
HAL Id: lirmm-01212806
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01212806v1

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward the synthesis of fixed-point code for matrix
inversion based on Cholesky decomposition
Matthieu Martel, Mohamed Amine Najahi, Guillaume Revy

To cite this version:
Matthieu Martel, Mohamed Amine Najahi, Guillaume Revy. Toward the synthesis of fixed-point code
for matrix inversion based on Cholesky decomposition. DASIP: Design and Architectures for Signal
and Image Processing, Oct 2014, Madrid, Spain. pp.1-8, �10.1109/DASIP.2014.7115609�. �lirmm-
01212806�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01212806v1
https://hal.archives-ouvertes.fr

Toward the synthesis of fixed-point code for matrix
inversion based on Cholesky decomposition

Matthieu Martel1,2,3 Amine Najahi1,2,3 Guillaume Revy1,2,3

1 Univ. Perpignan Via Domitia, DALI, F-66860, Perpignan, France
2 Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France

3 CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

Abstract—Matrix inversion is a computationally intensive ba-
sic block of many digital signal processing algorithms. To decrease
the cost of their implementations, programmers often prefer the
fixed-point arithmetic. This arithmetic requires less resources
and runs faster than the floating-point arithmetic, but all the
arithmetical details must be handled by the programmer. In this
article, we overcome this drawback by presenting an automated
approach to synthesize fixed-point code for matrix inversion based
on Cholesky decomposition. First we rigorously define the square
root and division operators especially in terms of rounding error,
and we implement them in the CGPE library. This allows us
to provide accuracy certificates for the generated code. Second
we propose a workflow based on Cholesky decomposition that
carefully uses these operators to produce accurate code for
the basic blocks of matrix inversion. Finally we illustrate the
efficiency of our approach on some benchmarks, and show how
it allows us to synthesize accurate code in a few seconds and thus
to reduce the development time of fixed-point matrix inversion.

Keywords: Cholesky decomposition, matrix inversion, fixed-point
arithmetic, automated code synthesis, certified numerical accu-
racy

I. INTRODUCTION

Matrix inversion is known to be numerically unstable. As a
consequence, numerical analysts advise against using it for
a large set of problems. Yet, as stated by Higham [1, Ch.
14], cases exist where the inverse conveys useful information.
In the wireless communication field, matrix inversion is used
in equalization algorithms [2] as well as detection estimation
algorithms in space-time coding [3]. This article does not
discuss these cases and leaves it to the programmer to decide
whether computing the inverse is indeed justified. The goal of
this article is to introduce techniques that help the programmer
in the process of writing fixed-point code for matrix inversion.
The originality of our work relies on the fact that certified
error bounds are also produced together with the code. In
a typical design, DSP programmers prototype and simulate
their algorithms in high level environments like MATLAB.
These environments work with the floating-point arithmetic [4]
to ease and speedup the prototyping phase. However, when
mapping the design to hardware, constraints on silicon area,
power consumption, or throughput frequently force the imple-
menter to convert this design to the more efficient fixed-point
arithmetic [5]. This conversion is known to be a tedious and
time consuming process [6] that may be split into two phases:

1) Range analysis: This phase allows to find the integer
wordlength of each variable in the design. In a finite
wordlength environment, minimizing the integer word
length allows one to allocate more digits for the fractional
part, thus obtaining more accuracy.

2) Precision analysis: In this phase, the number of bits to
allocate to the fractional part is decided. This phase must
take into account the precision needs of the application.

Over the last years, authors have suggested different strategies
to tackle these conversion phases. These contributions fit into
two categories:

1) Simulation based strategies [7], [8]: The information that
allows to estimate the required range and precision are
inferred from intensive simulations carried out using a
precise arithmetic, typically floating-point arithmetic.

2) Analytic strategies [9], [10]: The information is obtained
using formal methods such as interval arithmetic, affine
arithmetic, and norm computation for digital filters. The
precision analysis phase relies on optimization techniques.

In this work, we use an analytic approach based on interval
arithmetic to bound the range of the variables in our design and
to give strict bounds on the rounding errors. Previous works
applied similar techniques but only to a small range of prob-
lems involving only additions and multiplications. This article
describes algorithms to compute square roots and divisions,
and the means to bound their rounding errors. By adding these
operators to the CGPE tool, we are able to treat problems,
previously considered intractable in fixed-point arithmetic, like
Cholesky decomposition and triangular matrix inversion.

This article is organized as follows: Section II gives some
insights on matrix inversion algorithms. Section III introduces
some basics on fixed-point arithmetic, while Section IV details
our new square root and division operators. Section V details
the workflow we propose to map matrix inversion into the
fixed-point arithmetic. Then some experimental results are
exhibited in Section VI, before concluding in Section VII.

II. BACKGROUND ON MATRIX INVERSION

A survey of floating-point matrix inversion and linear systems
solving shows that there are many algorithms in use: LU
and QR decompositions, Cramer’s rule, . . . [11]. A common
pattern to the efficient algorithms is the decomposition of
the input matrix into a product of easy to invert matrices
(triangular or orthogonal matrices). LU decomposition for
instance, proceeds by Gaussian elimination to decompose an
input matrix A into two triangular matrices L and U such that
A = LU . Inverting triangular matrices being straightforward,
solving the associated linear system is equally simple and so
is obtaining the inverse A−1 by the formula A−1 = U−1L−1.
Almost the same chain of reasoning is applicable to QR
decomposition. Clearly, the computationally intensive step of
these algorithms is the decomposition part [11].

