
HAL Id: lirmm-01206361
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01206361

Submitted on 28 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Line-by-line spectroscopic simulations on graphics
processing units

Caroline Collange, Marc Daumas, David Defour

To cite this version:
Caroline Collange, Marc Daumas, David Defour. Line-by-line spectroscopic simulations on
graphics processing units. Computer Physics Communications, 2008, 178 (2), pp.135-143.
�10.1016/j.cpc.2007.08.013�. �lirmm-01206361�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01206361
https://hal.archives-ouvertes.fr


Computer Physics Communications 178 (2008) 135–143

www.elsevier.com/locate/cpc

Line-by-line spectroscopic simulations on graphics processing units ✩,✩✩

Sylvain Collange a, Marc Daumas a,b,∗, David Defour a

a ELIAUS, UPVD, 52 avenue Paul Alduy, 66860 Perpignan, France
b LIRMM, CNRS, UM2, 161 rue Ada, 34392 Montpellier, France

Received 8 June 2007; received in revised form 29 July 2007; accepted 17 August 2007

Available online 14 September 2007

Abstract

We report here on software that performs line-by-line spectroscopic simulations on gases. Elaborate models (such as narrow band and corre-
lated-K) are accurate and efficient for bands where various components are not simultaneously and significantly active. Line-by-line is probably
the most accurate model in the infrared for blends of gases that contain high proportions of H2O and CO2 as this was the case for our prototype
simulation. Our implementation on graphics processing units sustains a speedup close to 330 on computation-intensive tasks and 12 on memory
intensive tasks compared to implementations on one core of high-end processors. This speedup is due to data parallelism, efficient memory access
for specific patterns and some dedicated hardware operators only available in graphics processing units. It is obtained leaving most of processor
resources available and it would scale linearly with the number of graphics processing units in parallel machines. Line-by-line simulation coupled
with simulation of fluid dynamics was long believed to be economically intractable but our work shows that it could be done with some affordable
additional resources compared to what is necessary to perform simulations on fluid dynamics alone.

Program summary

Program title: GPU4RE
Catalogue identifier: ADZY_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZY_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 62 776
No. of bytes in distributed program, including test data, etc.: 1 513 247
Distribution format: tar.gz
Programming language: C++
Computer: x86 PC
Operating system: Linux, Microsoft Windows. Compilation requires either gcc/g++ under Linux or Visual C++ 2003/2005 and Cygwin under
Windows. It has been tested using gcc 4.1.2 under Ubuntu Linux 7.04 and using Visual C++ 2005 with Cygwin 1.5.24 under Windows XP.
RAM: 1 gigabyte
Classification: 21.2
External routines: OpenGL (http://www.opengl.org)
Nature of problem: Simulating radiative transfer on high-temperature high-pressure gases.
Solution method: Line-by-line Monte-Carlo ray-tracing.
Unusual features: Parallel computations are moved to the GPU.

✩ This work has been partially funded by the EVA-Flo project of the ANR and a STICS-UM2 multidisciplinary grant awarded to LIRMM, ELIAUS and PROMES
laboratories. This work has been possible thanks to the kind help of Gilles Flamant, Pierre Neveu, Xavier Py and Régis Olives from PROMES laboratory (CNRS)
and Frédéric André from CETHIL (CNRS, INSA Lyon).
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author at: ELIAUS, UPVD, 52 avenue Paul Alduy, 66860 Perpignan, France.
E-mail address: marc.daumas@univ-perp.fr (M. Daumas).
0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.08.013

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADZY_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.opengl.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:marc.daumas@univ-perp.fr
http://dx.doi.org/10.1016/j.cpc.2007.08.013


136 S. Collange et al. / Computer Physics Communications 178 (2008) 135–143
Additional comments: nVidia GeForce 7000 or ATI Radeon X1000 series graphics processing unit is required.
Running time: A few minutes.
© 2007 Elsevier B.V. All rights reserved.

