
HAL Id: lirmm-01206375
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01206375v1

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FuzzyGPU : a fuzzy arithmetic library for GPU
Manuel Marin, David Defour

To cite this version:
Manuel Marin, David Defour. FuzzyGPU : a fuzzy arithmetic library for GPU. PDP: Parallel, Dis-
tributed and Network-Based Processing, Feb 2014, Torino, Italy. pp.624-631, �10.1109/PDP.2014.16�.
�lirmm-01206375�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01206375v1
https://hal.archives-ouvertes.fr

FuzzyGPU: a fuzzy arithmetic library for GPU
David Defour and Manuel Marin

Univ. Perpignan Via Domitia, DALI F-66860, Perpignan, France
Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France

CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

Abstract—Data are traditionally represented using native for-
mat such as integer or floating-point numbers in various flavor.
However, some applications rely on more complex representation
format. This is the case when uncertainty needs to be appre-
hended. Fuzzy arithmetic is one of the major tools to address
this problem, but the execution time of basic operations such as
addition or multiplication makes its usage prohibitive. In this
article, thanks to a new representation format and modern GPU
characteristics we show that it is possible to greatly reduce the
execution time of those operations. These techniques have been
implemented in fuzzyGPU, a freely distributed library of common
operations over fuzzy number.

I. INTRODUCTION

Management of uncertainty has appeared as a necessity in
the design of expert systems, where the information in the
knowledge base is ambiguous and imprecise. The information
is usually represented in the form of ambiguous sentences
such as at least x, probably between 0.4 and 0.7, etc. This
particular kind of uncertainty is best modelled using fuzzy
numbers, as they allow to deal with such type of quantifiers
[24]. The fuzzy approach has been successfully applied in
finance [23], transportation [3], supply chain management [6],
load flow [17], [21]... for configuring expert systems to run
under uncertainty scenarios. A fuzzy arithmetic based on the
α-cut approach can be implemented using interval arithmetic
[10], however this can be cumbersome in terms of computation
intensity, as each fuzzy operation requires at least two interval
operations to be computed. Depending on the number of
uncertainty levels in the model, the computational burden can
increase dramatically and so the calculation time.

GPUs have driven substantial acceleration to numerous
regular applications thanks to several mechanism. The first and
most powerful one is thread or data level parallelism (TLP)
exploited by the numerous compute unit available. Instruction
level parallelism (ILP) has also proven to be very useful
to hide instruction latency, achieving better performance at
lower occupancy [22]. Another source of acceleration, but
less frequently used, come from the hardware accelerated
compute unit dedicated to the evaluation of interpolation,
special functions or fused operations such as FMA. By going
deeper into these subtleties, one can notice that latest CUDA
GPUs allow to statically select rounding attribute for every
floating-point operation. This characteristic simplifies interval
arithmetic operations [8], as it suppresses the overhead asso-
ciated with the changes of rounding mode.

Applications relying on fuzzy logic have already been suc-
cessfully ported on GPU [1], [16]. However, to our knowledge

there were no prior work considering fuzzy arithmetic and
the underlying representation of data dedicated to a GPU
execution. In this article we will investigate how GPU can
improve performance of fuzzy arithmetic. To achieve this goal,
we propose to replace the traditional lower-upper encoding,
which requires to manage a different lower and upper bound
for each α-cut, by a midpoint-radius encoding, whenever pos-
sible. This modification of data representation greatly reduces
the required bandwidth as well as the number of instructions
to perform basic operation. These algorithmic modifications
combined with hardware specificities of Nvidia’s GPU are
greatly reducing the cost of fuzzy arithmetic, making fuzzy
arithmetic more affordable in term of execution time.

The main contributions brought by this article are as fol-
lows:
• Fuzzy arithmetic library. We describe the implementa-

tion of a library of fuzzy arithmetic operations, callable
from either CPU or GPU code optimized for each type
of architecture. It includes two classes of fuzzy numbers,
one based on the lower-upper encoding, the other one
based on the midpoint-radius encoding. This library is
based on C++ overload of basic operation making it easily
extendible, portable and efficient.

• Benefice of dedicated architecture. GPUs are known
as powerful vector coprocessor. We detail in this article,
the benefice brought by GPUs and explain how TLP,
ILP, static rounding mode and memory usage impact
performance at a fine granularity of basic operations on
complex format.

