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Abstract

This paper presents new structural and algorithmic results around the scaffolding problem, which occurs
prominently in next generation sequencing. The problem can be formalized as an optimization problem on a
special graph, the “scaffold graph”. We prove that the problem is polynomial if this graph is a tree by providing a
dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for
general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-
size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally,
we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the
feedback edge set is significantly smaller than the input size.

Introduction
During the last decade, a huge amount of new genomes
have been sequenced, leading to an abundance of available
DNA resources. Nevertheless, most of recent genome
projects stay unfinished, in the sense that databases con-
tain much more incompletely assembled genomes than
whole stable reference genomes [1]. One reason for this
phenomenon is that, for most of the analyses performed
on DNA, an incomplete assembly is sufficient. Sometimes
it is even possible to perform them directly from the
sequenced data. Another reason is that producing a com-
plete genome, or an as-complete-as-possible-genome is a
difficult task. Traditionally, producing a complete genome
consists of three steps, each of them computationally or
financially difficult: the assembly, the scaffolding, and the
finishing. The step of scaffolding, on which we focus here,
consists of orienting and ordering at the same time the
contigs produced by assembly. Many methods have been
proposed and the recent activity on the subject shows
that it is an active field (see, not exhaustively, [2-8] and
Section). A good survey of recent methods can be found
in [9] for instance. Since the problem has been proved

NP -complete from its first formulation [10], nearly all of
these methods propose heuristic approaches. One of them
claims that an exact method provides better results [5],
however, the authors prepend a heuristic graph simplifica-
tion before running their exact algorithm.
The approach presented here relies on a combinatorial

problem on a dedicated graph, called scaffold graph, repre-
senting the link between already assembled contigs. The
main idea is to represent each contig by two vertices
linked by an edge (these “contig-edges” form a perfect
matching on the scaffold graph). Other edges are con-
structed and weighted using complementary information
on the contigs. The weight of a non-contig edge uv, with
uu′, vv′ being contig-edges, corresponds to a confidence
measure that the uu′ contig is succeeded by the vv′ contig
(oriented as u′ − u − v − v′). The scaffold graph is a flexible
tool to study the scaffolding issues. Indeed, the graph is a
syntactical data-structure which may represent several
semantics. For instance, the scaffold graphs used for
our previous experiments have been built using Next-
Generation Sequencing data, namely paired-end reads.
However, we also could provide other type of information
to compute the weight on the edges, like for instance
ancestral support in a phylogenetic context, or comparison
to other extent genomes which could be used as multiple
references. The way to define the weight on the edges
does not change the main goal of our method, which is to
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determine the optimal ordering and orientation of the
contigs, given a specific criterion. It is also possible to mix
two or more criteria in order to take several sources of
information into account.
We also introduced two structural parameters sp and sc

representing the respective numbers of linear and circular
chromosomes sought in the genome. Those parameters
seems quite artificial at a first sight, but they are well-
motivated as follows. First, in a number of species, gen-
omes are hard to assemble with classical methods because
of an heterogeneous chromosomal structure or difficulties
to perform classical assembly. This is the case, for
instance, with the micro-chromosomes in the chicken gen-
ome [11]. Also, when scaffolding metagenomic data, one
has to deal with very complex genomic structures [12].
We hope that relaxing the classical model with one chro-
mosome, mixed with the flexibility of the scaffold graph,
could help handling such complex situations. The second
motivation to introduce those parameters came from the
desire to explore an intermediary case between the very
classical and studied NP -complete [13]TRAVELING
SALESMAN PROBLEM (TSP) and a totally free structure,
in which case optimizing a covering by paths and cycles is
polynomial-time solvable [14]. The SCAFFOLDING
problem then consists of finding (at most) sp paths and sc
cycles that cover all contig-edges while maximizing the
total weight. Previously, we proved that SCAFFOLDING is
NP -complete, even under restricted conditions [15],
developed polynomial-time approximation algorithms
[15,16] and evaluated them experimentally [17]. In this
paper, we continue to explore this problem, as well as the
structural properties of the scaffold graph. This explora-
tion aims to develop an efficient method, that could be
used both to refine the ratio analysis on previously
designed heuristics and to handle cases of small genomes
with better quality.
We present both theoretical and practical results, as well

as our experimental findings. The paper is organized as
follows: we relate a general state-of-the-art and methodo-
logical comparison with existing methods and our pre-
vious work in Section. In Section, we formally introduce
the problem and some notations and definitions. In Sec-
tion, we show that the general SCAFFOLDING problem is
polynomial-time solvable on trees, and present a dynamic
programming algorithm. We extended this algorithm in
Section 11 to a parameterized algorithm with respect to
the treewidth of the input, that is, this algorithm runs in
polynomial time, on scaffold graphs that are sparse, i.e.
treelike. In Section 11, we lay the foundation to developing
effective preprocessing routines for SCAFFOLDING,
by presenting a set of reduction rules whose applica-
tion shrinks input instances of a derived problem,
RESTRICTED SCAFFOLDING. We show that the size of
the resulting instances can be bounded linearly in their

feedback edge set number, thus proving a problem kernel
for this parameter. Finally, in Section 11, we present some
experimental analysis of scaffold graphs that are derived
from real-world genomes.

