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Power Flow Analysis under Uncertainty

using Symmetric Fuzzy Arithmetic
Manuel Marin, David Defour, and Federico Milano, Senior Member, IEEE

Abstract—This paper present a novel approach using symmet-
ric fuzzy numbers to deal with uncertainty in power system anal-
ysis. Special attention is put on reducing overestimation due to
conservatism inherent in fuzzy arithmetic. The midpoint-radius
interval representation and a linear programming optimization
problem are used in order to enhance efficiency and accuracy,
respectively. The proposed method is tested over the IEEE 14-
bus test system and compared with other techniques available in
the literature. The case study that the proposed method yields
accurate results at a reduced computational cost.

I. INTRODUCTION

U
NCERTAINTY is inherent to any physical systems. This

is particularly true for power systems, for which uncer-

tainty can have several causes, e.g., imprecise demand fore-

cast, price variability, renewable energy generation, economic

growth, industry placement, and line ageing [1], [2]. Failing

to properly account for uncertainties can, in some cases, lead

to erroneous estimations or unsecure operating conditions.

Therefore, a reliable tool to handle several possible scenarios

and combinations of scenarios is crucial to provide a clear

understanding of the expected behavior of the system. This

paper focuses on how to properly account for uncertainties in

the power flow problem, which is the most important tool for

the steady-state analysis of power systems.

Conventional power flow analysis provides accurate results

based on a single (deterministic) operating point [3]. Clearly,

it is possible to solve multiple instances of the power flow

problem for several (typically randomly generated) possible

scenarios. This yields to the well-known Monte Carlo method.

However, the computational burden of the Monte Carlo ap-

proach can be unsuitable for practical purposes, real-time

analysis and preventive and/or corrective control actions [4].

In the past, two main solutions have been used to address

the inclusion of uncertainty in power flow data. On one hand,

we find methods based on probabilistic theory [5]–[8]. On

the other hand, methods based on alternative arithmetic (e.g.,

interval, fuzzy, affine arithmetic) have been proposed [1], [9]–

[11]. In both cases, Monte Carlo’s simulations have been used

as a validation tool.

This work was conducted in the Electricity Research Centre, University
College Dublin, Ireland, which is partly supported by the Commission for
Energy Regulation, Bord Gáis Energy, Bord na Móna Energy, Cylon Controls,
EirGrid, Electric Ireland, Energia, EPRI, ESB International, ESB Networks,
Gaelectric, Intel, SSE Renewables, and UTRC. This publication has emanated
from research conducted with the financial support of Actility.

M. Marin and D. Defour are with Université de Perpignan Via
Domitia, DALI and Université Montpellier 2, LIRMM, France (e-mails:
manuel.marin@univ-perp.fr and david.defour@univ-perp.fr).

F. Milano is with the School of Electrical, Electronic and Commu-
nications Engineering of the University College Dublin, Dublin, Ireland
(e-mail: federico.milano@ucd.ie).

The probabilistic power flow approach consists of using

random variables to model the system; then, by applying

specific results from theory of probability, a relation is es-

tablished between the distribution of input parameters and

output variables. The probability distribution of the inputs

has to be determined first, upon statistical data. In [5], a

linear dependence between line flows and nodal injections

is assumed to determine relatively simple expressions for the

former. This result is extended to include correlation between

nodal injected powers in [6]. In [7], the authors present a novel

approach that considers multiple linearization points, thus

improving the accuracy of the solution, while incrementing

the complexity of the algorithm. Detractors of the probabilistic

power flow approach criticize the difficulty of determining

accurate probability distributions of the inputs, especially if the

data are scarce or do not follow any particular distribution [10].

Interval and fuzzy power flow methods attempt to overcome

the latter issue through replacing the probability distribution

by a possibility distribution, which can be defined based

on experience and historical data. Sentences such as “load

between 0.5 and 1 pu” and “generation around 0.9 pu” can be

easily translated into intervals. Then, these intervals are manip-

ulated according to the rules of interval or fuzzy arithmetic to

compute interval results. In [9], the interval Newton’s method

is directly applied to solve a case of power flow analysis for

a network of 5 buses, assuming small uncertainty in the nodal

injected powers. In [10], a linearized approach is applied to

compute fuzzy extensions of a crisp power flow solution, for

several levels of uncertainty. In [11], an approach using linear

programming, where the restrictions are obtained from fuzzy

variables, is presented. While interval and fuzzy arithmetic

have a low computational burden with respect to probabilistic

methods, a major drawback is the risk to overestimate the

intervals of the solution, especially in case the input parameters

are characterized by wide interval. Clearly, large intervals can

make the solution either of little practical interest or useless.