• Representation format. We propose a new representa-
tion format for fuzzy numbers with symmetric member-
ship function which both reduces the number of opera-
tions and memory bandwidth compared to the traditional
representation format.

The rest of the article is divided as follows: in sections II and
III we expose the theory underlying in our fuzzy arithmetic
library. In section IV we present the implementation issues
and discuss about trade-off related to ILP, TLP, bandwidth
and latency. Then, in section V we present the performance
of our library of fuzzy arithmetic. Section VI concludes the
paper and introduces some ideas for future work.

II. FUZZY NUMBERS AND THEIR IMPLEMENTATIONS

Fuzzy numbers and fuzzy arithmetic provide an answer
where computations have to be done with imprecise param-
eters such as applications in fuzzy control, decision making,

approximate reasoning, optimization statistics with imprecise
probabilities [10], [24]. Fuzzy arithmetic is often approached
through the α-cut concept [10], which consists of representing
the fuzzy number as a collection of intervals, one for each
level of uncertainty in the model, called the α-cuts. Fuzzy
operations are then performed by executing interval operations
over the α-cuts of the same level. In this section we will recall
basic concept of interval arithmetic, as well as fuzzy numbers
and arithmetic.

A. Interval arithmetic

Interval arithmetic is a tool that accounts for one single
level of uncertainty in numerical computation. It represents
each quantity as a range of possibilities, and operates on these
ranges, generating new ranges of possibilities for the results.
Interval arithmetic is also used to provide certified results
for operations subject to rounding errors such as floating-
point operations. There can be represented using lower-upper
encoding, one of its bounds and the diameter of the interval, or
by the center of the interval and its radius. Most of the existing
implementation such as Boost [4], MPFI [19] and GAOL [12],
are based on the lower-upper encoding. Our proposition is
based on midpoint-radius representation format. Let describes
this two alternatives.

1) Lower-upper encoding: It uses two floating-point num-
bers, l and u, holding the lower and upper bounds of the
interval. The interval [l, u] is the set of elements comprised
between l and u, i.e.

[l, u] = {x ∈ R : l ≤ x ≤ u}

The interval operations are defined as

[a, b] + [c, d] = [5(a+ b),4(c+ d)],

[a, b]− [c, d] = [5(a− d),4(b− c)],

[a, b] · [c, d] = [min(5(a · c),5(b · d),5(a · d),5(b · c)),

max(4(a · c),4(b · d),4(a · d),4(b · c))]

where 5 is the rounding attribute toward −∞ and 4, the
rounding attribute toward +∞. The changes of rounding
mode guarantee that the resulting interval includes all possible
solutions. For many architecture, such as CPU, the rounding
mode corresponds to a processor state, which implies flushing
the entire pipeline before being able to start an operation with
a new rounding mode.

2) Midpoint-radius encoding: Midpoint-radius format
holds the midpoint m and the radius ρ [20]. The interval 〈m, ρ〉
is the set of elements whose distance to m is not higher than
ρ:

〈m, ρ〉 = {x ∈ R : |x−m| ≤ ρ}

Using this encoding, the interval operations are defined as

〈a, α〉+ 〈b, β〉 = 〈�(a+ b), 4(ε′|�(a+ b)|+ α+ β)〉

〈a, α〉 − 〈b, β〉 = 〈�(a− b), 4(ε′|�(a− b)|+ α+ β)〉

〈a, α〉 · 〈b, β〉 = 〈�(a · b), 4(η + ε′|�(a · b)|+

(|a|+ α)β + α|b|)〉

where5 is the rounding attribute toward −∞,4 the rounding
attribute toward +∞ and � the rounding attribute toward the
nearest. ε is the relative rounding error unit – ε′ = 1

2ε –, and
η is the smallest representable (denormalized) floating point
number. In double precision, ε = 2−52 and η = 2−1074.

B. Fuzzy arithmetic

While interval arithmetic operates on intervals, sets of one
single level of uncertainty, fuzzy arithmetic operates on fuzzy
numbers, which are sets of several levels of uncertainty.
For each level of uncertainty we can obtain a corresponding
interval or α-cut.

Every fuzzy number p̃ has a membership function, µp̃,
which assigns to each value in the real line a degree of
membership to the fuzzy number. It exists a unique value
m ∈ R for which µp̃(m) = 1, the highest degree of
membership. The membership function is a monotony around
this value, i.e. µp̃(x) is increasing for x < m and decreasing
for x ≥ m.