Related work
Genome scaffolding is an intrinsically complex problem,
and was studied through several computation models and
tools. The first model, presented in [10], leads to its classi-
fication as an NP -complete problem. This work also pro-
poses the first greedy approach. The scaffolding was then
performed using genomic fragments coupled by mate-
pairs [18], which differ from the paired-end reads essen-
tially by their larger insert-size (The insert-size is the gap,
in base pairs, between two fragments constituting a pair of
reads), and their lower covering depth, so the size of the
data and the organization of the graph may differ from
actual Next-Generation Sequencing data using paired-end
reads. A greedy-like approach is also used in SSPACE [19],
iteratively combining the longest contigs. Conversely, Gao
et al. present a dynamic-programming-based exact
approach (OPERA) which provides higher-quality scaffolds
than existing heuristic approaches [5]. However, their
algorithm runs in O(nk ) time (where k is the “library
width”) which quickly grows out of reasonable propor-
tions. Thus, to apply this method on real data, they pre-
pend a graph contraction procedure to limit the size of the
input. In SOPRA [4], Dayarian et al. introduce a removal
procedure for problematic contigs, and separate the orien-
tation step from the linking step. The orientation step uses
a simulated annealing technique for regions of high com-
plexity. In GRASS [3], a genetic algorithm is provided,
using mixed integer programming (MIP) as in [6] and
an expectation-maximization process to counter the
intractability of the MIP model. They obtain results which
are intermediary in quality between SSPACE and Opera.
In SCARPA [2], the two problems of orienting and order-
ing the contigs are separated, as in SOPRA. Transforming
the graph such that the contig orientation problem has a
feasible solution is a fixed-parameter tractable problem
with respect to the number of nodes to remove [20]. The
authors first use the corresponding algorithm to pre-pro-
cess the graph and exhibit an optimal relative orientation
of the contigs. Then, pre-oriented contigs are ordered
using a heuristic, and the removal of articulation vertices
is used to limit the size of the connected components.
Misassembled contigs are detected and removed. In
BESST [21], the authors refine the previous approaches by
considering the library insert size distribution to filter rele-
vant linking information, leading to an almost linear scaf-
fold graph, which is easy to treat. The scalability of these
approaches is not always proven, and the general increase
of the size and amount of available data brings real effi-
ciency questions. Recently, some methods also use
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phylogenetic or comparative genomic approaches via rear-
rangement analysis to perform scaffolding on ancient or
extant genomes when a set of closely related species gen-
omes are available (see for instance [22-24]). This
encourages the mix of multiple sources of information for
scaffolding a given genome.
The scaffolding problem have been extensively studied

in the framework of complexity and approximation.
In [15,16], the authors proved that the problem is
NP -complete even if the scaffold graph is a planar bipar-
tite graph. They also proposed some lower bounds for
exact exponential-time algorithms for SCAFFOLDING
according to the EXPONENTIAL-TIME HYPOTHESIS
[25]. Finally, they proved that the minimization version of
SCAFFOLDING (seeking a minimum-weight cover of the
scaffold graph) is unlikely to be approximable within any
constant ratio, even if the scaffold graph is a completed
bipartite graph [15]. On the positive side, two polynomial-
time factor-3-approximation algorithms for the maximiza-
tion version have been designed. The first is an O(n2 log
n)-time greedy algorithm, the second is based on the
computation of a maximum matching (O(n3)-time).
The theoretical aspects of the scaffold graph have been
completed by extensive experimental results [17] for the
maximization version on simulated and real datasets.
The main contribution of the present paper lays in

both the algorithmic exploration of exact methods for
the scaffolding problem with structural parameters, and

the initiation of a discussion on the scaffold graph prop-
erties. Indeed, the knowledge of those properties may
lead to algorithmic improvement, as well as the detection
of putative errors in assemblies.