The decomposition part is also the missing link in fixed-
point arithmetic. Indeed, some works exist on fixed-point
code synthesis for matrix multiplication [12], but, to the
authors knowledge, no published material suggests a rigorous
methodology of code synthesis for matrix decomposition or
triangular matrix inversion. The authors of the Gusto tool [13]
do provide benchmarks for the accuracy of their matrix in-
version algorithms. However, the methodology for generating
the fixed-point implementation is not explicit in the article
and the treated matrices do not exceed size 8. Besides, the
evaluation of the rounding error is an a posteriori estimation
process. Therefore, no absolute error bounds are provided.
In [7], Frantz et al. use an approach based on the ideas
introduced by [8] to study the mapping of many linear algebra
routines to fixed-point DSPs. They treat matrices of sizes
up to 35, but uniquely with simulation based methods and
without providing certificates on the error bounds. In intro-
ducing a rigorous error model, our work is analogous to [9]
and [10], where affine arithmetic is used to assert properties
on the error bounds. However, both approaches target discrete
transformation algorithms and only [9] treats briefly of small
size matrix multiplication. In our approach, we suggest an
interval arithmetic based formalization of all the arithmetic
operators that intervene in the computation of classical linear
algebra decompositions. This allows us to compute explicit
bounds on the rounding errors of the codes synthesized by our
tools. In the following of this section, we recall the formulas
for triangular matrix inversion and Cholesky decomposition,
which are useful to solve linear systems and invert matrices.

A. Triangular matrix inversion

Using the so called backward and forward substitution tech-
niques, inverting a triangular matrix is a straightforward pro-
cess in floating-point arithmetic. Indeed, for a lower triangular
matrix A, its inverse N is given by the following equations:

ni,j =

1

ai,i
if i = j

−ci,j
ai,i

if i 6= j

where ci,j =

i−1∑
k=j

ai,k · nk,j . (1)

In floating-point arithmetic, these equations are easy to imple-
ment. It is less so in fixed-point arithmetic, since the coefficient
ni,j depends on other coefficients of N , namely all the nk,j
with k ∈ {j, . . . , i − 1}. This implies that the synthesis tool,
when generating code that computes ni,j must know the ranges
and formats of all the nk,j with k ∈ {j, . . . , i− 1}. It is clear
that such a tool must follow a determined order in synthesizing
code and that it must keep track of the formats and ranges
of the computed coefficients so as to reuse them. Besides,
similarly to the work in [12], this process involves multiple
trade-offs between code size and accuracy.

B. Cholesky decomposition

If A is a symmetric positive definite matrix, its Cholesky de-
composition is defined. Since this method exploits the structure
of the matrix, it is more efficient than Gaussian elimination. It
is also known for its numerical stability. The aim of Cholesky’s
method is to find a lower triangular matrix L such that

A = L · LT . (2)

By equating the coefficients in (2) and using the properties of
A, the following two formulas for the general term of L are
deduced:

`i,j =

√
ci,i if i = j

ci,j
`j,j

if i 6= j
with ci,j = ai,j−

j−1∑
k=0

`i,k ·`j,k. (3)

Generating code for ci,j is easily achievable in fixed-point
arithmetic since it involves a subtraction and a size-j dot
product. Synthesizing code that computes `i,j from ci,j is
less obvious since the square root and division operators are
not well studied in fixed-point arithmetic. To conclude this
section, note that Cholesky decomposition can be used to invert
any non symmetric positive definite matrix A by decomposing
the following matrix: M = AAT which is guaranteed to be
symmetric to obtain M = LLT . From the decomposition, A−1
can be recovered thanks to the formula: A−1 = ATL−TL−1.

III. BASICS ON FIXED-POINT ARITHMETIC

This section presents some basics on fixed-point arithmetic. It
explains the means to implement and bound the error of fixed-
point addition/subtraction, multiplication, and shift, the most
useful operators in DSP algorithms. The reader is encouraged
to refer to [5] or [14] for a more detailed introduction to fixed-
point arithmetic.

A. Fixed-point number representation

Fixed-point arithmetic allows to represent a real value by
means of an integer associated to an implicit scaling factor.
Let X be a k-bit signed integer in radix 2, encoded using
two’s complement notation. Combined with a factor f ∈ Z,
it represents the real value x defined as follows:

x = X · 2−f .

In the sequel of this article, Qi.f denotes the format of a
given fixed-point variable v represented using a k-bit integer
associated with a scaling factor f , with k = i+ f . Here i and
f denote the number of bits in the integer and fraction part
of v, respectively, while k represents its wordlength. Hence
v is such that:

v ∈ {V · 2−f} with V ∈ Z ∩ [−2k−1, 2k−1 − 1]

by step of 2−f .

B. Arithmetic and error model

Given an arithmetic operation � ∈ {+,−,×,<<,>>}, to
bound the range of the resulting value and the rounding error
entailed by its computation, we keep track for each fixed-point
variable v, of the three following intervals:

1) Val(v) enclosing the values of v computed at run-time
with finite precision,

2) Math(v) enclosing the values taken by v if computations
were done with infinite precision,

3) Err(v) enclosing the rounding errors occurring while
computing v,

such that:
Err(v) = Math(v)− Val(v).

Notice that all the computations involving Val(v) and Err(v)
are done using interval arithmetic [15]. And thanks to the
formula above, keeping track of Val(v) and Err(v) suffices
to deduce Math(v).