A fuzzy number is defined as

p̃ = {(x, µp̃(x)) | x ∈ R}

An α-cut of p̃ is obtained by selecting all the elements with
a degree of membership higher than a certain αi, i.e.

pαi = {x ∈ R : µp̃(x) ≥ αi}

Fuzzy arithmetic operations are carried out by performing
the operation on the α-cuts of the same level. That is, if p̃ and
q̃ are fuzzy numbers with k levels of uncertainty; pαi and qαi ,
for i ∈ {0, . . . , k− 1} are their k α-cuts; and ⊕ ∈ {+,−,×},
then

r̃ = p̃⊕ q̃

is computed through k interval operations,

rαi
= pαi

⊕ qαi

for i ∈ {0, . . . , k − 1}.

III. PROPOSED REPRESENTATION FORMAT OF FUZZY
NUMBER

An important characteristic of fuzzy numbers is the shape of
the membership function. Depending on the application, fuzzy
numbers may have a symmetric membership function and then
all the α-cuts will be centred around the same midpoint [5],
[7]. When fuzzy numbers exhibit symmetrical shape, we will
prove in this section some properties which we will exploit
for the proposed implementation. Let’s first give the definition
of a symmetric fuzzy number:

Definition (Symmetric fuzzy number). Let p̃ be a fuzzy num-
ber, µp̃ its membership function, m ∈ R such that µp̃(m) = 1.
If µp̃ is symmetric around m, i.e.

µp̃(m− x) = µp̃(m+ x),∀x ∈ R

then we call p̃ a symmetric fuzzy number.

m

α0

α1

α2

0.25

0.5

0.75

x

µ(x)

Fig. 1: Symmetric fuzzy number and α-cuts, all centered
around the same midpoint.

If symmetric fuzzy numbers do not exhibit any interesting
property for a representation based on lower-upper interval,
this is not the case for midpoint-radius encoding. The proposed
Theorem 1 is stating that all the α-cuts defining a symmetrical
fuzzy numbers will share the same center.

Theorem 1. Let p̃ be a fuzzy number, µp̃ its membership
function, m ∈ R such that µp̃(m) = 1. Let pαi

= 〈mi, ρi〉
be any arbitrary α-cut, expressed in the midpoint-radius
encoding. Then

p̃ is symmetric ⇐⇒ mi = m, ∀pαi
.

Proof. We will prove the reciprocal, i.e.

p̃ is non-symmetric ⇐⇒ ∃pαi
,with mi 6= m.

i)
p̃ is non-symmetric =⇒ ∃pαi ,with mi 6= m.

If p̃ is non-symmetric, it means that exists x0 ∈ R such
that

µp̃(m− x0) 6= µp̃(m+ x0) (1)

Let pαi
= [li, ui] = 〈mi, ρi〉 be an α-cut, such that li =

m− x0.
By definition,

µp̃(li) = µp̃(ui) = αi (2)

Now, assume m = mi. Since li = m− x0, then x0 = ρi
and ui = m+ x0.

Replacing values in equation 2, we obtain

µp̃(m− x0) = µp̃(m+ x0)

which contradicts equation 1. Hence, m 6= mi.
ii)

∃pαi ,with mi 6= m =⇒ p̃ is non-symmetric.

Let pαi = [li, ui] = 〈mi, ρi〉 be an α-cut with mi 6= m.
Again, by definition,

µp̃(li) = µp̃(ui) = αi (3)

Say x0 = m− li. Since m 6= mi, m+ x0 6= ui. Also, µp̃
is monotonic, so µp̃(m+ x0) 6= µp̃(ui).
Replacing values in equation 3, we obtain

µp̃(m− x0) 6= µp̃(m+ x0)

Hence, p̃ is non-symmetric.

Figure 1 shows an example of symmetric fuzzy number.
We see that all the α-cuts have the same common midpoint.
Symmetry is an important property for fuzzy numbers as it is
preserved by common arithmetic operations such as {+,−,×}
as stated by the proposed theorem 2.

Theorem 2. Let p̃ and q̃ be two fuzzy numbers and ⊕ ∈
{+,−,×}. If p̃ and q̃ are both symmetric, then

r̃ = p̃⊕ q̃

is also symmetric.

