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Abstract: This article presents a general approach and some on-going developments to restore
coordination between unaffected and paretic limbs in the context of functional electrical
stimulation (FES) assisted posture and gait. The principle is to ensure posture global control
through local muscle control when considering functional assistance. This supposes that
both natural and artificial controllers are provided with sufficient information concerning
the global state of the system. In other words, voluntary movements of unaffected limbs
should cooperate with artificially controlled deficient limbs in order to guarantee an optimal
behaviour and posture. The approach is described from a theoretical and technical aspect
and some experimental results are presented. The system is based on a Body Area Network
(BAN) embedding both sensor and actuator (electrical stimulators) nodes. In the present paper
only surface FES is discussed through two main applications: gait assistance in post-stroke
hemiplegia and sit-to-stand transfer in complete paraplegia. The approach is transposable to
other applications as well as to implanted neuroprosthetics from a conceptual point of view.

Keywords: Functional Electrical Stimulation (FES), Body Area Network (BAN), Closed loop
control, gait assistance, posture, transfer assistance, neuroprosthetics.

1. INTRODUCTION

Functional Electrical Stimulation (FES) allows to assist
or restore muscle contraction. Artificial control of nat-
ural actuators can benefit from automatic control and
robotics theoretical framework. In the context of lower
limb stimulation, many studies have investigated closed-
loop control of joints using various kinds of approaches
(Lynch and Popovic, 2012). Local control of individual
joints has to be also considered from the global perspective
of the function to restore (walking, standing...) ensuring a
safe and optimal posture. Posture control has also been
investigated by several teams (Ajoudani and Erfanian,
2009). Consequently the controlled variable can concern
individual joint state (Qiu et al., 2014), joint stiffness
(Jaime et al., 2002) or a more global variable such as body
center of mass (Jovic et al., 2012a), (Vette et al., 2009).
In order to improve efficiency, robustness and adaptability
closed-loop control has been considered in many published
studies. Feedback control implies the availability of in-
formation related to the state of the controlled variable.
Various sensors have been used for this purpose: goniome-
ters (Qiu et al., 2014), instrumented walker, instrumented
orthotic devices (Jezernik et al., 2004), Electro Myography
(EMG) (Zhang et al., 2013). If, electrical stimulation (ES)
can be external, i.e applied at the skin surface, it can
also be implanted (Guiraud et al., 2014) and in this latter

context Electro Neurography (ENG) measuring afferent
nerve fibers activity could be a solution (Hansen et al.,
2004; Djilas et al., 2010, 2009).
Sensors have to be adapted to the type of neuroprosthesis
(implanted/ surface) and to the function to be assisted
or restored. Depending if FES is applied acutely hoping
for functional recovery of the patient or chronically, the
technological choices also have to be adapted.
In a research context and for validation purposes, multiple
sensors are commonly embedded on the patients. From a
practical point of view, this will not be acceptable for an
every-day use. This also means that in real applications,
only partial and imprecise information might be available.
Similarly, complex models with constraining parameter
identification process will be hardly considered. These con-
sideration lead our team to investigate solutions to extract
from a minimum number of sensors with a minimum of
calibration procedure, a maximum of knowledge about the
considered motion (Sijobert et al., 2015; Azevedo Coste
et al., 2014b).
In this paper we will only discuss external FES. In this con-
text we have investigated the body area network (BAN)
framework (Chelius et al., 2011). Our team has proposed
solutions for architectures of networks of sensors and
stimulators both for surface (Toussaint et al., 2010) and
implanted contexts (Andreu et al., 2009).
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Fig. 1. Integrating global and local observations for a bet-
ter coordination of valid and deficient limbs in posture
and gait functional assistance involving FES. Illustra-
tion of drop-foot correction in post-stroke hemiplegic
and transfer assistance in SCI contexts.

The present article intends to insist on two main aspects
of closing the loop in FES-assisted gait and posture: local
joint control and global function control. From a feedback
point of view this implies to observe both local behaviors
and global posture including voluntary movements (figure
1). Indeed, when dealing with FES assistance of posture
and gait, an important characteristic is the co-existence of
two controllers: the natural vs the artificial one. Artificial
control of lower limb(s) needs to cooperate with volun-
tary motion (Azevedo Coste and Héliot, 2005). It is non
sense to perform a local optimization without integrating
a general vision of the function to restore (here posture
and gait). From an application point of view, it is also
important to keep in mind that observation should rely
on a low number of sensors for the proposed solutions to
be realistic. In the following, we illustrate this approach
through two examples: transfer assistance in spinal cord
injured (SCI) patients and gait assistance in post-stroke
hemiplegic patients.