To show how Val(v) and Err(v) are computed, let us
define three fixed-point variables v, v1, and v2 along with
their formats Qi.f , Qi1 .f1 , and Qi2 .f2 , respectively. When
� ∈ {+,−,×} and v = v1 � v2, we have:

Val(v) = Val(v1) � Val(v2)− Err�.

For physical shifts, that is, for � ∈ {<<,>>}, we simply have:

Val(v) = Val(v1)− Err�,

since these operators do not modify the value of the input v1
but both the bit string of V1 and its fixed-point format. Inter-
preting v1 in a different fixed-point format without modifying
the bit string of V1 is called virtual shift1 in [14]: this operation
is error-free, and it is the only shift operation that modify the
value of v1:

Val(v) = Val(v1)× 2f1−f .

Addition and subtraction. In absence of overflow, addition
and subtraction are error-free. Hence for � ∈ {+,−} we have:

Err(v) = Err(v1) � Err(v2) and,

i = max(i1, i2) + 1 and f = max(f1, f2).

Multiplication. If � is a multiplication, we have:

Err(v) = Err× + Err(v1) · Err(v2)
+ Err(v1) · Val(v2) + Val(v1) · Err(v2),

where Err× is the error entailed by the multiplication itself.
Remark that exact fixed-point multiplication results in a num-
ber having a fraction of f1 + f2 bits. And usually in fixed-
point arithmetic the error Err× is due to the truncation of the
exact result of the multiplication to fit in a smaller format with
f < f1 + f2 fraction bits. Hence we have:

Err× = [0, 2−f − 2−(f1+f2)].

Most 32-bit DSP processors provide a 32× 32 multiplier that
returns the 32 most significant bits of the exact result, which
is the multiplier considered in this work. In that case,

i = i1 + i2 and f = 32− i.

Left and right shift. If � ∈ {<<,>>}, we have:

Err(v) = Err(v1) + Err�.

Left shifts of s bits entail no error but only a possible overflow:
Err<< = [0, 0] and (i, f) = (i1 − s, f1 + s). However right
shifts of s bits may be followed by a truncation to fit the result
in a smaller format with f < f1 fraction bits. Thus, we have:

(i, f) = (i1 + s, f1 − s) and Err>> = [0, 2−f1+s − 2−f1].

1This operation is not detailed in our article, but we encourage the reader
to refer to [14] for more details.

IV. FIXED-POINT SQUARE ROOT AND DIVISION

Many research articles have been published that deal with the
four fixed-point operations presented in Section III [14], [16],
[17], [18]. Square root and division did not receive as much
attention, and prior to this work, we are not aware of any
published material that formalizes rigorously square root and
division in fixed-point arithmetic, by suggesting an implemen-
tation together with an error model. Yet square root is useful
when computing euclidean norms. In a linear algebra context,
Cholesky decomposition and triangular inverse involve square
roots and divisions, as shown in Section II. Division may also
be used to evaluate rational polynomial approximants [19]. The
following of the section presents our new fixed-point square
root and division operators.

A. Fixed-point square root

This first part presents the operator of fixed-point square root
we have implemented. Assuming v1 ≥ 0, for v =

√
v1, we

have:
Val(v) =

√
Val(v1)− Err√

since the computed value is truncated, while Err(v) is:

Err(v) =
√

Math(v1)−
√

Val(v1) + Err√,

where Err√ is the error entailed by the square root operation
itself. The error term is given by the following formula:

Err(v) =
√

Val(v1) + Err(v1)−
√

Val(v1) + Err√ (4)

=
√

Val(v1) ·

(√
1 +

Err(v1)
Val(v1)

− 1

)
+ Err√.

Here the factorization is used to remedy the interval depen-
dency phenomenon inherent to interval arithmetic.

Notice that this formula does not yield tight error bounds
as soon as Val(v1) smallest elements are of the same order of
magnitude than Err(v1). To overcome this issue, we may use
the subadditivity property of the square root function, which
holds as long as x and x+ y are both positive:

√
x−

√
|y| ≤

√
x+ y ≤

√
x+

√
|y|.

Hence we deduce the following bounds on Err(v):

Err√ −
√
|Err(v1)| ≤ Err(v) ≤ Err√ +

√
|Err(v1)|. (5)

In practice, we compute the intersection of the enclo-
sures (4) and (5).

As for Err√, it depends on the square root algorithm. To
explicit such an algorithm, let us remember that we have v1 =
V1 ·2−f1 . In the following, we propose two different algorithms
together with a piece of C code to perform fixed-point square
root, and we compare them by exhibiting their error bounds.

Algorithm 1. A first attempt to implement square root is to
start from the following rewriting:

√
v1 =

{√
V1 · 2−f1/2 if f1 is even,√
V1/2 · 2−(f1−1)/2 if f1 is odd.

An implementation of this approach would compute
√
v1 using

one of the following:

b
√
V1c · 2−f1/2 or b

√
V1/2c · 2−(f1−1)/2

where b
√
·c is the integer square root operation. This operation

may be implemented in hardware or in software using multiple
techniques such as digit-recurrence, and Newton-Raphson or
Goldschmidt iteration [20], [21]. We deduce that the value

√
v1

has ≈ f1/2 fraction bits, and that

Err√ = [0, 2−
f1
2] or Err√ = [0, 2−

f1−1
2]

depending on the parity of f1. Compared to the error bound
of the previous operations, an error bound of ≈ 2−f1/2 for the
square root is not acceptable in practice.