Proof. Let’s say, without loss of generality, that the system
has k levels of uncertainty. We can express the k α-cuts of p̃,
q̃ and r̃ in the midpoint-radius encoding as

pαi = 〈pi, βi〉

qαi = 〈qi, γi〉

rαi
= 〈ri, δi〉

for i ∈ {0, . . . , k − 1}.
We have to prove the theorem for the 3 basic operations.

We will split the demonstration in two cases, the addition and
subtraction first and the multiplication second.

i) ⊕ ∈ {+,−},

ri = �(pi ⊕ qi)

δi = 4(ε′|ri|+ βi + γi)

From Theorem 1, since p̃ and q̃ are symmetric, we have

pi = p

qi = q

Then
ri = �(pi ⊕ qi) = �(p⊕ q) = r

for all i ∈ {0, . . . , k − 1}. Hence, r̃ is symmetric.

ii) ⊕ = ×,

ri = �(pi × qi)

δi = 4(η + ε′|ri|+ (|pi|+ βi)γi + βi|qi|)

Again, from Theorem 1, since p̃ and q̃ are symmetric, we
have

pi = p

qi = q

Then
ri = �(pi × qi) = �(p× q) = r

for all i ∈ {0, . . . , k − 1}. Hence, r̃ is symmetric.

Implementations of fuzzy arithmetic are available in var-
ious programming languages [2], [13], [15]. As for interval
arithmetic, there are based on the lower-upper encoding for
fuzzy numbers. The implementation we propose in this paper
provides dedicated class to manipulate fuzzy numbers in both
the lower-upper and the midpoint-radius encoding. The latter
has been implemented making use of the result presented
in Theorem 2. That is, for practical purposes, a symmetric
fuzzy number can be represented as a unique midpoint, which
is common to all the α-cuts, plus a set of radius. This
allows, when performing fuzzy arithmetical operations, to save
bandwidth and execution time as measured in section V.

IV. IMPLEMENTATION DETAILS

Our fuzzy arithmetic library is written in CUDA C and C++,
and callable from either CPU and GPU code, transparently
adapting itself to the underlying architecture. The source code
is available at [9].

The implementation consists of successive wrappers. At the
user-end, we have the two fuzzy classes, one for each fuzzy
encoding. We decided to offer the two encoding, lower-upper
representation format for general case and midpoint-radius
when the user is dealing with symmetric fuzzy number. The
lower-upper fuzzy class relies on a lower-upper interval class,
which serves the purpose of holding the α-cuts. The lower-
upper interval class, in turn, relies on a rounded arithmetic
class for operating between the α-cuts, according to the rules
of interval arithmetic. The midpoint-radius fuzzy class is
linked directly to the rounded-arithmetic class, as the α-cuts
are stored as a unique midpoint, valid for all the α-cuts, plus
a set of radius, making use of the results from the previous
section. Ultimately, the rounded arithmetic class is a wrapper
of C and CUDA compiler intrinsics with dedicated machine
instructions.

The fuzzy template classes are parametrized by the number
of α-cuts N and the data type T. In the lower-upper encoding,
N and T specify the size and type of an array of intervals
which hold the lower and upper bounds for each α-cut. In the
midpoint-radius encoding, N and T are the size and type of
an array of scalar radius, and T is also the type of the scalar
midpoint, common to all the α-cuts.

The basic arithmetic operators are overloaded to work
on both fuzzy classes. The operations are carried out by a
sequential for loop that iterates over the set of α-cuts. We
decided not to spread the loop among different threads in
GPU code, since most applications in real life do not involve
more than three to four degrees of uncertainty in their data
model [3], [6], [17], [21], [23]. This number is way too low
to exploit thread level parallelism (TLP). However, TLP may
be exploited in vector operations involving fuzzy numbers,
through kernels that process each element of a fuzzy array in
a different thread.

Performance of basic operations over complex datatype such
as fuzzy numbers are impacted by numerous factors. Next,
we will discuss and compare the two representation formats
regarding the number of instructions, the memory requirement
and the ILP.

A. Number of instructions

Table I shows the number of instructions, such as basic
operation, minimum, maximum or absolute value, involved
in the addition and multiplication for different data types,
including fuzzy numbers. In the case of fuzzy data types,
the number of α-cuts is represented by x. The lower-upper
fuzzy requires only 2 operations less than midpoint-radius on
the addition, but requires 2.8 times more operations when it
comes to the multiplication. Therefore, by just comparing the
number of instructions the midpoint-radius should bring a real
speed-up over the lower-upper representation format.

