conclude together with (20)
that

lim inf
ε→0+

V (q+ εq̇)− V (q)

ε
≤ 0 (21)

in which, according to the definition in Lemma 2,
V (q)=φ(ηe(q)). It is important to note that (21) holds true
for any q̇ ∈ F(q) because in the beginning of the proof it
was assumed that q̇ is arbitrary.

Now, consider V (q) = φ(ηe(q)) , ‖ηe(q)‖1 as the
Lyapunov function to the set S = {q : e(q) = 0}. This
function is locally Lipschitz because both ‖ ·‖1 and e(q) are
locally Lipschitz functions.

According to Lemma 1, F(q) is a non-empty, compact-
valued, convex-valued and upper semicontinuous correspon-
dence. Therefore, using Theorem 1 together with (21) (re-
member that it holds true for any q̇ ∈ F(q)), one concludes
that S is Lyapunov stable.

Note that the assumption 0 ∈ B(q)—which implies that
the solution q̇ = 0 is always admissible—is reasonable: it
means that the robot is able to stop moving. The compactness
is also reasonable, since the joint velocities always have
natural limits and in practice all inequality constraints are
non-strict.

Remark 1: Let B(q) = A(q), where A(q) is given in
(9) with β being a positive definite continuous function. If
w(q) ≥ 0 for all q, and W(q),w(q),J(q) and e(q) are
continuous functions, the latter also being locally Lipschitz,
then the assumptions in Proposition 1 hold. Indeed, the set

A(q) is closed, since it is formed by non-strict linear inequal-
ities on p. Furthermore, since the function β is continuous,
and hence always finite, the constraint ‖q̇‖1 ≤ β(e(q))
by itself guarantees that the set is bounded. Thus A(q) is
naturally compact. The property of being locally Lipschitz
is also verified for the common functions used in kinematics
models (sine, cosine, etc...). Consequently, the closed loop
induced by solving the linear programming Problem 7, which
is equivalent to Problem 8, is Lyapunov stable. �

C. Computational complexity

The time needed for computing the control action can be
crucial in real time applications on robotics, and thus the
computational complexity of the proposed approach deserves
special attention. Since the main burden of the method lies
in solving Problem 7 with Simplex, this algorithm must be
better analyzed.

According to [24], variants of the Simplex method take,
on average, approximately a number of O(u + v) steps to
solve linear programs as Problem 5, in which u and v are
the number of constraints and variables, respectively. Taking
into consideration that each step takesO(uv) operations [19],
this leads to the conclusion that the Simplex algorithm has in
practice a complexity of O(uv2 + u2v). Since in Problem 7
u = k + s + 1 and v = 2m + 2k + s + 1,3 this implies in
practice a time complexity of O((k + s)(2m + 2k + s)2 +
(k + s)2(2m+ 2k + s)), which is polynomial.

Since the pseudoinverse approach cannot handle inequality
constraints, in order to compare it with LP, let s = 0.
Furthermore, in this paper only the redundant case is rel-
evant; therefore, considering that the number m of DOFs is
considerably greater than the number k of tasks, the practical
complexity of LP reduces to O(m2k).

In comparison, the pseudoinverse of a matrix J ∈ Rk×m
can be also computed on O(m2k) (under the consideration
that m is much greater than k) using, for instance, a singular
value decomposition (see [25]). Therefore, the asymptotic
complexity of both approaches is comparable. However, it
has been reported in the literature that LP can outperform
the pseudoinverse (see [16]), specially when the Jacobian is
sparse.

When there are inequality constraints, i.e. s 6= 0, algo-
rithms based on pseudoinverse cannot be used and convex
quadratic programs as Problem 3 must be solved with
numerical solvers. Since convex quadratic programming is a
strict superset of linear programming, the former is expected
to be, in average, at least as hard to solve as the latter.

III. EXPERIMENTAL AND SIMULATION RESULTS

A. Simulation results on highly redundant robot

To illustrate the method, consider a serial 8-link planar
robot in which each link has unit length and unit mass.
The task consists of moving the end-effector to the point
[1 7]T while keeping the x component of the robot’s center
of mass (COM) in 0. Clearly, the robot is highly redundant in

3Recall that q̇P , q̇N ∈ Rm, y, zA ∈ Rk , zB ∈ Rs and zC ∈ R.

TABLE I: Simulation of a serial 8-link planar robot: com-
parison of the input with respect to four different metrics.

Metric PINV LP PINV/LP∫∞
0 ‖q̇(t)‖1dt 1.644 1.264 1.301√∫∞
0 ‖q̇(t)‖22dt 0.503 0.638 0.789∫∞

0 ‖q̈(t)‖1dt 0.021 0.016 1.329√∫∞
0 ‖q̈(t)‖22dt 0.011 0.011 1.000

comparison with the desired task and there are many possible
movements. More specifically, the task Jacobian has 3 rows
and 8 columns.