PACS: 44; 44.40.+a; 07.05.Tp; 89.80.+h

Keywords: Radiative heat transfer; Line-by-line; Simulation; Graphics processing unit; GPU; Parallelism; Data parallel
Fig. 1. Experimental setting of our prototype simulation.

1. Introduction

Spectroscopic databases such as HITRAN1 (HIgh-resolution
TRANsmission) [1] allow one to compute intensity diagrams,
absorption coefficient profiles, transmittance, absorption, and
radiance spectra on any mixture of gases. High temperature
conditions are covered by specific databases including CDSD2

(Carbon Dioxide Spectroscopic Databank) and HITEMP1

(HIgh-TEMPerature) amongst others [2–4].
Most databases can be used by proprietary software such as

JavaHAWKS1 or PcLnWin3 as well as server side software.2

These codes apply Lorentz or Voigt profiles [5, Appendix A.2],
approximations to the partition functions [6] and well known
laws such as Beer–Lamber law for absorption and Planck law
for heat induced emissions.

The experimental setting of prototype simulation is pre-
sented in Fig. 1. Concentrated sunlight is used to heat a metal
pipe that transfers heat through contact and infrared radiations
to a pressurized mixture of infrared participating gases. We
consider wavenumbers between νmin = 512 cm−1 and νmax =
16,895 cm−1 for a mixture of H2O and CO2. Line-by-line sim-
ulation is time consuming. Though real applications require
more accuracy we start with lines for which the intensity is
higher than 0.1% of the most intense line. This leads to 21,879
lines at 1000 K. To be consistently accurate, we sampled the
wavenumber axis down to 4096−1 cm−1. This choice yields
2,561,660 points at 1000 K and 8 atm.

In an anisotropic setting discretized in finite volumes such
as the one that we simulate we cannot produce analytical ex-
pressions for the mean effect of Beer–Lamber law. We obtained
the mean effects using Monte Carlo ray tracing as presented in
Fig. 2 on over 1000 rays where each ray follows its path through
an average of 6 volumes before it hits the opposite side of the
pipe.

1 http://cfa-www.harvard.edu/hitran/.
2 http://cdsd.iao.ru/.
3 http://ontar.com/.
Fig. 2. Monte-Carlo ray-tracing through finite volumes.

Fig. 3. Simplified rendering pipeline.

These figures amount to a minimum total (sequential) run-
ning time close to 7 hours and 40 minutes. As our application is
embarrassingly parallel, we could reduce the running time us-
ing (expensive) distributed machines. We decided to use graph-
ics processing units instead. To the best of our knowledge, there
is no prior art in the implementation of these tasks on such units.

Graphics Processing Units (GPU) offer computing resources
higher than the ones available on processors [7]. With the deliv-
ery of the latest generations of GPUs, they can be used for gen-
eral processing4 (GPGPU) [8] and become application specific
co-processors for regular and heavily data-parallel processing.

GPUs are graphics oriented units manipulating streams of
data through what is called a rendering pipeline (see Fig. 3). The
host sends vertices to position primitive geometrical objects
(polygons, lines, points). Vertex shaders transform objects (ro-
tation, translation, illumination. . . ) and assemble them to create
more elaborate objects. When an object has reached its final
position, form and lighting, it is split into pixels. The raster-
izer interpolates properties of the vertices on each pixel. Pixel
shaders apply textures and assign colors to pixels, for exam-
ple. Blending and z-compare affect objects that are not directly

4 http://www.gpgpu.org/.

http://cfa-www.harvard.edu/hitran/
http://cdsd.iao.ru/
http://ontar.com/
http://www.gpgpu.org/


S. Collange et al. / Computer Physics Communications 178 (2008) 135–143 137
Fig. 4. Description of data generation on the host and temperature and pressure corrections in the first steps of the graphics pipeline.
visible but partially hidden or seen through other objects. This
process ends with the images ready be displayed.