TABLE I: Number of instructions per arithmetical operation,
for different data types, where x corresponds to the number
of α-cuts.

Data type
Number of instructions

Addition Multiplication

Scalar 1 1

Lower-upper interval 2 14

Midpoint-radius interval 4 10

Lower-upper fuzzy 2x 14x

Midpoint-radius fuzzy 2 + 2x 5 + 5x

B. Memory usage

Table II shows the memory space required to store different
data types. The units have been normalized to the size of
one scalar. In the case of fuzzy, again, x represents the
number of α-cuts. The lower-upper fuzzy requires double the
space than the midpoint-radius. As the bandwidth requirement
of the midpoint-radius is half the one of the lower-upper
representation format, an application that needs to access
memory at a high rate will definitely benefit from that property.

C. Instruction level parallelism (ILP)

Ideal ILP as defined in [11], is a good measure of how a
given sequence of instructions could be handled on today’s
but also future architectures. The higher the ideal ILP is,

TABLE II: Memory requirements for different data types,
where x corresponds to the number of α-cuts.

Data type Memory usage

Scalar 1

Lower-upper interval 2

Midpoint-radius interval 2

Lower-upper fuzzy 2x

Midpoint-radius fuzzy 1 + x

the higher the amount of instructions that could be pipelined
during the execution of the application. However, a bigger
ideal ILP requires a larger amount of hardware resources to
exploit it.

Table III shows the ideal ILP of the addition and multi-
plication for different data types. This ILP is determined as
the ratio of the total number of instructions to the number of
levels in the dependency tree. The number of α-cuts in fuzzy
data types does not affect the denominator, as each α-cut is
independent from all others. Lower-upper fuzzy exhibits more
ideal ILP than midpoint-radius on both the addition and the
multiplication. However, ILP will be exploited differently de-
pending on the GPU generation as well as the data type in use
(single or double precision). For example, GPU with CUDA
capability 3.0 can schedule up to 2 independent instructions
for a given warp scheduler. The impact of ILP on example
applications is also studied in the next section.

TABLE III: ILP per arithmetical operation, for different data
types, where x correspond to the number of α-cuts..

Data type
ILP

Addition Multiplication

Scalar 1 1

Lower-upper interval 2 14/3

Midpoint-radius interval 5/4 2

Lower-upper fuzzy 2x 4.6x

Midpoint-radius fuzzy 0.5 + x/2 1 + x

V. TESTS AND RESULTS

We have described our fuzzy arithmetic library and exposed
the main differences between the two fuzzy encoding methods,
lower-upper and midpoint-radius. Now we will present the
tests we designed for the purpose of evaluating the perfor-
mance of our fuzzy library on GPU under different circum-
stances. GPU performance is often driven by the balance
between memory access and computational effort. In this
sense, we consider two types of applications: compute-bound
application, where arithmetic instructions are dominant over
memory accesses; and memory-bound application.

The following architectures were used in this study:
• Intel Xeon E5645 CPU.
• NVIDIA GeForce GTX 480 GPU (compute capability

2.0).

• NVIDIA GeForce GTX 680 GPU (compute capability
3.0).

CUDA version is 4.2 and g++ version is 4.6.3 in all cases.

A. Compute-bound application: AXPY series

Listing 1 shows an AXPY kernel that computes the recur-
sion c← ac+ b, where all the values are fuzzy numbers, for
an arbitrary number of cycles. All the threads read the same
starting value, perform the recursive computation, and then
write the result to a different position on an output vector.
As we increment the number of iterations n, the number
of floating point instructions grows; however, the number of
global memory accesses, one for loading the starting value and
one for storing the result, remains constant. In this way we can
arbitrarily increment the number of floating-point instructions
per accesses to global memory .

#include "fuzzy_lu_lib.h"
#include "fuzzy_mr_lib.h"

template<class T, int N>
__global__ void compute_test(int n, fuzzy_lu<T, N> * a,

fuzzy_lu<T, N> * b, fuzzy_lu<T, N> * output)
{

fuzzy_lu<T, N> c = (*a);

for (int i = 0; i < n; i++) {
c = (*a) * c + (*b);

}

output[blockIdx.x * blockDim.x + threadIdx.x] = c;
}

int main(){

fuzzy_lu<double, 4> * d_a, * d_b, * d_result;
cudaMalloc((void**)&d_result, ...);
compute_test<double, 4><<<960, 128>>>(1000, d_a, d_b,

d_result);

...
return 0;

}

Listing 1: AXPY loop kernel (compute-bound test).