Algorithm 2. To overcome the accuracy issue of Algorithm 1
above, let use rewrite v1 as

v1 = 2η · V1 · 2−(f1+η)

with the integer η being a parameter of the algorithm chosen
at synthesis-time such as f1 + η is even. Using this scaling
factor, it follows that

√
v1 =

√
2η · V1 · 2

−(f1+η)
2 . (6)

The cases η = 0 and η = −1 correspond to the even and
odd cases of Algorithm 1, respectively. An algorithm that
exploits (6) shifts the integer representation V1 of v1 by η
bits to the left and computes its integer square root. The result
of this algorithm is a fixed-point variable with (f1 + η)/2 bits
of fraction part. Hence using this approach, we conclude that

i = di1/2e , f =
f1 + η

2
, and

√
v1 =

⌊√
2η · V1

⌋
·2

−(f1+η)
2 ,

where
⌊√

2η · V1
⌋

is computed using an integer square root
operation. It is clear now that with such an algorithm, we
obtain the following bound on Err√:

Err√ =
[
0, 2−

(f1+η)
2

]
.

Notice that it would not make sense to choose η < 0, since it
would result in an increase of Err√. Hence in the following
of the section, we assume η ≥ 0.

Listing 1 gives a C implementation for a 32 → 32-
bit square root operation using Algorithm 2 based on digit-
recurrence iteration when 0 ≤ η < 32. This is by far the most
frequent case in practice. In this code, the 32 least significant

uint32_t isqrt32hu(uint32_t V1, uint16_t eta)
{
uint64_t V1_extended = ((uint64_t)V1) << eta; // eta >= 0
uint64_t V = 0;
int64_t one = 0x4000000000000000ll; // 2ˆ(62)

while (one != 0){
if (V1_extended >= V + one){

V1_extended = V1_extended - (V + one);
V = V + (one << 1);

}
V >>= 1;
one >>= 2;

}
return (uint32_t)V;

}

Listing 1. C code of 32→ 32-bit fixed-point square root operation.

bits of the variable V are returned. Hence the parameter η must
be carefully chosen, to ensure that f1+ η is even, and that the
wordlength of the result is at most 32, otherwise an overflow
may occur.

B. Fixed-point division

This second part presents our fixed-point division operator. Let
v = v1/v2. When the quotient is defined, i.e. when v2 6= 0,
that is, 0 /∈ Val(v2), we have:

Val(v) =
Val(v1)
Val(v2)

− Err/

while Err(v) is defined as:

Err(v) =
Math(v1)
Math(v2)

− Val(v1)
Val(v2)

+ Err/,

where Err/ is the error entailed by the division itself. It follows
that the error term is defined as:

Err(v) =
Val(v2) · Err(v1)− Val(v1) · Err(v2)

Val(v2) · (Val(v2) + Err(v2))
+ Err/.

From a theoretical point of view, the quotient v1/v2 when
defined must be a fixed-point variable in the format Qi.f with

i = i1 + f2 and f = f1 + i2

since:

1) The largest possible dividend is −2i1−1 while the smallest
divisor is 2−f2 . Thus the quotient could be as large as
−2i1+f2−1.

2) As for the opposite case, the smallest dividend is 2−f1

while the largest divisor is −2i2−1. To be precise, the
fractional part must be of size f1 + i2.

Remark that a special care must be taken when 0 ∈ Val(v2)
to avoid division by zero. In this case, we first compute both
error and value bounds twice, using the two intervals Val(v2)
and Val(v2), such that:

Val(v2) ∪ Val(v2) = Val(v2) \ {0}.

Then we compute the union of the resulting intervals.

As for the square root, the fixed-point format of v depends
on the algorithm implemented. In the following, we suggest
two different algorithms to perform fixed-point division to-
gether with a piece of C code, and we analyze the difference
between these algorithms by exhibiting their error bounds. To
do this, let us remember that we have v1 = V1 · 2−f1 and
v2 = V2 · 2−f2 .

Algorithm 1. A first attempt to implement division is to start
from the following rewriting:

v1
v2

=
V1 · 2−f1
V2 · 2−f2

=
V1
V2
· 2−(f1−f2).

This algorithm computes the quotient of the two integers V1
and V2, and then considers f1 − f2 as the new implicit scale
factor. The C standard requires integer division to be computed
by discarding the fractional part of the exact division result,
even for nonpositive results, that is, by rounding the exact
result toward zero [22, § 6.5.5]. Since our implementations
are intended to be compliant with the C language, we chose
to implement a division operator satisfying this requirement.
We denote by trunc(·) this operation. Hence:

v1
v2

= trunc

(
V1
V2

)
· 2−(f1−f2).

Below we give an implementation of this method using the C
standard integer division. If this option is not available or is
too costly, this operation may also be implemented in hardware
or in software using digit-recurrence, and Newton-Raphson or
Goldschmidt iteration. In this case, the error Err/ is as follows:

Err/ = [−2−(f1−f2), 2−(f1−f2)].

It follows that the result has no more fraction bits, as soon as
v1 and v2 have the same fixed-point format. This leads to a
huge loss of accuracy since Err/ = [−1, 1].
Algorithm 2. To overcome the accuracy issue of Algorithm 1
above, we use a technique similar to the one presented for
square root, by introducing a scaling factor η. Hence

v1
v2

=
V1 · 2−f1
V2 · 2−f2

=
V1 · 2η

V2
· 2−(f1−f2+η).