The objective of the present work is to develop a tool

for power flow analysis under uncertainty, keeping a balance

between low computational burden and accuracy of the results.

With this aim, the paper presents a power flow analysis

based on fuzzy arithmetic and proposes a linear programming

problem that is able to overcome the main drawback of

fuzzy arithmetic, i.e., overestimation of the solution intervals.

Specific contributions of this paper are the following.

1) Power flow solution under uncertainty. We present a

novel technique for power flow analysis under uncer-

tainty, based on the direct application of the rules of

fuzzy algebra to the standard power flow problem. The

variables increment is carefully calculated at each step of
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an iterative procedure, in order to minimize overestima-

tion of the solution, a known issue in interval analysis.

We compare our technique in terms of accuracy and

complexity with two other fuzzy power flow methods,

from the literature [9], [10].

2) Optimized interval representation. By making an assump-

tion over the shape of the possibility distribution of

fuzzy variables, we are able to effectively combine the

midpoint-radius representation with the α-cut method, in

order to simplify the basic operations of fuzzy linear alge-

bra. We show that power flow analysis under uncertainty

belongs to the class of application that can benefit of

the computational advantages of the novel representation

described in [12].

The remainder of the article is organized as follows. In

Section II we introduce definitions and properties related to

interval arithmetic used by the proposed methods which we

detail in Section III. Results of simulation and comparisons

with two others methods are presented in Section IV. Conclu-

sions are drawn in Section V.

II. INTERVAL AND FUZZY LINEAR ALGEBRA

In this section we present the notation used through the

paper and most relevant rules and properties related to interval

and fuzzy arithmetic.
Notations: In the remainder of this article, normal fonts

(A) will denote crisp variables, bold fonts (A) interval vari-

ables and tilde (Ã) fuzzy variables. All operations and rela-

tions expressed over crisp matrices (e.g. ‘≤’, ‘||’) are applied

component-wise.

A. Interval analysis

Interval analysis is used to manipulate uncertainty in numer-

ical methods. Variables are expressed as ranges of possibilities

and operate under specific rules, ensuring that all the uncer-

tainty in the operands is in the result.

Definition 1 (Midpoint-radius interval matrix). Let Am, Ar ∈
R

n×n, with Ar ≥ 0. The interval matrix A = 〈Am, Ar〉 is the

set given by

A = {A ∈ R
n×n : |Am −A| ≤ Ar}.

Definition 2 (Interval magnitude). Let A be an interval

matrix. The magnitude |A| is the point matrix given by

|A| = max{|A|, A ∈ A}.

Or, equivalently,

|A| = |Am|+Ar.

Definition 3 (Interval algebraic operations). Let A and B be

interval matrices. The interval matrix C = A⊕B is the set

given by

C = {A⊕B : A ∈ A, B ∈ B}.

In particular, for A = 〈Am, Ar〉, B = 〈Bm, Br〉 and ⊕ ∈
{+,−, ·}, we have

A+B = 〈Am +Bm, Ar +Br〉,

A−B = 〈Am −Bm, Ar +Br〉,

A ·B = 〈AmBm, (|Am|+Ar)Br +Ar|Bm|〉.

1) System of interval linear equations: In classical interval

analysis, interval bounds for the zeros of non-linear functions

are computed using interval Newton methods [13]. These

methods require to compute an interval enclosure of the

solution of Ax = b, where A is an interval matrix and b

is an interval vector. The solution is given by

Σ(A, b) = {x : ∀b ∈ b, ∀A ∈ A, Ax = b}.

In other words, for each b ∈ b and A ∈ A, there is x ∈
Σ(A, b) such that Ax = b. The interval hull of Σ(A, b) is

denoted �Σ(A, b) and corresponds to the smallest interval

containing Σ(A, b).
For the proposed method, we do not rely on Newton

method. We evaluate a specific subset ∆(A, b) of �Σ(A, b),
defined as follows.

Definition 4 (∆(A, b)). Let A be an interval matrix, b and

x interval vectors. Then, ∆(A, b) is the interval vector given

by

∆(A, b) = min{x : b ⊆ Ax},

with the function min operating on magnitude (Def. 2).

In this case, for each b ∈ b, there is A ∈ A and x ∈ ∆(A, b)
such that Ax = b. All the variability in b is included in this

set, even if it is only a subset of �Σ(A, b). One can notice

that ∆(A, b) has the minimal magnitude.