GPUs can be programmed following various paradigms but
we obtain efficiency, portability and re-usability by implement-
ing our application as if it were a graphics application using
OpenGL [9]. We apply temperature and pressure correction on
line intensity and line half-width in the vertex shaders as de-
scribed in Section 2. Discretization on the wavenumber axis is
later performed by the rasterizer. The pixel shaders compute
Lorentz profile on the discretized lines as presented in Section 3
and the optical depth of various lines and component gases are
summed in the blending unit. When this process is over, the
pixel shaders compute the output spectrum of the ray based on
its input spectrum and it yields one component of the power
absorbed by the finite volume as described in Section 4.

Although our approach is based on finite volumes used by
Fluent [10] and Trio-U,5 this work can also be applied to accu-
rately instantiate source terms in software based on finite ele-
ment methods such as ComSol.6 Coupling is obtained by run-
ning the simulation of fluid dynamics on the processor and es-
timating radiative source terms on the GPU. Simulations where
the code for fluid dynamics runs on parallel machines [11]
will certainly benefit from quasi-linear speedups on GPUs as
presented for a similar embarrassingly parallel application of
GPGPU [12].

2. Temperature and pressure corrections on line intensity
and line half-width

The first operation to be done before a ray enters a finite vol-
ume consists in temperature and pressure corrections on line
intensity and line half-width. Similar corrections are applied
to each line of each gas component of the volume considered.

5 http://www-trio-u.cea.fr/.
6 http://www.comsol.fr/.
They are based on homogenized temperature and pressure (total
and partial for each component). The temperature and pressure
fields are provided in intermediate files by the simulation on
fluid dynamics. We use the notation of [5, Appendix A.2] in
Eqs. (1), (2) and the rest of this text.

(1)Sηη′(T ) = Sηη′(Tref) · Q(Tref)

Q(T )
· e− c2Eη

T

e
− c2Eη

Tref

· (1 − e− c2ν
ηη′

T )

(1 − e
− c2ν

ηη′
Tref )

,

γ (T ,p,ps) =
(

Tref

T

)n(
γair(pref, Tref)(p − ps)

(2)+ γself(pref, Tref)ps

)
.

The description of the operations involved by the execution of
these corrections on the GPU is given in Fig. 4. These opera-
tions are carried out by the vertex shaders. Such units usually
compute on (x, y, z,w) attributes in a 3-dimensional homoge-
neous space. The last component w helps operate non-linear
transformations on vertices.

In our application, vertex shaders receive two attributes,
(νηη′ ,E′′

i , Sηη′(Tref), ν) and (x, y, γ,n), for each line with the
notation of Eqs. (1) and (2). We define γ = γ (Tref,pref,ps,ref)

/pref assuming that there is neither chemical reaction nor phase
change. The other quantities used in Eqs. (1) and (2) do not
depend on the line considered though they may depend on the
gas component considered. They are transmitted and stored as
scalar constants for each volume. Constant subexpressions are
precomputed only once on the processor.

Vertex shaders cannot store their results to memory. Results
are aggregated into attribute groups and passed to the next step
of the rendering pipeline. The z coordinate is usually handled
in the very last steps of the rendering pipeline (blending and z-
compare) and the rasterizer unit is well suited to address data
organized on a 2 dimensional array. The x and y coordinates
introduced in the previous paragraph are used to encode the
wavenumber ν in a discrete square of length s (represented on

http://www-trio-u.cea.fr/
http://www.comsol.fr/


138 S. Collange et al. / Computer Physics Communications 178 (2008) 135–143
the left side in Fig. 4) with the following transformations:

(3)ν(x, y) = νmin + (x + s × y) × νstep,

(4)x(ν) = (ν − νmin)/νstep mod s,

(5)y(ν) = (
(ν − νmin)/νstep − x(ν)

)
/s.

Minimum and maximum wavenumbers are slightly shifted so
that s and νstep = (νmax − νmin)/s

2 are powers of 2.
In our square representation of the wavenumber axis, each

line is coded by at least two points. The first point is located at
the wavenumber where the line intensity rises above a prede-
fined threshold and the second point is located at the wavenum-
ber where the line intensity falls below the predefined threshold.
In most cases, the line is a discrete segment of our square rep-
resentation. The rasterizer creates the discrete samples of this
segment and these samples are routed to the pixel shaders with
their corrected line intensity and line half-width.

