K. Ahmed, Observational tools for assessment of procedural skills: a systematic review, The American Journal of Surgery, vol.202, issue.4, pp.469-480, 2011.
DOI : 10.1016/j.amjsurg.2010.10.020

G. S. Guthart and K. Salisbury, The Intuitive Telesurgery System: Overview and Application, IEEE International Conference on Robotics and Automation, vol.1, pp.618-621, 2000.

C. Freschi, Technical review of the da Vinci surgical telemanipulator, The International Journal of Medical Robotics and Computer Assisted Surgery, vol.13, issue.3, pp.396-406, 2013.
DOI : 10.1002/rcs.1468

S. Tsuda, Surgical Skills Training and Simulation, Current Problems in Surgery, vol.46, issue.4, pp.271-370, 2009.
DOI : 10.1067/j.cpsurg.2008.12.003

W. M. Brinkman, da Vinci Skills Simulator for Assessing Learning Curve and Criterion-based Training of Robotic Basic Skills, Urology, vol.81, issue.3, pp.562-566, 2013.
DOI : 10.1016/j.urology.2012.10.020

R. Mccormick, Conceptual and Procedural Knowledge, International Journal of Technology and Design Education, vol.23, issue.3, pp.141-159, 1997.
DOI : 10.1023/A:1008819912213

F. Lalys and P. Jannin, Surgical process modelling: a review, International Journal of Computer Assisted Radiology and Surgery, vol.51, issue.1, pp.495-511, 2014.
DOI : 10.1007/s11548-013-0940-5

URL : https://hal.archives-ouvertes.fr/inserm-00926470

L. Riffaud, Recording of Surgical Processes: A Study Comparing Senior and Junior Neurosurgeons During Lumbar Disc Herniation Surgery, Operative Neurosurgery, vol.67, issue.2, pp.325-332, 2010.
DOI : 10.1227/NEU.0b013e3181f741d7

URL : https://hal.archives-ouvertes.fr/inserm-00546422

G. Forestier, Classification of surgical processes using dynamic time warping, Journal of Biomedical Informatics, vol.45, issue.2, pp.255-264, 2012.
DOI : 10.1016/j.jbi.2011.11.002

URL : https://hal.archives-ouvertes.fr/inserm-00669624

J. K. Aggarwal and L. Xia, Human activity recognition from 3D data: A review, Pattern Recognition Letters, vol.48, pp.70-80, 2014.
DOI : 10.1016/j.patrec.2014.04.011

T. Sugino, H. Kawahira, and R. Nakamura, Surgical task analysis of simulated laparoscopic cholecystectomy with a navigation system, International Journal of Computer Assisted Radiology and Surgery, vol.8, issue.3, pp.825-836, 2014.
DOI : 10.1007/s11548-013-0974-8

C. E. Reiley, Automatic Recognition of Surgical Motions Using Statistical Modeling for Capturing Variability, Studies in health technology and informatics, vol.132, issue.1, pp.396-401, 2008.

B. Varadarajan, Data-Derived Models for Segmentation with Application to Surgical Assessment and Training, Medical Image Computing and Computer-Assisted Intervention, vol.5761, issue.1, pp.426-434, 2009.
DOI : 10.1007/978-3-642-04268-3_53

N. Padoy and G. D. Hager, Human-Machine Collaborative surgery using learned models, 2011 IEEE International Conference on Robotics and Automation, pp.5285-5292, 2011.
DOI : 10.1109/ICRA.2011.5980250

N. Ahmidi, String Motif-Based Description of Tool Motion for Detecting Skill and Gestures in Robotic Surgery, Medical Image Computing and Computer-Assisted Intervention, vol.8149, pp.26-33, 2013.
DOI : 10.1007/978-3-642-40811-3_4

L. Tao, Surgical Gesture Segmentation and Recognition, Medical Image Computing and Computer-Assisted Intervention, vol.8151, pp.339-346, 2013.
DOI : 10.1007/978-3-642-40760-4_43

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Zappella, Surgical gesture classification from video and kinematic data, Medical Image Analysis, vol.17, issue.7, pp.732-745, 2013.
DOI : 10.1016/j.media.2013.04.007

C. Lea, G. D. Hager, and R. Vidal, An Improved Model for Segmentation and Recognition of Fine-Grained Activities with Application to Surgical Training Tasks, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.1-7, 2015.
DOI : 10.1109/WACV.2015.154

S. Schulz and A. Woerner, Automatic Motion Segmentation for Human Motion Synthesis, International Conference on Articulated Motion and Deformable Objects, pp.182-191, 2010.
DOI : 10.1109/ICCV.2003.1238468

D. Popa, Trajectory Based Hand Gesture Recognition, International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, pp.115-120, 2007.

J. F. Lin and D. Kuli´ckuli´c, Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis Automatic Hand Trajectory Segmentation and Phoneme Transcription for Sign Language, IEEE Transactions on Neural Systems and Rehabilitation Engineering IEEE International Conference on Automatic Face and Gesture Recognition, pp.2881-2884, 2008.