In order to compute ∆(A, b), we use the rules of interval

algebra to rewrite the condition b ⊆ Ax as follow:

Amxm = bm, (1a)

(|Am|+Ar)xr +Ar|xm| ≥ br, (1b)

xr ≥ 0. (1c)

Equation (1a) is a crisp linear system. It can be solved

according to xm and used in equation (1b). Then, it remains

to find a minimal xr that satisfies (1b) and (1c). Solving the

following linear program can do this:

Minimize ‖xr‖1 ,

subject to (|Am|+Ar)xr ≥ br −Ar|xm|,

xr ≥ 0,

(2)

with ‖xr‖1 the sum of all the components of xr. The pro-

gram (2) is always feasible and its solution can be computed

with any linear solver.

B. Fuzzy analysis

Whereas interval analysis allows accounting for one single

level of uncertainty, fuzzy analysis accounts for several levels

of uncertainty simultaneously.

Definition 5 (Fuzzy matrix). Let µ
Ã

: Rn×n → [0, 1]. The

fuzzy matrix Ã is the set of pairs given by

Ã = {(A,µ
Ã
(A)) : A ∈ R

n×n}.

In the above definition, µ
Ã

is called the membership func-

tion and represents the grade of membership of each matrix

A ∈ R
n×n to Ã.
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Fig. 1. Trapezoidal, symmetric membership function.

Figure 1 shows an example membership function for a 1×1
fuzzy matrix over real numbers.

Each α ∈ [0, 1] represents a level of uncertainty. For each

level, we can obtain an α-cut of the fuzzy matrix which

corresponds to the interval of variability in that level.

Definition 6 (α-cut). Let Ã be a fuzzy matrix with membership

function µ
Ã

. Let α ∈ [0, 1]. The α-level cut (also, α-cut) of

Ã is the set of real matrices given by

Aα = {A ∈ R
n×n : µ

Ã
(A) ≥ α}.

Note that this is an interval matrix. As an interval matrix,

it can be manipulated using the rules of interval algebra. This

allows us to introduce the α-cut method for fuzzy algebra.

Definition 7 (α-cut method). Let Ã, B̃ and C̃ be fuzzy

matrices. Let α ∈ [0, 1] and Aα, Bα and Cα be the

corresponding α-cuts. Then

C̃ = Ã⊕ B̃ ⇐⇒ Cα = Aα ⊕Bα.

In other words, operations involving fuzzy matrices are done

by splitting fuzzy matrices according to their α-cuts. Next,

interval operations are performed between α-cuts of the same

level to obtain the corresponding α-cuts of the result.

It was shown that fuzzy arithmetic can benefit, in terms

of memory footprint and number of operations, from the

midpoint-radius representation when fuzzy numbers are sym-

metric [12]. This corresponds to the case where the midpoint

of any α-cut is independent of α. The same can apply for

symmetric fuzzy matrices defined as follows:

Definition 8 (Symmetric fuzzy matrix). Let Ã be a fuzzy

matrix and M ∈ R
n×n. Let µ

Ã
be symmetric around M ,

i.e.

µ
Ã
(M −A) = µ

Ã
(M +A), A ∈ R

n×n.

Then Ã is a symmetric fuzzy matrix.

Therefore, algebraic operations between symmetric fuzzy

matrices represented with midpoint-radius correspond to, first

evaluate the midpoint, which is common to all the α-cuts, and

then compute the radius independently for each α-cut. This

notably simplifies the definition and implementation of fuzzy

operations.

III. FUZZY POWER FLOW

In this section we describe a new method for power flow

analysis under uncertainty. For the sake of completeness, the

standard crisp power flow equations are recalled first.

A. Crisp power flow analysis

Crisp power flow analysis allows computing the balanced

state of a system when uncertainty is not considered. The

voltage magnitudes and real power injections at generator

buses, as well as the real and reactive power injections at load

buses, are given, crisp values. These data are used to compute

the complex voltage at each bus, by solving the following

power flow equations:

pi =
∑

h∈B

[ei(giheh − bihfh) + fi(gihfh + biheh)], i ∈ B

qi =
∑

h∈B

[fi(giheh − bihfh)− ei(gihfh + biheh)], i ∈ BPQ

v2i = e2i + f2
i , i ∈ BPV. (3)

where pi and qi are the active and reactive power injections

at bus i, respectively; v̄i = ei + jfi is the bus voltage phasor

at bus i; ȳih = gih + jbih is the (i, h) element of the network

admittance matrix; B = 1, 2, . . . , n is the set of network buses;

and BPQ and BPV are the sets of PQ load and PV generator

buses, respectively. Finally, the slack bus is defined as follows:

ei = vslack, fi = 0 (4)

Equations (3) and (4) can be conveniently rewritten using the

following compact notation:

c = g(y) (5)

where c is the vector of assigned input data, i.e., pi and qi at

PQ buses and v2i at PV buses; and y is the vector of unknowns,

i.e., ei and fj at all buses but the slack one.