2. TRANSFER ASSISTANCE IN SCI:
COORDINATING UPPER AND LOWER BODY

Restoring standing by means of functional electrical stim-
ulation (FES) in spinal cord injured (SCI) individuals
has been a subject of research since many years (Kralj
et al., 1980). First approaches used open-loop stimulation
to ensure knee locking and hyperextension of hips while
subjects used their arms to maintain balance. In these
conditions, due to early fatigue of artificially stimulated
muscles, a paraplegic person is able to stand only for
a few minutes mainly due to knee unlocking. Solutions
have been proposed to face fatigue problem by optimizing

stimulation parameters (Bijak et al., 2005), performing
posture switching in order to allow muscles to relax (Krajl
et al., 1986), or implementing closed-loop control laws
(Braz et al., 2009; Matjai et al., 2003).
It is important to have in mind that SCI individuals in-
tensively use their upper limbs during daily activities, such
as performing pivot transfers and wheelchair propulsion.
This overuse induces shoulder pain and damages. This
is critical for these persons whose autonomy is highly
linked to arm contribution. FES-assisted sit to stand (STS)
should not increase the already existing risk of shoulder
complications. In healthy population, STS can be achieved
without arm participation and trunk role in this postural
task is essential (Jovic et al., 2012b).
Trunk motions should not be considered as negligible
disturbances in any postural task, indeed center of mass
position is mainly influenced by trunk motion. Depending
on the lesion level, the trunk control is totally or partially
under subject voluntary control. In a STS task, trunk
movements should participate with and not against the
transfer.
We have proposed to restore a coordination between upper
and lower parts of the body in order to optimize STS
transfers in terms of reducing arm participation during the
rising motion. We have developed an algorithm to observe
trunk acceleration during STS transfer and trigger stim-
ulation at the chosen moment (figure 2) and investigated
the influence of the timing of muscle stimulation onset on
the upper limb efforts. More details can be found here in
previous publications (Jovic et al., 2012a, 2011).
Trunk acceleration was acquired via a single-axis wireless
accelerometer placed between subjects shoulders. Force
sensors were mounted on handles to record arm efforts.
Stimulation current amplitude was adjusted muscle by
muscle to ensure maximum contraction.
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Fig. 2. Observing upper body to control deficient leg
muscles in SCI FES-assisted transfer context.

Participants were instructed to bend their trunk forward
at the signal. Leg stimulation (quadriceps, hamstrings)
was first manually triggered by the experimenter. The cor-
responding measured trunk acceleration was the reference
pattern. In subsequent sessions the participants had to
repeat the same trunk motion and stimulation was au-
tomatically triggered in order to randomly explore various
timings (i.e different stimulation onset values in regards
to the maximal trunk acceleration signal). The detection
algorithm consisted in comparing the acceleration of the
ongoing motion with the reference pattern through a sim-



ple correlation. Once the pattern detected stimulation was
triggered. By selecting a subpart of the reference pattern,
the stimulation timing onset was defined indirectly.
We have shown, in the 6 participants, that when lower
limb stimulation started before or around the maximum
trunk acceleration peak, the applied arm forces during STS
motion were significantly lower when compared with the
situation when stimulation started after maximum trunk
acceleration peak. We also showed that arm forces applied
during STS motions were slightly higher when the onset
of stimulation occurred after the maximum trunk accelera-
tion signal, vs. when participants stood up using only arm
support. In other words FES-assistance was worse than no
assistance at all if triggered too late. For each participant,
and also depending on training, the optimal moment for
triggering FES can be different and has to be specific.
Coordinating lower and upper body in STS task is neces-
sary to reduce arm support and preserve shoulders.

3. GAIT ASSISTANCE

This section is adapted from (Azevedo Coste et al., 2014a)
where more details can be found about the method. The
intention here is to illustrate the general concept of limb
coordination in FES-assistance.