Usually, an implementation of this algorithm computes

v1
v2

= trunc

(
V1 · 2η

V2

)
· 2−(f1−f2+η)

which results in a variable having the fractional part

f = f1 − f2 + η.

In our context, we consider that all the variables have the same
wordlength, particularly i + f = i1 + f1. It follows that the
integer part of the result is:

i = i1 + f2 − η. (7)

Then we deduce that the error Err/ is as follows:

Err/ = [−2−(f1−f2+η), 2−(f1−f2+η)].

Remark that even when v1 and v2 have the same format,
Err/ = [−2−η, 2−η] remains tight as long as η is large enough.
Also as for square root, it would not make sense to choose
η < 0, since it would result in an increase of Err/. Again in
the following of the section, we assume η ≥ 0. Listing 2 gives
a C implementation for a 32× 32→ 32-bit division operation
using Algorithm 2 when 0 ≤ η < 64. This code returns the

int32_t div32hs(int32_t V1, int32_t V2, uint16_t eta)
{
int64_t t1 = ((int64_t)V1) << min(32, eta); // eta >= 0
int64_t t2 = ((int64_t)V2);
int64_t V = (t1 / t2) << max(0, eta-32);
return (int32_t) V;

}

Listing 2. C code of 32× 32→ 32-bit fixed-point division operation.

32 least significant bits of the variable V. It must be clear to
the reader that here again the parameter η must be chosen
carefully, since it greatly influences the result by impacting its
integer part i. Indeed picking a large η leads to a smaller value
i than the theoretical one and it minimizes the error bound and
ensures more accuracy on the result. However, by doing so,
we suppose that the result is not large enough. More precisely,
this means that the largest values in magnitude eventually
taken by the result are ignored and discarded. This approach is
equivalent to discarding the smallest values eventually taken
by the variable v2 in Val(v2), that is, the values around 0
in Val(v2). This may also be taken in consideration when
computing Val(v) and Err(v). In our experiments, we have
implemented various heuristics to decide the parameter η.

V. SYNTHESIS TOOL FOR MATRIX INVERSION

In this section, we detail the synthesis tool we have imple-
mented for the particular case of matrix inversion.

A. Cholesky decomposition based approach

As mentioned earlier, we choose to implement matrix inversion
through Cholesky decomposition. Given an input matrix A, it
is done in three steps:

1) matrix decomposition: L such as A = LLT ,
2) triangular matrix inversion: L−1,
3) and matrix multiplication: A−1 = L−TL−1.

In fixed-point arithmetic, we can frequently reduce the ranges
of the inputs to a range included in [−1, 1]. Indeed, for
Cholesky decomposition, if a matrix A does not satisfy this
condition, instead of decomposing A, we can decompose

B = 2−k ·A with k ∈ Z, (8)

to obtain B = RRT , where B is a matrix with coefficients in
[−1, 1]. It follows that A = 2k ·RRT = LLT where

L = 2k/2 ·R.

Notice that k must be chosen even. For triangular matrix
inversion, we can still compute A−1 as follows:

A−1 = 2−k ·B−1, where B is as in (8).

In fixed-point arithmetic, these scalings are just a matter of
manipulating the fixed-point format of the coefficients.

We have automated this in the FPLA tool2 which relies on
the CGPE library.3 These tools are detailed below.

CGPE (Code Generation for Polynomial Evaluation). De-
veloped by Revy and Mouilleron [16], CGPE is dedicated to
the automated synthesis of fast and accurate fixed-point codes
to evaluate mathematical expressions, like polynomials, dot
products, and summations. It takes as input intervals that bound
the range of each variable that appears in the expression, and
produces a code which is able to evaluate the input expression
for any instance of its arguments as long as they are in
the original interval of values. Initially devoted to evaluating
expressions involving only addition/subtraction, multiplication,
and shift, CGPE has been here enhanced by adding the square
root and division operators presented in Section IV.

FPLA (Fixed-Point Linear Algebra). We developed this tool
with the aim of generating fixed-point code for the most
frequently used linear algebra routines. It handles the aspects
peculiar to each class of input problems and relies on the
CGPE library for the low level and code synthesis details. For
instance, when prompted to generate code for matrix multipli-
cation, it is capable of finding good trade-offs between code
size and numerical accuracy as in [12], by using the same code
for output coefficients obtained from input rows and columns
with elements having close enough fixed-point formats. For
triangular matrix inversion and Cholesky decomposition, since
some of the output coefficients are dependant on previously
generated code, this strategy is harder to apply. Hence in these

2An archive containing the code of the FPLA tool is available upon request.
3CGPE is freely available at http://cgpe.gforge.inria.fr/.

cases, FPLA takes as input the intervals that bound the ranges
of the coefficients of the input matrix and works by making
successive calls to CGPE with the appropriate parameters. It
iterates on the output matrix and asks for a code to compute
a given output coefficient, defined by a specific expression
as in (1) or (3). Once this code generated by CGPE, FPLA
stores the range and error of its output. Note that FPLA also
takes care of correctly ordering the calls to CGPE in such
a way that each coefficient’s code is generated only after all
the information on which it depends has been collected. In this
sense, FPLA’s mode of operation greatly depends on the linear
algebra problem to be solved.