Both pseudoinverse and linear programming (Problem 7)
approaches are compared in the solution to this task, with
common parameter η = 0.5, which implies the same
convergence rate for both methods. The only constraint in
Problem 7 is the limitation of the speed with β(e) = 5 ‖e‖1.

Fig. 1 shows the robot’s configurations for both ap-
proaches. The initial configuration (cyan) corresponds to the
manipulator being entirely in the vertical with the exception
of the last joint that is tilted 30 degrees clockwise. Interme-
diate configurations are shown in intermediate colors (lighter
is closer to the initial configuration and darker is closer to
the final one). The final configuration is purple.

In the linear programming approach, at any specific time
only three joints moved, whereas in the total movement four
joints moved (1,4,5 and 8, see Fig. 2). More specifically,
there is a switch between joints 4 and 5 at around 70 samples
(see Fig 2). In the pseudoinverse approach, all of them moved
during the whole trajectory. Table I shows a comparison of
both approaches under four different metrics. For each task,
the error dynamics in the first and second experiment are
exactly the same, so the comparison is fair.

Since m=8, k=3 and s=0 (no constraints), the develop-
ments in Subsection II-A predict that for the linear program-
ming approach, at a given time at most k+s+1=3+0+1=4

-2 -1 0 1 2-2 -1 0 1 2
0

1

2

3

4

5

6

7

8

Fig. 1: Comparison of the sequence of configurations with
pseudoinverse (left) and linear programming (right).

C
on

tr
ol

in
pu

t
(L

P)

-1

-0.5

0

0.5

Samples

C
on

tr
ol

In
pu

t
(P

IN
V

)

0 50 100 150 200 250 300 350 400
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

1

2

3

4

5

6

7

8

Fig. 2: Comparison of the control inputs q̇ from the pseu-
doinverse (bottom) and linear programming (top). The joints
are numbered so the first joint is nearest to the base and the
last one is nearest to the end-effector (see Fig. 1).

joints should move. In this case, only three joints moved at a
given time (see Fig. 2). This is expected if the function β(e)
is not overly stringent, so the bound is always achieved with
strict inequality and no degree of freedom is used to fulfill the
constraint in the last row in Problem 7. The function defined
for this simulation, β(e) = 5 ‖e‖1, was loose enough for this
to happen.

B. Experimental results on humanoid robot HOAP-3

To further illustrate the proposed methodology, an exper-
iment was performed in the HOAP-3 humanoid robot (see
Fig. 3).

Fig. 3: HOAP-3 humanoid robot (left) and convention for
numbering the DOF used in this paper (right).

In this experiment, initially the robot is standing with the
right foot on the ground and the other one raised (see Fig. 4).
The position is statically stable, since the (x, y) coordinates
of the COM, which is located at m0 = [−0.8cm − 6cm]T

with respect to the reference frame of the right foot, is in
the support polygon.

The task consists of moving the (x, y) coordinates of the
COM to md = [−3.5cm − 3.6cm]T , which is also in the
support polygon and defined in a reference frame located at
the right foot. The desired task is e(q) = m(q)−md = 0.

Fig. 4: Initial configuration of the robot for the experiment.

The experiment was performed with two approaches:
the classic pseudoinverse of the Jacobian, q̇ = −ηJ+e,
and the formulation in Problem 7. In the latter case, the
only constraint was defined as β(e) = 40 ‖e‖1. In both
approaches, η = 0.1 to guarantee the same convergence rate.

Furthermore, the trajectories of the robot joints were
generated offline, both for the pseudoinverse approach and
LP, and then executed in the real robot. Therefore, only the
trajectory tracking of the joints was executed in closed loop.
The implementation of the LP algorithms in the robot and
consequently closing the entire loop will remain for a future
development.

Fig. 5a and Fig. 5b show the required input q̇ in both
scenarios: pseudoinverse (PINV) and linear programming
(LP). Since the Jacobian matrix has two rows (k = 2)
and there are no constraints (s = 0) other than the natural
one of velocity, it was claimed in Subsection II-A that
at most k+s+1=2+0+1=3 joints will move in a given
moment in the LP approach. Indeed, only two joints moved
at all, because the natural velocity constraint was not overly
stringent and therefore was never saturated (always achieved
with strict inequality) to require a DOF. Furthermore, global
sparsity was achieved since at all time the same two joints,
namely 5 and 6 (see Fig. 3 for the joint convention), move
during the entire trajectory.