Note that we use rectangular coordinates to represent bus

voltage phasors. This representation format avoid trigono-

metric function evaluations that are difficult to handle with

symmetric fuzzy numbers. One can observe also that the

evaluation of (5) solely implies additions, subtractions and

multiplications, which are well defined and relatively inexpen-

sive when using the midpoint-radius interval representation.

B. Fuzzy power flow analysis

Extending each constant and variable of (5) from a crisp

representation to a fuzzy representation allows considering

multiple levels of uncertainty. We group all the left hand sides

into a constant fuzzy vector c̃, and all the right hand sides into

a variable fuzzy vector g̃(x̃), where x̃ is also a fuzzy vector.

The corresponding system is given by:

c̃ = g̃(x̃). (6)

In the case of fuzzy analysis, the equality of the equation

(6) corresponds to a condition for the optimal solution; since

any x̃ satisfying

c̃ ⊆ g̃(x̃) (7)

is also a solution of the system, that is, a set of states that

accounts for all the variability expressed in the external inputs.

The algorithm we depict next takes c̃, g̃ and J̃ , the fuzzy

Jacobian matrix of g̃, as inputs, and produces x̃∗, a solution

of (7) ‘close’ to the solution of (6). We use the subscript α to
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designate α-cuts. Also, we assume that all the fuzzy elements

are symmetric, so we can use the subscript m to designate the

midpoints and r, α to designate the radius of each α-cut.

The algorithm proceeds as follows.

1) Solve the crisp power flow, defined by the system of non-

linear equations gm(x)−cm = 0 by any crisp power flow

analysis method, (i.e. Newton-Rahpson method). Let x(0)

be the solution.

2) Compute x̃(0), the initial guess for the fuzzy power flow,

by

x(0)
α = 〈x(0), 0〉,

for all α. Set k = 0.

3) If c̃ ⊆ g̃(x̃(k)) , set x̃∗ = x̃(k) and stop. We have found

a solution. Otherwise, continue to step 4.

4) Compute f̃
(k)

= g̃(x̃(k)) − c̃, the fuzzy equation mis-

matches.

5) Compute J̃
(k)

= J̃(x̃(k)), the fuzzy Jacobian matrix.

6) Compute ∆x̃, the fuzzy variable increment, by

∆x̃α = ∆(J̃
(k)

α ,−f̃
(k)

α ),

for all α.

7) Set x̃(k+1) = x̃(k) +∆x̃. Set k = k + 1 and go to step

3.

With respect to the issue of overestimation, the most critical

step of the proposed algorithm is the calculation of the

fuzzy variable increment ∆x̃, in step 6. The usage of the ∆
function as defined in Section II, ensures that all the variability

expressed by the fuzzy mismatches is taken into account,

with a minimal length optimization step. In other words,

we progress towards the solution, by following optimization

directions within the current solution interval. However, a

minimal step is taken to avoid the classical drawback with

interval arithmetic, which is the overestimation of the solution.

Figure 2 illustrates the convergence of the algorithm for the

one-dimensional case. We use subscripts l and m to denote

lower and upper bounds of the intervals. At the beginning we

are at x0, the crisp solution. From here we have only one

direction to choose, which is the Jacobian on that point (blue

tangent line). We find the interval x1 = [x1
l , x

1
u]. Now, we have

a set of possible directions to choose from, corresponding to

the Jacobian evaluated on all the points within the interval

x1. We find that the Jacobian has the least magnitude when

evaluated on the extreme points (orange tangent lines). We

follow this direction and find the solution x∗. Function g

evaluated over the interval x∗ contains all the points in the

interval c.

IV. TESTS AND RESULTS

In this section we present and discuss the results of our

method on a test scenario. For the sake of comparison, we refer

to two methods from literature: the standard fuzzy power flow

method, described in [10], and the interval power flow method

described in [9]. In the remainder of this section, we refer to

these methods as method A and method B, respectively.

x

g(x)

cu

cm

cl

x∗
l x1

l x0 x1
u x∗

u

Fig. 2. Convergence of the algorithm in the one-dimensional case.

TABLE I
INPUT VARIABLES RADIUS, IN TERMS OF PERCENTAGE VARIATION, FOR

EACH α-LEVEL.