B. Order of code synthesis in FPLA

In triangular inversion, the diagonal elements do not depend
on any generated code. Therefore they may be computed in
any order. The non diagonal coefficients depend only on the
coefficients that precede them on the same column. FPLA
must therefore follow a row major, column major or even
a diagonal major approach. The latter consists in generating
the elements on the diagonal, followed by those on the first
sub-diagonal and so on. The last code generated in this
fashion would be that of the bottom left coefficient `n−1,0.
For Cholesky decomposition, a diagonal element `i,i depends
on the generated coefficients that precede it on row i. A non
diagonal element `i,j depends on the first j elements of row i
as well as the first j+1 elements of row j. FPLA may satisfy
these dependencies by following either a row major or column
major synthesis strategy but not a diagonal major strategy.

Listing 3 gives the global code produced by FPLA for a
size-3 triangular matrix inversion. The coefficients of the upper
triangular part are explicitly set to zero. Then compute_i_i

computes the coefficient ni,i as ni,i = 1/d while compute_i_j

computes the coefficient ni,j as

ni,j = (a0 · b0 + · · ·+ ai−j · bi−j)/d
where a0 =A[i][j], b0 =N[j][j], ai−j =A[i][i-1],
bi−j =N[i-1][j], and d =A[i][i]. The six compute_x_y func-
tions of this example are each generated by CGPE in a specific
C file. Listing 4 shows the code of compute_2_0 in Listing 3.

// A: input matrix -- N: inverse matrix of A
N[0][0] = compute_0_0(A[0][0]);
N[0][1] = 0;
N[0][2] = 0;

N[1][0] = -compute_1_0(A[1][0], N[0][0], A[1][1]);
N[1][1] = compute_1_1(A[1][1]);
N[1][2] = 0;

N[2][0] = -compute_2_0(A[2][0], A[2][1],
N[0][0], N[1][0], A[2][2]);

N[2][1] = -compute_2_1(A[2][1], N[1][1], A[2][2]);
N[2][2] = compute_2_2(A[2][2]);

Listing 3. FPLA ouput code for a 3× 3 triangular matrix inversion.

int32_t compute_2_0(int32_t a0 /* Q1.31 in [-1,1] */ ,
int32_t a1 /* Q2.30 in [-2,2] */ ,
int32_t b0 /* Q1.31 in [-1,1] */ ,
int32_t b1 /* Q2.30 in [-2,2] */ ,

int32_t d /* Q1.31 in [0.88,0.99] */){
int32_t r0 = mul(a0, b0); // Q2.30 in [-1,1]
int32_t r1 = r0 >> 2; // Q4.28 in [-1,1]
int32_t r2 = mul(a1, b1); // Q4.28 in [-4,4]
int32_t r3 = r1 + r2; // Q4.28 in [-5,5]
int32_t r4 = div32hs(r3, d, 31); // Q4.28 in [-8,8]
return r4;

}

Listing 4. C code of the compute_2_0 function.

C. How to use correctly fixed-point division?

Division in Section IV is the trickiest among the arithmetic
operators treated. It requires one to provide a parameter η
that impacts the format of the output. In practice, instead
of choosing the parameter η, we compute it according to an
expected acceptable output integer part using (7). This integer
part can be set using multiple ways: 1) Set to a constant,
2) Using a function of the formats of the operands. For
instance, if we want division results to have an integer part two
bits larger than the integer part of its left operand denoted i1,
we will use the function f(i1) = i1 + 2 to compute i. In this
example, using (7), we deduce that the parameter η = f2 − 2.

At first sight, the first solution seems to be either too restric-
tive or too unsafe. Indeed with long chains of computations,
the format of the intermediate operands tend to grow and
choosing a small enough output integer part is a good idea to
bring the result coefficient to a manageable range. Conversely
choosing a small output integer part increases the chance that
overflows occur at run-time. In Section VI, we illustrate the
interest of using the first solution on some cases, and we show
experimental evidence of the problems caused by the different
methods of deciding η.

VI. EXPERIMENTAL RESULTS

In this section, we conduct some experiments to show the
interest of using the operators specified in Section IV as well
as the Cholesky decomposition and triangular inversion basic
blocks of Section V. First we investigate the impact of the
output format of division. Second we study the speed of the
generation and the sharpness of the error bounds of the result.
Finally we show the impact of the matrix condition number
on the accuracy of the generated code.

A. Impact of the output format of division on accuracy

As mentioned in Section V-C, we need to explicitly fix the
output format of each division. More particularly, we define
each output integer part using a function of the formats of the
operands, the output fraction part being determined so as each
result fits on 32 bits. This first experiment shows the impact
of this function on the output accuracy. To do so, we defined
four functions:

f1(i1, i2) = t, f2(i1, i2) = min(i1, i2) + t,

f3(i1, i2) = max(i1, i2) + t, and f4(i1, i2) = b(i1 + i2)/2c+ t,

where t ∈ Z is a user defined parameter, and i1 and i2 are the
integer parts of the numerator and denominator, respectively.
The function f1 consists in fixing all the division results
to the same fixed-point format. The experiment consists in
computing the Cholesky decomposition and the triangular
inversion of matrices of size 5 and 10, respectively. Using
FPLA, we synthesize codes for each problem and each func-
tion in {f1, f2, f3, f4}, for t ranging from −2 to 8. Then for
each synthesized code, 10000 example instances are generated
and solved both in fixed and floating-point arithmetics. Each
example input is a matrix having 32-bits coefficients ranging
from −1 to 1. Then the error considered is obtained by
comparing the results to floating-point computations and by
considering the maximum errors among the 10000 samples.
The results are shown in Figure 1. No curve in the figures
means that all of the examples overflew, and none succeeded.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o
r

User defined parameter t

f1
f2
f3
f4

(a) Cholesky 5× 5.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o
r

User defined parameter t

f1
f2
f3
f4

(b) Triangular 10× 10.