We measured the execution time of our kernel (as well
as other performance indicators) under different parameter
configurations, including:
• lower-upper and midpoint-radius fuzzy encoding;
• a number of α-cuts from 1 to 24;
• single and double precision.
The results are plotted in figure 2. Figure 2a shows different

performances achieved by different configurations on different
CPU and GPU architectures. Performance is represented on a
logarithmic scale as the number of iteration performed per
second depending on the number of α-cut. The Xeon CPU is
running a single threaded version of the kernel using (a) our
library, and (b) the java library in [15]1. We observe differences
and performance gains coming from heterogeneous sources.
First, there is a pure architectural gain on passing from CPU

1Note that the library in [15] does not provide certified interval arithmetic,
with correct rounding attributes, as our library does.

to GPU to execute the code. Second, within the GPU, there
is an algorithmic gain on choosing the midpoint-radius over
the lower-upper encoding. Finally, there is a gain on passing
from double to single precision in the fuzzy calculations.

The most interesting of these gains is the one driven by the
algorithm, as it puts on relief the differences between lower-
upper and midpoint-radius fuzzy implementations. Figure 2b
shows the speed-up achieved by midpoint-radius over lower-
upper using different precision on two GPU architectures. The
shapes we observe are the results of differences in the number
of operations, memory size and stronger data dependencies in
the case of the midpoint-radius. The difference in the number
of operations accounts for the main trend and the other account
for the irregularities.

The main trend is observed between 1 and 8-9 α-cuts,
depending on the precision. In this area, the curve follows the
ratio between the number of arithmetic operations involved in
every cycle of the AXPY loop for each type of fuzzy encoding.
This ratio, from table I in previous section, is

16x

7 + 7x

That is, in this zone of the curve, the gain is being driven
directly by the difference in the number of operations.

After 9-10 α-cuts, the effect of register spilling and local
memory accesses with high latency becomes preponderant.
Remember CUDA devices of compute capability 2.0 and 3.0
may allocate up to 63 registers of 32-bits per thread on a
kernel execution. Double precision values are stored in two
consecutive registers. When this limit is attained, the kernel
starts using local memory to allocate extra data. Figure 2c
shows the number of registers used by the AXPY kernel per
implementation. Figure 2d shows the percentage of replayed
instructions due to local memory accesses.

We observe that when using the lower-upper encoding and
single precision values, the 63 registers limit is reached at
about 9 α-cuts. Local memory transactions start immediately
after, at 10 α-cuts. At this same point, in figure 2b, we
observe an increase of the speed-up in single precision, as the
midpoint-radius implementation is not suffering from register
spilling yet. The size of the midpoint-radius fuzzy being about
the half of the lower-upper, spilling only starts at double the
α-cuts, i.e. 18. From this point on, the speed-up curve in single
precision moves back to the ideal shape that can be explained
purely by the ratio of number of operations.

In double precision the scenario is a little more complex.
Both lower-upper and midpoint-radius fuzzy start spilling
registers relatively early, between 6 and 8 α-cuts. In figure
2b, we observe that there is a slight drop in the speed-up
in double precision, at about 9 α-cuts. The midpoint-radius
fuzzy implementation is loosing performance in this zone and
we believe this is due to spilling the midpoint of one of the
fuzzy numbers involved in the calculation. Note that midpoint-
radius fuzzy arithmetic proceeds by computing the midpoint
first and then uses it to calculate all the radius. If one midpoint
is spilled to off-chip local memory, there might not be enough

independent arithmetic instructions to hide the latency of this
memory access. This effect cannot be appreciated in single
precision as register spilling does not get too serious even for
the higher number of α-cuts considered. This demonstrates
that regarding memory, performance is mainly driven by the
amount of memory required to store data and secondly by the
temporal dependency among them.

As we stated in section IV, real life applications typically
involve 3 to 4 α-cuts. In this range, register spilling and
local memory accesses with high latency is not an issues. In
addition, if pressure over the register file is too high, the user
of this library has the possibility to tune the size of L1 cache
and shared memory [18]; Increasing the size of the L1 cache
allows to use more α-cuts before seeing a performance drop;
whereas using shared memory will mitigate the drop when it
occurs.