On the other hand, in the pseudoinverse approach all joints
move, as expected. Some of them moved very little, so if
one considers as “effectively moving” only those joints that
have a velocity above 5% of the maximum velocity in that
given instant, then during the whole time only seven joints
effectively moved.

Table II shows the comparison of the demanded input q̇
according to four different metric for both approaches. As
before, the error dynamics are exactly the same for both
approaches, and therefore the comparison is fair.

It is interesting to note that in the case of LP, the two
joints that move (5 and 6, see Fig. 3) are the roll and
pitch of the ankle of the right feet, the one on the ground.

Time (s)

A
ng

ul
ar

sp
ee

d
(r

ad
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

15

20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

×10−3

(a) PINV approach (joints 22 to 25 were omitted).

Time (s)

A
ng

ul
ar

sp
ee

d
(r

ad
/s

)

×10−3

0 0.5 1 1.5 2 2.5 3 3.5 4-5

0

5

10

15

20

25
1
2
3
4
5
6
7

(b) LP approach: (joints 8 to 25 were omitted).

Fig. 5: PINV vs. LP: demanded velocities for each joint;
omitted joints do not contribute to the motion (see Fig. 3 for
the joints convention).

TABLE II: Experiment with HOAP-3: comparison of the
input with respect to four different metrics.

Metric PINV LP PINV/LP∫∞
0 ‖q̇(t)‖1dt 0.185 0.131 1.412√∫∞
0 ‖q̇(t)‖22dt 0.040 0.067 0.597∫∞

0 ‖q̈(t)‖1dt 0.101 0.072 1.400√∫∞
0 ‖q̈(t)‖22dt 0.289 0.339 0.852

This agrees with the human movement observed in postural
control. Indeed, it has been shown by [26] that in the case of
a small disturbance, the postural system will recover balance
in the sagittal plane by using mainly the ankle joints.

Finally, it is important to highlight that, although the joints
trajectories were generated offline, it is feasible to generate
them in real time. In order to support this claim, numerical
simulations were done in an Intel i5 2.4 GHz with 4 GB
of RAM. Among 500 samples, the pseudoinverse took in
average 0.2 milliseconds to be computed, whereas each linear
program with Simplex took in average 1.2 milliseconds to
be solved. If warm start is used in the Simplex (the solution

found in the previous step is used as a feasible basis in
the current one), the time in Simplex also reduces to 0.2
milliseconds in average, because in the huge majority of
cases the initial basis is primal and dual feasible (thus both
feasible and optimal) and only part of the first iteration is
necessary in the Simplex method. This happens because the
problem has a continuous nature and thus at each step the
parameters of the optimization problem change little.

Given that the processor of HOAP-3 is capable of using
the pseudoinverse approach in real time with a wide margin
(see [27]), the timings presented here imply that it could also
be capable of using the LP approach, specially if warm start
is implemented.

IV. CONCLUSION AND FUTURE DEVELOPMENTS

This paper proposed a new paradigm to control highly
redundant robots. The technique is based on a linear pro-
gramming formulation, which when solved using the Sim-
plex algorithm intrinsically reduces the number of non-zero
components in the control vector. Formal results of stability
were presented, and two examples—one in simulation and
the other in a real humanoid robot—were implemented to
illustrate the methodology.

The natural step for next works is the generalization of
the proposed approach to hierarchy of tasks, as in [3],
[5], [6], [7], among others. In that case, the 1-norm is
attractive because the associated optimization problems—
i.e., lexicographical linear programs—can be solved by a
very simple variant of the Simplex algorithm, as pointed out
in [28]. Furthermore, since the Simplex algorithm is very
well understood and efficient, the lexicographical Simplex
is also expected to be efficient because it can borrow
many advances from its traditional counterpart. However,
a theoretical challenge would be to prove stability for the
hierarchical case, which would consist of a generalization of
Proposition 1.

Finally, it turns out that Proposition 1 can also be gener-
alized to encompass tasks in which it is not only desirable
to converge to a set of configurations (e.g., a circle), but
also to keep forever circulating in it [29]. This self sustained
motion—a limit cycle in the configuration space—could be
used to accomplish, for instance, a dance-like motion or even
walking [30].

REFERENCES

[1] C. Fitzgerald, “Developing baxter,” in 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA). IEEE, Apr.
2013, pp. 1–6.

[2] A. Liégeois, “Automatic Supervisory Control of the Configuration and
Behavior of Multibody Mechanisms,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 7, no. 12, pp. 868–871, 1977.

[3] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Advanced
Robotics, 1991.’Robots in Unstructured Environments’, 91 ICAR., Fifth
International Conference on. IEEE, 1991, pp. 1211–1216.