Figure 1. Maximum error of Cholesky decomposition and triangular inverse with various functions used to determine output formats of division.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

 5 10 15 20 25 30 35 40
 0

 2

 4

 6

 8

 10

 12

 14

M
ax

im
u
m

 e
rr

o
r

G
en

er
at

io
n
 t

im
e

in
 s

ec
o
n
d

s

Matrix size

Maximum certified error bound
Maximum experimental error

Generation time

Figure 2. Comparison of the error bounds and experimental errors together
with generation time, for the inversion of triangular matrices of size 4 to 40.

Obviously, we can observe that the function used to
determine the output format of division has a great impact
on the accuracy of the generated code. For example, if we
consider the case t = 0 on 5× 5 Cholesky decomposition on
Figure1(a), using f1 leads to an error of ≈ 2−28, while using
f3 gives an error ≈ 2−15, that is, twice larger than f1. More
particularly, we can observe that a good function choice is
one that minimizes the output integer part. Indeed, as long as
t ≥ −1, using the function f1 always leads to better maximum
error than using function f3. In addition surprisingly, as
long as t ≥ −1, the function that gives the best results is
f1(i1, i2) = t, namely the function that fixes explicitly all
the division results of a resulting code to the same fixed-point
format independently of the input formats. Indeed the problem
of using a function that depends on the input formats comes
from the fact that it quickly leads to a growth of the integer part
of each computed coefficient, since it relies on the previously
computed coefficient themselves. Hence the interest of f1 is
that it avoids this fast growth, and leads to result coefficients
having a fixed and relatively small integer part, thus to tighter
errors than the other functions. This remark is particularly
true on 5 × 5 Cholesky decomposition on Figure1(a) when
t ≥ 0 where f1 is the only function that leads to successful
results. This phenomenon becomes obvious as the matrix size
increases.

However we cannot restrain ourselves to function f1 when
implementing matrix inversion basic blocks. Indeed, cases

occur where f1 leads to unsuccessful results. This occurs when
the result of some division has a fixed-point format with an
integer part greater than t. This is the case on 10×10 triangular
inversion on Figure1(b), where the diagonal coefficients of the
inverse are 1/ai,j . Since ai,j may be arbitrarily small, then
1/ai,j may be too large to fit into a format with an integer part
of t bit. In these cases, other functions should be preferred.

B. Sharpness of the error bounds and generation time

The originality of our approach is the automatic generation of
certified error bounds along with the synthesized code. This
enables the generated code to be used in critical and precision
sensitive applications. However, it is equally important that
these bounds be sharp, at least for a large class of matrices.
To investigate their sharpness, we compare in this second
experiment the error bounds for the case of triangular matrix
inversion with the experimental errors obtained from inverting
10000 sample matrices. This experiment is carried out using
the f4 function introduced in the previous experiment with
t = 1. For each matrix size from 4 to 40, C code and error
bounds are obtained by running FPLA. The generation time
for each size is shown by the third curve with triangle-shaped
dots and the right ordinate of Figure 2. It does not exceed 14
seconds on an Intel Core i7-870 2.93 GHz and for 40 × 40
matrices, an improvement of several orders of magnitude over
a hand written fixed-point code.

The remaining two curves show the evolution of the error
bounds and the experimental errors. The bounds vary from
2−26 to 22 while the experimental errors vary from 2−28 to
2−6. The difference between the error bounds and experimental
errors is less than 2 bits for size-4 matrices and is inferior
to 5 bits for size-15 matrices, and it grows as the size of
the input matrices grows. Although the bounds obtained for
matrices of size larger than 35 are too large to be useful in
practice, the experimental errors are still tight enough and do
not exceed 2−6. These issues may be tackled by considering
other means to handle division that are more suited to large
matrices. Indeed, our experiments tend to show that the output
format of division impacts heavily the accuracy of the result
and that there is no way to determine this format that is adapted
to all matrix sizes. We also argue that a bound of 2−12 on the
inversion of size-20 matrices is satisfying for a broad range of
applications, and this is a large improvement over hand-written
fixed-point codes or codes whose numerical quality is asserted
uniquely by simulations and a posteriori processes.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

 4 6 8 10 12 14

M
ax

im
u

m
 e

rr
o
r

Matrix size

Hilbert
Kms

Cauchy
Lehmer
Prolate

Figure 3. Maximum errors measured when computing the Cholesky decom-
position of various kinds of matrices for sizes varying from 4 to 14.

C. Impact of the matrix condition number on accuracy

The sample matrices considered in the previous experiments
were randomly drawn in the input intervals. In this third
experiment, we consider some rather known matrices namely,
Hilbert, Cauchy, Kms, Lehmer, and Prolate matrices. Among
these, Hilbert and Cauchy matrices and to a lower extent
Prolate are ill conditioned. Nonetheless, with a fixed-point
code generated for matrices in the input format Q1.31, we
were able to check that the fixed-point results, whenever
computable, are quite accurate as shown in Figure 3. For
sizes larger than 8 and 9, respectively, overflows occur when
computing the decompositions of Cauchy and Hilbert matrices.
But this fact does not invalidate our approach. Indeed, these
matrices are very ill conditioned and are difficult to decompose
accurately even in floating-point arithmetic.

On the other hand, Lehmer and Kms matrices have a
linearly growing condition number and are therefore very
well suited to our approach. Indeed as shown by the two
bottom curves, the code generated by FPLA decomposes these
matrices with a precision of up to 25 bits.