B. Memory-bound application: sort by keys

Listing 2 shows a thrust [14] program that sorts a vector
of fuzzy numbers on the device. We observe in this example
how easily the fuzzy type is integrated to other GPU libraries,
as all the arithmetic operators are overloaded.

The vector is sorted by keys, which are integers of 32 bits.
The sorting algorithm used by thrust in this case is radix
sort. The thrust kernels will read the fuzzy array from global
memory, sort it on the device, and then write the sorted array
back to global memory. The sorting process performs one step
per key bit, i.e. 32 steps in this case. At each step, each element
in the fuzzy array will be read and copied into a new position.
This is a typical case of memory-bound application.

#include "fuzzy_lu_lib.h"
#include "fuzzy_mr_lib.h"
#include <thrust/sort.h>
...

#define LEN (1E5)

int main(){

thrust::device_vector<fuzzy_lu<double, 4> > d_a(LEN);
thrust::device_vector<unsigned int> keys(LEN);
...

thrust::sort_by_key(keys.begin(), keys.end(), d_a.begin
());

...
return 0;

}

Listing 2: Thrust sort by keys (memory-bound test).

We measured the GPU sorting time for the lower-upper
and midpoint-radius fuzzy encoding, with a number of α-cuts
ranging between 1 and 24 and for single and double precision.

The time spent in transferring data between host and device
is not included in our measure. Results for the GTX 480 are
plotted in figure 3. Figure 3a shows performance for different
fuzzy encoding and precision, in terms of millions of sorted
elements per second. Figure 3b presents the same information
in terms of speed-up of midpoint-radius over lower-upper.

(a) Related performance of the AXPY kernel. (b) Algorithmic gain.

(c) Registers used per implementation. (d) Instruction replays due to local memory accesses.

Fig. 2: Compute-bound benchmark.

We observe in figure 3 that for the same number of α-cuts,
midpoint-radius encoding allows to sort twice the amount of
fuzzy numbers than lower-upper encoding, whether we are in
single or double precision. For this application, the size of
the data array being sorted becomes the main factor driving
performance. Midpoint-radius requires half the size of lower-
upper representation, thanks to a shared midpoint between all
the α-cuts. The memory ratio of midpoint-radius to lower-
upper representation size is given by table II:

2x

1 + x

where x is the number of α-cuts. We observe that the speed-
up curves in figure 3b follow approximately this ratio except
between 8 and 14 α-cuts in double precision and for more
than 15 α-cuts in single precision, where sudden performance
drops are causing the speed-up to fluctuate. Thrust sort uses

shared memory to speed-up the sorting process. When the
values being treated by threads within one SM do not longer
fit in shared memory, it starts using global memory with a
direct impact over performance. As we stated earlier, lower-
upper fuzzy needs twice the amount of memory than midpoint-
radius fuzzy. As a result of this, it saturates shared memory at
half the number of α-cuts. When both architectures saturate
shared memory, the speed-up curve goes back to the normal
behaviour, explained by the ratio of memory sizes. Note
that single precision midpoint-radius does not saturate shared
memory in this experiment and keeps a high performance all
along the considered range.

VI. CONCLUSION

In this article, we presented a fuzzy arithmetic library
written in CUDA and C++, based on the α-cuts concept
and relying on interval and rounded floating point arithmetic

(a) Thrust’s sort by keys performance. (b) Algorithmic gain.

Fig. 3: Memory-bound benchmark.

optimized for different hardware. Our implementation offers
two fuzzy containers. The first one uses a traditional lower-
upper encoding for intervals and allows to represent any fuzzy
number, regardless of the shape of the membership function.
The second one offers a new optimized midpoint-radius en-
coding for fuzzy numbers having a symmetric membership
function, which notably improves computational efficiency.
The optimization consists of using a single variable to store
all the α-cuts’ common midpoint. We also detailed the per-
formance impact of TLP, ILP and memory usage for recent
NVIDIA’s GPU regarding operations over fuzzy number’s for
the proposed representation format. We have shown through a
theoretical study and real measures for memory and compute
bound kernels that a gain of 2 to 20 can be obtained by prefer-
ring the midpoint-radius encoding over the traditional lower-
upper encoding. However, accuracy of the new representation
format has not been evaluated and is part of the future works.

REFERENCES

[1] D. Anderson, R. Luke, and J. Keller. Speedup of fuzzy clustering through
stream processing on graphics processing units. Fuzzy Systems, IEEE
Transactions on, 16(4):1101–1106, 2008.