Variable name α = 1 α = 0

Voltage magnitude 1 1.5

Real power injection 4 50

Reactive power injection 4 50

We build our test scenario by fuzzifying the well-known

IEEE 14-bus system [14]. All variables are turned into fuzzy

elements except for line impedances. We assume a trapezoidal,

symmetric membership function for all the variables, which

allows us to consider only two levels of uncertainty, α = 0
(most uncertainty) and α = 1 (least uncertainty).

Input variables, namely, voltage magnitudes and real power

injections at generator buses and real and reactive power

injections at load buses, are defined by setting the midpoint

at the crisp value given by the IEEE network specification.

The radius is defined by a percentage variation, depending on

the type of variable, for each α-level. These percentages are

summarized in Table I. They are chosen to mimic simulation

results of method A and B.

The proposed method was implemented in C++ using the

Coin-Clp library to solve the linear program [15]. The simu-

lation of the described test scenario took 2.81 milliseconds on

a Intel Core i5 CPU at 2.7 GHz, running Ubuntu Linux 12.10

64 bits.

A. Accuracy

Table II shows the voltage radius as a percentage of the mid-

point value for each load bus, obtained by our method and by

method A. The results of method A are taken from [16], where

authors evaluate their method on the IEEE 14-bus system,

considering a 50% variation over the crisp power injections.

This corresponds to a scenario of uncertainty similar to α=0

(however, one can notice that method A does not allow to

consider uncertainty in the generator voltage magnitudes). Out

of this table, we can observe that the proposed method is in

average 5 times more accurate. This can be the consequences

of the following factors:

• Method A performs a single optimization step by moving

from the crisp solution to a fuzzy solution. The length of

this step is determined by the Jacobian of the last iteration

of the Newton-Raphson method, used to solve the crisp

power flow at a first stage of the process. In contrast, our
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TABLE II
VOLTAGE MAGNITUDES RADIUS, IN TERMS OF PERCENTAGE VARIATION,

IN OUR METHOD AND METHOD A.

Bus
Our method Method A

α = 1 α = 0 α = 0

V4 1.385 1.910 4.39

V5 1.149 1.832 4.20

V7 0.963 1.422 8.53

V9 1.658 2.645 9.76

V10 1.310 1.828 10.35

V11 0.960 1.592 10.37

V12 1.065 1.744 10.96

V13 0.958 1.606 11.26

V14 1.529 1.706 11.92

method determines the smallest optimization step within

an interval of possibilities, thus converging more slowly,

but without overestimating the results as much as with

method A.

• By forcing the generator voltage magnitudes to a crisp

value, method A imposes much more variability on the

rest of the voltages. The 1.5% variation assumed for the

generator voltages when running the proposed method,

allows accounting for some of the uncertainty introduced

by the fuzzy power injections. Therefore, our method is

more accurate than method A.

As for method B, we have no information on the results

over the IEEE 14-bus system. In [9], the authors only study

a 5-bus test system, considering a 4% average variation over

the crisp power injections, i.e., a scenario comparable to our

α = 1. From their report, we can compute the average

variation obtained for the voltage magnitudes, which is 0.92%.

The average variation obtained with our method for α = 1
is 1.22%. Thus, we can assume that both methods are very

similar in terms of accuracy, since the size of the network

must have an impact over the interval results size. However

as stated in [9], another drawback of method B is that it does

not converge when the injected power variation is set to 50%.

B. Complexity

Method A requires one matrix-vector multiplication after

the computation of the crisp solution to propose a fuzzy

solution. The matrix of size n used is the Jacobian of the

Newton-Raphson power flow. Therefore method A requires

2n2 operations.

Method B is based on the interval Newton’s method [13]

and requires solving an interval linear system of the size of

the Jacobian matrix at each iteration. By using the technique

proposed by Rump in [17], this can be done in 5n3 operations.

The proposed method computes at each iteration the variable

increment by the function ∆ defined in Section II. This

corresponds to solving a crisp system of linear equations and

a linear program. The linear system can be solved in O(n3)
operations with a LU factorization and the linear program can

be solved also in O(n3) with the Simplex method [18]. Hence,

the proposed method is expected to be slower than method A

and comparable to method B in terms of performance for large

systems.

V. CONCLUSIONS

Power flow simulation considering uncertainty is relevant to

system operation and planning in today’s complex, evolving

energy context. This article proposes to address uncertainty

with an original solution based on symetric fuzzy alegra. This

method is compared with other related approaches from the

literature, and proves to yield relatively accurate results at an

acceptable algorithmic cost. Future works will consider a more

comprehensive characterization of the solution and a measure

of its optimality; simulations over larger networks considering

various levels of uncertainty; as well as further comparison

with other methods and Monte Carlo’s simulations.
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