The wavenumbers where the intensity of some spectral lines
is above the threshold may cross the border of our square repre-
sentation. We represent such lines by two segments or more,
one segment for each row of the square where the line is
above the threshold. In our current software, such lines are de-
tected statically on the processor by considering the worst case.
Thanks to the new hardware and software capabilities of the
geometric shader defined by Direct3D 10 that can generate new
data set from existing ones, future versions of our software will
handle this step dynamically on the GPU.

3. Monochromatic optical depth for each line of each gas

The second operation needed before a ray enters a finite vol-
ume consists in computing the discretized optical depth of each
line of each component gas to a given wavenumber. The details
of this step are given in Fig. 5.

At that point in the rendering pipeline, the rasterizer has gen-
erated two attribute groups for each discretized wavenumber of
each line and each gas above the threshold (see Section 2). The
wavenumber ν of each sample is linearly interpolated, while the
other attributes are copied unaltered. To fully exploit most re-
sources of GPUs operating on four-component attribute groups,
the wavenumber axis is oversampled four times corresponding
to sub-pixel interpolation, resulting in our target resolution of
4096−1 cm−1.

For each sample, the line intensity is multiplied by the shape
function. As our application simulates fluids around 8 atm, we
neglect the pressure-shift correction and we use Lorentz profile
as shape function:

(6)f (ν, νηη′ , T ,p) = 1

π

γ (T ,p)

γ (T ,p)2 + (ν − νηη′)2
.

Contribution of transition between lower and upper states η and
η′ of component gas g to the monochromatic absorption coeffi-
cient is

(7)kηη′(ν, T ,p) = Sηη′(T )f (ν, νηη′ , T ,p).

We obtain the contribution to the optical depth τηη′ = ukηη′
where u is the density of absorbing molecules per unit path
length.

All the formulas above are evaluated on pixel shaders. List-
ing 1 is the source code of a Lorentz profile in Cg language. It
can be easily adapted to compute other profiles, such as Voigt
profiles.

For a given geometrical object, the number of pixels is usu-
ally larger than the number of vertices and in our application the
number of samples is much larger than the number of lines con-
sidered. GPUs typically contain more pixel shaders than vertex
shaders. The current ratio is commonly 24 against 8. This is the
reason why we used the pixel shaders for this step.

Pixel shaders as well as vertex shaders cannot control the lo-
cation of their results. Results are just passed to the next step
of the rendering pipeline. The blending units or ROPs “blend”
the components of new pixels with the previous values of the
pixels at the same (x, y) location. Both GPUs used in out tests
contain 16 blending units. Such units are parametrized to com-
pute aP + bQ on the components of pixels P and Q, where a

and b are constants. We sum overlapping monochromatic opti-
cal depth with a = b = 1. At this point in the rendering pipeline,
we have a discretization of the τ function.

Most blending units of GPUs shipped in 2006 operate on a
16-bit reduced-precision format that does not provide enough
Fig. 5. Description of monochromatic optical depth for each line of each gas.



S. Collange et al. / Computer Physics Communications 178 (2008) 135–143 139
float4 main (
// Inputs:

float4 params : TEXCOORD0, // (νηη′ ,0, Sηη′(T ), ν)

float4 coords : TEXCOORD1, // (x, y, γ (T ,p,ps),0)

// Constants:
uniform float piinv, // 1/π

uniform float4 nu_bias // (0, 1
4νstep, 2

4νstep, 3
4νstep)

) : COLOR {
float delta_nu = params.x - params.w;
float4 nu = delta_nu.xxxx - nu_bias;

// oversample to 4-component vector
float gamma = coords.z;
float4 denom = nu * nu + (gamma * gamma).xxxx;
return (piinv * gamma * params.z).xxxx / denom;

}

Listing 1. Parallel monochromatic intensity.
Fig. 6. Description of monochromatic and total sources of power from radiative
heat transfers.

accuracy. Alternative methods [7] can be used on these GPUs,
at the price of reduced performances. GPUs starting with nVidia
GeForce 8000 and ATI Radeon 2000 series can perform blend-
ing on single precision data.