[2] A. Anile, S. Deodato, and G. Privitera. Implementing fuzzy arithmetic.
Fuzzy Sets and Systems, 72(2):239 – 250, 1995.

[3] S. Bonvicini, P. Leonelli, and G. Spadoni. Risk analysis of hazardous
materials transportation: evaluating uncertainty by means of fuzzy logic.
Journal of Hazardous Materials, 62(1):59 – 74, 1998.

[4] H. Brönnimann, G. Melquiond, and S. Pion. The design of the boost
interval arithmetic library, 2006.

[5] C.-H. Chang and Y.-C. Wu. The genetic algorithm based tuning method
for symmetric membership functions of fuzzy logic control systems.
In Industrial Automation and Control: Emerging Technologies, 1995.,
International IEEE/IAS Conference on, pages 421–428, 1995.

[6] C.-T. Chen, C.-T. Lin, and S.-F. Huang. A fuzzy approach for supplier
evaluation and selection in supply chain management. International
Journal of Production Economics, 102(2):289 – 301, 2006.

[7] M.-Y. Chen and D. Linkens. Rule-base self-generation and simplification
for data-driven fuzzy models. In Fuzzy Systems, 2001. The 10th IEEE
International Conference on, volume 1, pages 424–427, 2001.

[8] S. Collange, M. Daumas, and D. Defour. Chapter 9 - interval arithmetic
in {CUDA}. In W. mei W. Hwu, editor, {GPU} Computing Gems Jade
Edition, pages 99 – 107. Morgan Kaufmann, Boston, 2012.

[9] D. Defour and M. Marin. Fuzzygpu: a fuzzy arithmetic library for gpu.
http://code.google.com/p/fuzzy-gpu/, 2013.

[10] D. Dubois and H. Prade. Operations on fuzzy numbers. International
Journal of Systems Science, 9(6):613–626, 1978.

[11] B. Goossens and D. Parello. Limits of instruction-level parallelism
capture. In ICCS, pages 1664–1673, 2013.

[12] F. Goualard. Gaol 3.1. 1: Not just another interval arithmetic library.
Laboratoire d’Informatique de Nantes-Atlantique, 4, 2006.

[13] M. Hanss. The transformation method for the simulation and analysis of
systems with uncertain parameters. Fuzzy Sets and Systems, 130(3):277
– 289, 2002.

[14] J. Hoberock and N. Bell. Thrust: A parallel template library, 2010.
Version 1.7.0.

[15] N. Kolarović. Fuzzy numbers and basic fuzzy arithmetics (+, -, *, /, 1/x)
implementation written in java. http://fuzzyarith.sourceforge.net, 2013.

[16] M. Martnez-Zarzuela, F. Daz Pernas, J. Dez Higuera, and M. Rodrguez.
Fuzzy art neural network parallel computing on the gpu. In F. Sandoval,
A. Prieto, J. Cabestany, and M. Graa, editors, Computational and Am-
bient Intelligence, volume 4507 of Lecture Notes in Computer Science,
pages 463–470. Springer Berlin Heidelberg, 2007.

[17] V. Miranda and J. Saraiva. Fuzzy modelling of power system optimal
load flow. In Power Industry Computer Application Conference, 1991.
Conference Proceedings, pages 386–392. IEEE, 1991.

[18] NVIDIA. NVIDIA CUDA C Programming Guide 5.0. 2013.
[19] N. Revol and F. Rouillier. The mpfi library, 2001.
[20] S. M. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534–554,

1999.
[21] A. Saber and G. Venayagamoorthy. Resource scheduling under uncer-

tainty in a smart grid with renewables and plug-in vehicles. Systems
Journal, IEEE, 6(1):103–109, 2012.

[22] V. Volkov. Better performance at lower occupancy. In Proceedings of
the GPU Technology Conference, GTC, volume 10, 2010.

[23] Y. Yoshida, M. Yasuda, J. ichi Nakagami, and M. Kurano. A new eval-
uation of mean value for fuzzy numbers and its application to american
put option under uncertainty. Fuzzy Sets and Systems, 157(19):2614 –
2626, 2006.

[24] L. Zadeh. The role of fuzzy logic in the management of uncertainty in
expert systems. Fuzzy Sets and Systems, 11(1–3):197 – 198, 1983.