VII. CONCLUSION

In this article, we presented an automated approach to help
in writing codes in fixed-point arithmetic for the particular
case of matrix inversion based on Cholesky decomposition.
First we formalized rigorously the fixed-point square root and
division, especially in terms of error bounds, and implemented
both of them in the CGPE tool. Second we introduced FPLA,
dedicated to the synthesis of linear algebra subroutines. Our
work focused particularly on the correct handling of fixed-
point division, which is not as straightforward as the other
operators and for which the output format must be carefully
chosen to ensure a certain accuracy on the result. Enhancing
our tool chain with these operators allowed us to tackle
Cholesky decomposition and triangular matrix inversion. We
finally showed that accurate fixed-point codes accompanied by
bounds on the rounding errors can be automatically generated
in a few seconds to invert and to decompose matrices of sizes
up to 40.

In addition our further research direction is twofold: As a
first direction, we intend to investigate the synthesis of other

linear algebra basic blocks, like LU or QR decompositions,
that may also be used to implement matrix inversion, and to
implement them in FPLA. As a second direction, we aim at
investigating, similarly to the work done in [12], the different
trade-offs involved in the code synthesis process and especially
the one between code size and accuracy.

REFERENCES

[1] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002.

[2] L. Zhou, L. Qiu, and J. Zhu, “A novel adaptive equalization algorithm
for MIMO communication system,” in Proc. of the IEEE 62nd Vehicular
Technology Conference (VTC-2005-Fall), vol. 4, 2005, pp. 2408–2412.

[3] H. Chen, X. Deng, and A. Haimovich, “Layered turbo space-time
coded mimo-ofdm systems for time varying channels,” in Proc. of the
2003 IEEE Global Telecommunications Conference (GLOBECOM’03),
vol. 4, 2003, pp. 1831–1836 vol.4.

[4] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, 2008.

[5] R. Yates, Fixed-Point Arithmetic: An Introduction, Digital Signal Labs,
2013.

[6] D. Menard, D. Chillet, and O. Sentieys, “Floating-to-fixed-point con-
version for digital signal processors,” in EURASIP Journal on Applied
Signal Processing, 2006, pp. 1–15.

[7] Z. Nikolic, H. T. Nguyen, and G. Frantz, “Design and Implementation of
Numerical Linear Algebra Algorithms on Fixed-Point DSPs,” EURASIP
J. Adv. Sig. Proceedings, vol. 2007, 2007.

[8] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,” IEEE Trans.
Signal Processing, vol. 43, no. 12, pp. 3087–3090, 1995.

[9] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A.
Constantinides, “Accuracy-guaranteed bit-width optimization,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 10, pp. 1990–2000, 2006.

[10] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, Accurate Static Analysis
for Fixed-Point Finite-Precision Effects in DSP Designs,” in Proc. of
the 2003 IEEE/ACM International Conf. on Computer-aided Design
(ICCAD’03). IEEE Computer Society, 2003, pp. 275–282.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[12] M. Martel, A. Najahi, and G. Revy, “Code Size and Accuracy-Aware
Synthesis of Fixed-Point Programs for Matrix Multiplication,” in Proc.
of the 4th International Conference on Pervasive and Embedded Com-
puting and Communication Systems (PECCS’14), 2014, pp. 204–214.

[13] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, “GUSTO: An
Automatic Generation and Optimization Tool for Matrix Inversion
Architectures,” ACM Trans. Embed. Comput. Syst., vol. 9, no. 4, pp.
32:1–32:21, 2010.

[14] C. Mouilleron, A. Najahi, and G. Revy, “Automated Synthesis of
Target-Dependent Programs for Polynomial Evaluation in Fixed-Point
Arithmetic,” UPVD/LIRMM, Tech. Rep., 2013.

[15] R. E. Moore, Interval Analysis. Prentice-Hall, 1966.
[16] C. Mouilleron and G. Revy, “Automatic Generation of Fast and Certified

Code for Polynomial Evaluation,” in Proc. of the 20th IEEE Symposium
on Computer Arithmetic (ARITH’20), 2011, pp. 95–103.

[17] B. Lopez, T. Hilaire, and L.-S. Didier, “Sum-of-products evaluation
schemes with fixed-point arithmetic, and their application to IIR filter
implementation,” in Proc. of the Conference on Design and Architec-
tures for Signal and Image Processing (DASIP), 2012, pp. 160–167.

[18] D.-U. Lee and J. D. Villasenor, “Optimized Custom Precision Function
Evaluation for Embedded Processors,” IEEE Trans. Computers, vol. 58,
no. 1, pp. 46–59, 2009.

[19] R. C. C. Cheung, D.-U. Lee, O. Mencer, W. Luk, and P. Y. K. Cheung,
“Automating custom-precision function evaluation for embedded pro-
cessors,” in Proc. of the Inter. Conf. on Compilers, Architectures and
Synthesis for Embedded Systems (CASES’05). ACM, 2005, pp. 22–31.

[20] M. D. Ercegovac, L. Imbert, D. W. Matula, J.-M. Muller, and G. Wei,
“Improving Goldschmidt division, square root, and square root recip-
rocal,” IEEE Trans. Computers, vol. 49, no. 7, pp. 759–763, 2000.

[21] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[22] International Organization for Standardization, Programming Lan-
guages – C. Geneva, Switzerland: ISO/IEC Standard 9899:2010, 2010.