M. S. Holden, Feasibility of Real-Time Workflow Segmentation for Tracked Needle Interventions, IEEE Transactions on Biomedical Engineering, vol.61, issue.6, pp.1720-1728, 2014.
DOI : 10.1109/TBME.2014.2301635

H. C. Lin, Towards automatic skill evaluation: Detection and segmentation of robot-assisted surgical motions, Computer Aided Surgery, vol.111, issue.4, pp.220-230, 2006.
DOI : 10.1067/msy.2002.120235

C. E. Reiley and G. D. Hager, Task versus Subtask Surgical Skill Evaluation of Robotic Minimally Invasive Surgery, Medical Image Computing and Computer-Assisted Intervention, vol.5761, pp.435-442, 2009.
DOI : 10.1007/978-3-642-04268-3_54

E. Calabi, Differential and Numerically Invariant Signature Curves Applied to Object Recognition, International Journal of Computer Vision, vol.26, issue.2, pp.107-135, 1998.
DOI : 10.1023/A:1007992709392

M. Boutin, Numerically Invariant Signature Curves, International Journal of Computer Vision, vol.40, issue.3, pp.235-248, 2000.
DOI : 10.1023/A:1008139427340

S. D. Wu and Y. F. Li, Flexible signature descriptions for adaptive motion trajectory representation, perception and recognition, Pattern Recognition, vol.42, issue.1, pp.194-214, 2009.
DOI : 10.1016/j.patcog.2008.06.023

S. Yang, Performance of a 6-Degree-of-Freedom Active Microsurgical Manipulator in Handheld Tasks, IEEE International Conference on Engineering in Medicine and Biology Society, pp.5670-5673, 2013.

I. D. Loram, P. J. Gawthrop, and M. Lakie, The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors, The Journal of Physiology, vol.24, issue.1, pp.417-432, 2006.
DOI : 10.1113/jphysiol.2006.118786

T. Weinkauf, Y. Gingold, and O. Sorkine, Topology-based Smoothing of 2D Scalar Fields with C1-Continuity, Computer Graphics Forum, vol.23, issue.3, pp.1221-1230, 2010.
DOI : 10.1111/j.1467-8659.2009.01702.x

H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification, Discrete & Computational Geometry, vol.28, issue.4, pp.511-533, 2002.
DOI : 10.1007/s00454-002-2885-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Chen, Clustering of trajectories based on Hausdorff distance, 2011 International Conference on Electronics, Communications and Control (ICECC), pp.1940-1944, 2011.
DOI : 10.1109/ICECC.2011.6066483

K. Buchin, DETECTING COMMUTING PATTERNS BY CLUSTERING SUBTRAJECTORIES, International Journal of Computational Geometry & Applications, vol.21, issue.03, pp.644-655, 2008.
DOI : 10.1142/S0218195911003652

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978.
DOI : 10.1109/TASSP.1978.1163055

A. Neubeck and L. V. , Efficient Non-Maximum Suppression, 18th International Conference on Pattern Recognition (ICPR'06), pp.850-855, 2006.
DOI : 10.1109/ICPR.2006.479

A. Naftel and S. Khalid, Classification and Prediction of Motion Trajectories using Spatiotemporal Approximations, Annual German Conference on Advanced in Artificial Intelligence, 2009.

K. P. Bennett and C. Campbell, Support vector machines, ACM SIGKDD Explorations Newsletter, vol.2, issue.2, pp.1-13, 2000.
DOI : 10.1145/380995.380999

B. Hannaford, Raven-II: An Open Platform for Surgical Robotics Research, IEEE Transactions on Biomedical Engineering, vol.60, issue.4, pp.954-959, 2013.
DOI : 10.1109/TBME.2012.2228858

A. M. Derossis, Development of a Model for Training and Evaluation of Laparoscopic Skills 11This work was supported by an educational grant from United States Surgical Corporation (Auto Suture Canada)., The American Journal of Surgery, vol.175, issue.6, pp.482-487, 1998.
DOI : 10.1016/S0002-9610(98)00080-4

J. Cifuentes, An arc-length warping algorithm for gesture recognition using quaternion representation, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.6248-6251, 2013.
DOI : 10.1109/EMBC.2013.6610981

URL : https://hal.archives-ouvertes.fr/hal-00847499

Y. Gao, JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS): A Surgical Activity Dataset for Human Motion Modeling, Modeling and Monitoring of Computer Assisted Interventions, pp.1-10, 2014.

B. Morris and M. Trivedi, Learning trajectory patterns by clustering: Experimental studies and comparative evaluation, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.312-319, 2009.
DOI : 10.1109/CVPR.2009.5206559

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Wang, Experimental comparison of representation methods and distance measures for time series data, Data Mining and Knowledge Discovery, vol.15, issue.1, pp.275-309, 2013.
DOI : 10.1007/s10618-012-0250-5

G. A. Holt, M. J. Reinders, and E. A. Hendriks, Multi- Dimensional Dynamic Time Warping for Gesture Recognition, Annual Conference of the Advanced School for Computing and Imaging, 2007.