Walking impairment after stroke can be addressed through
drop foot stimulators (DFS) (Lyons et al., 2002). Current
DFS, through activation of the common peroneal nerve,
elicit ankle dorsiflexion on swing phase of gait. Dropped
foot stimulators are generally piloted by a force sensing
resistor heel switch placed in the shoe of the affected side
with stimulation triggered ON by heel rise of the affected
foot and triggered OFF by heel strike. Other sensors have
been proposed instead of foot switch such as tilt sensors
(Shimada et al., 2005; Everaert et al., 2013). Eventhough
closed-loop control in this context has been considered
(Melo et al., 2015; Seel et al., 2014), real-time control
of stimulation intensity is still not available in existing
devices. The modulation of FES intensity to provide more
optimized delivery of stimulation and also to regulate dor-
siflexion in the presence of disturbances, such as fatigue,
may increase the number of potential users of the technol-
ogy (Breen et al., 2006). Modulation of stimulation param-
eters would enable adaptation to context and environment
changes. Some studies have suggested that improvement
in orthotic performance could be achieved using stimulus
intensity shapes matching more closely the muscle biphasic
activation pattern than the trapezoidal shape classically
used in the stimulators (Byrne et al., 2007), this requires
more than one event driven stimulation.

Human gait is a cyclic phenomenon which can be modeled
as a non-linear oscillator (Héliot and Espiau, 2008). Based
on this, we have developed a solution to continuously track
the evolution of the ongoing gait cycle. The principle is
to identify the parameters of a Van Der Pol oscillator
from the signal of a sensor placed on a subject limb.
Indeed, during walking the signal should elicit a cyclic
behavior. We have shown that thigh and shank inclination
can be good candidates. In the phase plane the periodic
stable solution of the oscillator is a trajectory called limit
cycle. The phase is a coordinate along this limit cycle ie
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Fig. 3. Observing unaffected leg movements to control
deficient leg muscles in drop foot correction context.

a continuous information on the gait cycle execution. An
isochron matrix can also be defined in order to extend
the phase to the vicinity of the limit cycle. Based on the
oscillator properties, it can be demonstrated that a state
observer of the system can be built. From the estimated
state variables the phase of the oscillator can be computed
(figure 3).

We have proposed to extract the tilt angle information
from one inertial sensor fixed on patient shank. Extra
details can be found in (Azevedo Coste et al., 2014a). A
reference pattern is computed from several steps of a given
individual and is used to identify the oscillator parameters.
The phase can be then estimated online from ongoing
measured data.

We have experimentally validated this model on 20 post-
stroke hemiplegic subjects by analyzing the phase estima-
tion corresponding to heel strike and heel off compared to
information available from a walkway GAITRite system.
As a first attempt to use this real-time information, we
show the feasibility of triggering an electrical stimulator
based on the information provided by an inertial sensor
placed on unaffected shank. We embedded our gait obser-
vation algorithm within a system involving a commonly
used drop foot stimulator (Odstock ODFS III) to con-
trol deficient foot dorsiflexion. We compared the situation
when ES was triggered from a heel switch and when ES was
triggered when the phase values were comprised between
0 and 40%.
The observation of the unaffected leg shank angle could
successfully be used to trigger the stimulator. Theoreti-
cally the stimulator can be triggered at any instant of the
gait cycle from the continuous phase information.

Using only one sensor placed on the shank of the unaffected
leg a complete information on the gait cycle evolution can
be extracted, i.e a global knowledge on the task perfor-
mance. Extending the body area network by including
additional sensors could allow us to investigate advanced
control laws (Héliot et al., 2013; Benoussaad et al., 2013).



4. CONCLUSION

We have described a general approach to functional assis-
tance using functional electrical stimulation. Most of the
concepts could be adapted to other assistive techniques
(orthoses, exoskeletons...). The proposition is to consider
this problematic from a multi-scale point of view. The
controller should be hierarchic and include local and global
levels, going from joint to posture considerations. This is
very similar to human natural sensori-motor architecture
(Azevedo et al., 2007). We insisted on the necessity to
coordinate unaffected and paretic limb motions through
the cooperation of voluntary and artificial controllers. This
theoretical framework is associated to technical develop-
ments around body area networks (BAN) integrating sen-
sors and actuators nodes. We have illustrated the interest
of the approach in the context of two situations: sit to
stand assistance in complete paraplegia and drop foot
correction in hemiplegia. Some experimental validation has
been achieved in both cases and from these preliminary
results new investigation topics are on going.

This article presented ongoing developments towards a
robust framework for body area network of sensors and
stimulators in order to propose advance solutions of FES-
closed loop control. The approach is illustrated through
preliminary results in the context of post-stroke hemiplegic
gait assistance and complete spinal cord injured patient
transfer assistance.
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