[4] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, Jun.
1997.

[5] L. F. Kanoun, O. and P.-B. Wieber, “Kinematic control of redundant
manipulators: generalizing the task priority framework to inequality
tasks,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792, 2011.

[6] M. I. De Lasa, M. and A. Hertzmann, “Feature-based locomotion
controllers.” in ACM SIGGRAPH 10., 2010.

[7] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” Inter-
national Journal of Robotics Research, vol. 33, no. 7, pp. 1006–1028,
2014.

[8] J.-P. Gauthier, B. Berret, and F. Jean, “A biomechanical inactivation
principle,” Proceedings of the Steklov Institute of Mathematics, vol.
268, no. 1, pp. 93–116, Apr. 2010.

[9] Y. Mehrdad, “Fast Human Movements and Sparse Optimal Control
Policies,” PhD Dissertation, University of California, San Diego, 2012.

[10] M. Nagahara, D. Quevedo, and D. Nesic, “Maximum Hands-Off Con-
trol: A Paradigm of Control Effort Minimization,” IEEE Transactions
on Automatic Control, vol. 11, no. 4, pp. 1–1, 2015.

[11] M. Gallieri and J. Maciejowski, “Lasso mpc: Smart regulation of over-
actuated systems,” in American Control Conference (ACC), 2012, June
2012, pp. 1217–1222.

[12] R. P. Aguilera, R. Delgado, D. Dolz, and J. C. Aguero, “Quadratic mpc
with l0-input constraint,” in 19th World Congress The International
Federation of Automatic Control, 2014, August 2014.

[13] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 5, no. 52, pp. 1289 – 1306, 2006.

[14] S. Muthukrishnan, “Data streams: Algorithms and applications,”
Found. Trends Theor. Comput. Sci., vol. 1, no. 2, pp. 117–236, Aug.
2005.

[15] R. Shamir, “The efficiency of the simplex method: A survey,” Man-
agement Science, vol. 33, no. 3, pp. pp. 301–334, 1987.

[16] E. S. L. Ho, T. Komura, and R. W. H. Lau, “Computing inverse
kinematics with linear programming,” in Proceedings of the ACM
Symposium on Virtual Reality Software and Technology, 2005, pp.
163–166.

[17] W. Decre, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending
itasc to support inequality constraints and non-instantaneous task
specification,” in IEEE International Conference on Robotics and
Automation, May 2009, pp. 964–971.

[18] C. Samson, M. Leborgne, and B. Espiau, “Robot control. the task-
function approach.” Oxford University Press, 1991.

[19] K. G. Murty, Linear Programming. John Wiley & Sons, 1983.
[20] H. Li, “Solve least absolute value regression problems using modified

goal programming techniques,” Computers & OR, vol. 25, no. 12, pp.
1137–1143, 1998.

[21] R. K. Sundaram, A first course in optimization theory. Cambridge
Univ. Press, 1996.

[22] E. Asplund and R. Rockafellar, “Gradients of convex functions,”
Transactions of the American Mathematical Society, vol. 139, pp. 443–
467, 1969.

[23] H. Nakamura, Y. Yamashita, H. Nishitani, and H. Yamamoto, “Dis-
continuous control of nonholonomic systems using nondifferentiable
Lyapunov functions,” in SICE 2003 Annual Conference, vol. 2, 2003,
pp. 1415–1418.

[24] R. J. Vanderbei, Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, 1997.

[25] G. Golub and C. Van Loan, Matrix Computations, ser. Johns Hopkins
studies in the mathematical sciences. Johns Hopkins University Press.

[26] L. M. Nashner and G. McCollum, “The organization of human postural
movements: A formal basis and experimental synthesis,” Behavioral
and Brain Sciences, vol. 8, pp. 135–150, 3 1985.

[27] B. V. Adorno, A. P. L. Bó, P. Fraisse, and P. Poignet, “Towards a
cooperative framework for interactive manipulation involving a human
and a humanoid,” in IEEE International Conference on Robotics and
Automation. IEEE, May 2011, pp. 3777–3783.

[28] H. Isermann, “Linear lexicographic optimization,” Operations-
Research-Spektrum, vol. 4, no. 4, pp. 223–228, 1982.

[29] V. Goncalves, L. A. Pimenta, C. A. Maia, B. C. O. Dutra, and G. A. S.
Pereira, “Vector fields for robot navigation along time-varying curves
in n -dimensions,” Robotics, IEEE Transactions on, vol. 26, no. 4, pp.
647–659, Aug 2010.

[30] D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking. Humanoid
Robots: Human-like Machines, ser. Systems & control. ITech
Education and Publishing, 2007.