4. Mono- and polychromatic sources of power from
radiative heat transfers

When steps described in Sections 2 and 3 are over, the GPU
computes the monochromatic output intensity Iout for a ray
passing through length l of an isothermal homogeneous finite
volume of Fig. 2. It is based on the monochromatic input in-
tensity Iin, Beer–Lamber law for absorption (first term of Iout
below) and Planck law for heat induced emissions (second term
of Iout).

(8)Iout = Iin · e−τ(ν)·l + 2hν3

c2
· 1

(ec2ν/T − 1)
· (1 − e−τ(ν)·l).

This step is performed in the pixel shaders. Monochromatic in-
put intensities Iin are stored in a texture “image” and results Iout
are stored in a new texture image. The power absorbed by the
finite volume is the integral of the monochromatic intensities
absorbed by the volume, and it is approximated by the sum of
the differences Iin − Iout scaled by νstep. This power has to be
scaled by the fraction of the finite volume that is affected by the
ray based on the solid angle of the ray.
The architecture of GPUs prevents the use of a global ac-
cumulator for this sum. We use an iterative reduction tech-
nique [7]. For each iteration, data are summed locally reducing
four pixels into one producing a square texture of size reduced
by 2. Four memory accesses are performed to compute the
value of one pixel that is stored in the reduced texture. When
the size of the iterated texture is no longer sufficient to exhibit
enough parallelism, the texture is copied to main memory and
the sum is finished by the processor.

When all computations needed for one finite volume are
over, buffers Iout and Iin are swapped and the process starts
with a new volume. This process ends when the ray hits the op-
posite wall and Iin is reinitialized based solely on Planck law
and properties of the metal pipe.

5. Tests and results

Single-precision floating-point only covers limited expo-
nents. We converted HITRAN/HITEMP data to different units
so that all intermediate quantities remain between ±10−38 and
±1038. These conversions are given in Table 1.

HITEMP database contains 1,283,468 lines for the most
common isotope of H2O and 1,032,269 for the most common
isotope of CO2. Respectively 1,193,874 and 741,495 lines are
within the infrared area considerer. We used the following pa-
rameters and the thresholds of Table 2 to compare performance
at various line densities.

(9)s = 211,

(10)νstep = 2−12 µm−1,

(11)νmin = 0.0512 µm−1,

(12)νmax = 1.6895 µm−1,

(13)T = 1200 K,

(14)p = 8 atm,

(15)ps = 0.4 × p (for infrared participating gases).

Generating Table 2, we noticed that

(16)max
(
Sηη′(Tref)

) = 3.5 × 10−20 m−1/(molecule · m−2),



140 S. Collange et al. / Computer Physics Communications 178 (2008) 135–143
Table 1
Units used in the HITRAN/HITEMP database and in our application

Variable ν γ p Sηη′ τ(ν) Eηη′

HITRAN/HITEMP units cm−1 cm−1/atm atm cm−1/(molecule cm−2) cm−1 cm−1

Units used in GPU µm−1 µm−1/atm atm m−1/(molecule m−2) m−1 m−1

Table 2
Statistics on the effort required for a line-by-line computation for different values of the threshold on kηη′ (ν, T ,p)

Threshold

(m−1)

Lines Samples Max # of overlap Max # of samples in a
line

H2O CO2 H2O CO2 H2O CO2 H2O CO2

1 × 10−13 353 4051 7324 366,156 2 5 19 145
1 × 10−14 2060 19,819 126,552 2,435,108 3 15 113 461
1 × 10−15 7117 75,620 927,628 12,617,948 4 22 395 1457
1 × 10−16 20,883 222,660 4,678,780 54,189,736 4 28 1259 4609
1 × 10−17 58,039 525,544 20,700,852 204,068,100 6 54 3987 14,573
1 × 10−18 155,565 686,791 81,948,032 684,901,816 10 122 12,609 46,085

Fig. 7. First pass performance results on our first test configuration.
(17)

max
(
kηη′(ν, T ,p)

) = 1.26 × 10−11 m−1/(molecule · m−2).

The first threshold of Table 2 is clearly too high. The next one
is probably too high and a good threshold seems to be the third
or the fourth one. We will validate this empirical results with
interval arithmetic in future work.

Tests were carried out on two workstations: one equipped
with a nVidia GeForce 7800 GTX graphics card and running
Linux and another equipped with an ATI Radeon X1800 XL
graphics card and running Windows XP.

A C++ program performing the same computations was
written for purposes of validation and performance compar-
isons. Under Linux, it was compiled with g++ 4.1.2 with
the following flags: -O3 -march=prescott -mfpmath
=sse. Under Windows, we used Microsoft Visual C++ 2005
with flags /Ox /arch:sse.

The first pass through the rendering pipeline is based on Sec-
tions 2 and 3. It performs temperature and pressure corrections
in vertex shaders, computes optical depth computation in pixel
shaders, and merges lines either in pixel shaders or blending
units. Fig. 7 shows the relative performance of a Pentium 4
desktop processor and our first GPU.

All computations are carried out in single precision allowing
the use of the SSE instruction set on the processor. To discover
possible memory contentions, we considered several memory
layouts. The processor uses either 32-bit single precision and
64-bit double precision arrays. On GPU, we used single pre-
cision except for the last steps of the process where we used
either single precision and 16-bit half precision.



S. Collange et al. / Computer Physics Communications 178 (2008) 135–143 141
Fig. 8. First pass performance results on our second test configuration.

Fig. 9. Second pass performance results.
On one hand, GPUs are optimized for throughput over la-
tency. The massive parallelism induced by the input data is used
to maintain enough operations in flight such that dependencies
between instructions do not cause pipeline stalls. On the other
hand, higher data density also benefits the processor. It yields
more spacial and temporal localities thus decreasing the ratio of
cache misses.

The two-fold performance gap between the same computa-
tion performed in single precision and half precision textures
reveals that this step is bounded by memory bandwidth on
GPUs. Changing formats only causes marginal changes on per-
formances of processors. We may assume that computing time
on processor is bounded either by the computation time itself,
by the memory latency, or by a combination of both.

This first pass involves divisions. Recent shaders contain a
pipelined scalar unit responsible for evaluating special func-
tions such as reciprocal, reciprocal square root, exponential,
logarithm and trigonometric functions. This is not the case for
most current processors. The reciprocal function is computed
by fully-pipelined specialized units on GPUs delivering a result



142 S. Collange et al. / Computer Physics Communications 178 (2008) 135–143
every cycle, whereas division is performed in microcode on the
Pentium 4 processor and requires 40 cycles. This can cause the
CPU to be computation-bound.

Emulating the blending operation in pixel shaders requires
roughly twice as much bandwidth. This explains the twofold
difference obtained between both methods for large datasets
(more than 2 × 106 samples).

With these entirely bandwidth-dependent results in mind, we
can assume a GPU with blending units operating on 32-bit data
would operate roughly half as fast as one operating in 16-bit
mode. This would represent a speedup around 20 to 30 com-
pared to the CPU implementation.

Our second test configuration shows similar results when us-
ing 16-bit textures as seen Fig. 8. However, using 32-bit textures
causes a major slowdown, GPU performance becoming even
with processor performance. This is likely caused by a lack of
graphics memory, which leads GPU and driver to swap graphics
memory to main memory.

Likewise, neither of our two workstations was able to com-
plete the last test with 32-bit textures, both experiments result-
ing in a crash of the application. This is due this time to the lack
of system memory. Both test configurations contain 1 GB main
DDR2 RAM and 256 MB graphics GDDR3 RAM. As more re-
cent systems already feature up to 4 GB system RAM and 1 GB
graphics RAM, these limitations will be pushed further as tech-
nology advances.

The second pass through the rendering pipeline performs
operations presented in Section 4. Performance comparison be-
tween implementation on pixel shaders of nVidia GeForce 7800
GTX and our reference CPU are depicted in Fig. 9. The number
of computed samples per second is plotted against the number
of samples after merging. To obtain such timings, we changed
the size of the texture used.
The second pass yields a speedup near 330 for 5 × 106 sam-
ples. One reason for these impressive results are the presence
in GPUs of hardwired exponential evaluation units. On proces-
sors, transcendental functions such as the exponential are eval-
uated in software or microcode and typically require 100 clock
cycles to compute. The nVidia GeForce 7800 GTX has 24 fully-
pipelined function evaluation units and each unit can deliver
one result per clock cycle. As with the reciprocal in the first
pass, this allows the computation units to run at a speed ap-
proaching memory bandwidth.

However, the summation iteration brings the balance back
toward the processor. Instead of needing a bandwidth-consum-
ing multi-pass reduction scheme like the GPU, the processor
only need an extra floating-point register. This register is used
as an accumulator and the summation is almost an invisible op-
eration.

For more than 2 × 107 samples, the complete data-set does
not fit into graphics memory, especially when we use 32-bit tex-
tures. This leads to a noticeable performance decrease for the
rightmost points of our figures.

6. Conclusion

Line-by-line simulation on real applications was long be-
lieved to be too expensive. We presented in this report our port
of this task to graphics processing units so that line-by-line
simulation performed on GPU can easily be coupled with simu-
lation on fluid dynamics on processor. During our effort to port
this application to GPU, we obtained a speedup close to 330 on
computation intensive tasks and 12 on memory intensive tasks.
Line-by-line simulation that requires more than 7 hours to com-
plete on processor now runs in less than 10 minutes on GPU.
Fig. 10. Complete computation performance results.



S. Collange et al. / Computer Physics Communications 178 (2008) 135–143 143
Fig. 10 also presents running time for larger and more accurate
simulations on 6000 rays entering various volumes.

As a conclusion, simulation of radiative phenomena coupled
with simulation of fluid dynamics is now possible on real ap-
plications with some affordable additional resources compared
to what is necessary to perform simulations on fluid dynamics
alone. Future work will present new simulation and insight into
physics obtained thanks to this new piece of software.

References

[1] L. Rothman, et al., Journal of Quantitative Spectroscopy and Radiative
Transfer 96 (2005) 139.

[2] H. Partridge, D.W. Schwenke, The Journal of Chemical Physics 106
(1997) 4618.

[3] S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva,
Journal of Quantitative Spectroscopy and Radiative Transfer 82 (2003)
165.
[4] P. Perez, A. Boischot, L. Ibgui, A. Roblin, Journal of Quantitative Spec-
troscopy and Radiative Transfer 103 (2007) 231.

[5] L. Rothman, et al., Journal of Quantitative Spectroscopy and Radiative
Transfer 60 (1998) 665.

[6] R.R. Gamache, S. Kennedy, R. Hawkins, L.S. Rothman, Journal of Mole-
cular Structure (2000) 407.

[7] M. Pharr (Ed.), GPUGems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation, Addison-
Wesley, 2005.

[8] D. Manocha, IEEE Computer 38 (2005) 85.
[9] D. Shreiner, M. Woo, J. Neider, T. Davis, OpenGL Programming Guide,

fifth ed., Addison-Wesley Professional, 2005.
[10] Fluent, Fluent 5 User’s Guide, 1998.
[11] Fluent, Fluent News 8 (1999) 9, 13.
[12] D.R. Horn, M. Houston, P. Hanrahan, ClawHMMER: a streaming

HMMer-search implementation, in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, Seattle, Washington, 2005, p. 9.


	Line-by-line spectroscopic simulations on graphics processing units
	Introduction
	Temperature and pressure corrections on line intensity and line half-width
	Monochromatic optical depth for each line of each gas
	Mono- and polychromatic sources of power from radiative heat transfers
	Tests and results
	Conclusion
	References