Definitions
Scaffolding problem. The central combinatorial object
we are working with in this work is the “scaffold graph”
(see also [16,17]).
Definition 1 (Scaffold graph) A scaffold graph is a

pair (G, M) of a graph G = (V, E, w) with an even num-
ber of vertices, and a weight function w : E ® N on its
edges, and a perfect matching M on G.
Notice that this model is close to what previous work

call scaffold graph, except that this graph is not a directed
graph, and contigs are represented by edges instead of
vertices. Figure 1 shows an example of a scaffold graph.
Graph Theory. Slightly abusing notation, we sometimes

consider paths as sets of edges. Furthermore, for a match-
ing M and a vertex u, we define M(u) as the unique vertex
v with uv ∈ M if such a v exists, and M(u) = ⊥, otherwise.
A path p is alternating with respect to a matching M if, for
all vertices u of p, also M(u) is a vertex of p. If M is clear
from context, we do not mention it explicitly. For a graph
G = (V, E) and a vertex set V′ ⊆ V, let G[V′] denote the
subgraph of G induced by V′ and let G − V′ := G[V \ V′].
For S ⊆ E, let G − S := (V, E \ S ) and, for any edge or ver-
tex x, we abbreviate G − {x} =: G − x. For a set of pairs S ,

Figure 1 A scaffold graph with 17 contigs (bold edges) and 26 (weighted) links between them, corresponding to the ebola data set
(see Section 11).
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we let Gr(S ) denote the graph having S as edgeset, that is,
Gr(S ) := (Ue∈S e, S ). For a function ω : E ® N and a set S
⊆ E, we abbreviate Σe∈S ω(e) =: ω(S ). Let G = (V, E) be a
graph with a matching M and let S be a matching in G −
M. The number of paths (resp. cycles) in G[S ∪ M] is

denoted by ||S||G,Mp (resp. ||S||G,Mc ). If all paths in G[S ∪
M] are alternating with respect to M, then, we call S a ||S||
p-||S||c-cover (or simply cover) for G with respect to M (we
will omit M if its clear from context). If ||S||c = 0, we may
also refer to S as a ||S||p-path cover (or simply path cover).
The general scaffold problem is expressed as follows (see
also [16,17]): SCAFFOLDING (SCA)
Input: A scaffold graph (G = (V, E, w), M), sp ∈ N, sc

∈ N, k ∈ N

Question: Is there a sp-sc-cover S for G with respect
to M with ω(S ) ≥ k?
Tree Decompositions. A tree decomposition of a graph

G = (V, E) is a pair (T = (VT , ET ), X : VT ® 2V ) such
that (1) for all uv ∈ E, there is some i ∈ VT with uv ⊆ X
(i) and (2) for all v ∈ V, the subtree Tv := T[{X(i) | v ∈
X(i)}] is connected. We call the images of X “bags” and
the size of the largest bag minus one is the width of the
decomposition. A decomposition of minimum width for
G is called the optimal for G and its width is called the
treewidth of G. It is a folklore theorem that each graph
G has an optimal tree decomposition (T, X) that is nice,
that is, each bag X(i) is one of the following types:
Leaf bag: i is a leaf of T and X(i) = ∅,
Introduce vertex v bag: i is internal with child j and X

(i) = X( j) ∪ {v} with v ∉ X(j),
Forget v bag: i is internal with child j and X(i) = X(j) − v

with v ∈ X(i),
Introduce edge uv bag: i is internal with child j and uv

∈ E and uv ⊆ X(i) = X(j),
Join bag: i is internal with children j and ℓ and X(i) = X

(j) = X(ℓ).
Additionally, each edge e ∈ E is introduced exactly once.

Given a width-tw tree decomposition, we can obtain a nice
tree decomposition of width tw in n · poly(tw) time [26].
Parameterized Algorithmics. Parameterized complexity

theory challenges the traditional view of measuring the
running times exclusively in the input size n. Instead,
we aim at identifying a parameter of the input that we
expect to be small (much smaller than n) in all instances
that the application at hand may produce. We then
focus on developing algorithms whose exponential part
can be bounded in this parameter (see [27] for details).
Parameterized complexity allows to prove performance
guarantees for preprocessing algorithms: a polynomial-
time algorithm that, given an instance x with parameter
k, computes an instance x′ with parameter k′ ≤ k such
that x is a yes instance if and only if x′ is a yes instance,
is called kernelization and the result x′ is the kernel. It is

common to present a kernelization by showing various
reduction rules that “cut away” the easy parts of the
input and, when applied exhaustively to the input,
shrink it enough to prove the size bounds.

Scaffolding on trees
Towards developing an algorithm for SCAFFOLDING
that runs fast on graphs that are “close to trees”, we con-
sider a strategy to solve SCAFFOLDING in case the input
graph is a tree. We use a bottom-up dynamic program-
ming approach that computes for each vertex v starting
with the leaves, the best possible solutions for the subtree
rooted at v. For ease of presentation, we thus consider the
input tree T to be rooted arbitrarily with r denoting the
root vertex. Note that the solution cannot contain any
cycles in this case.
At each vertex, the dynamic programming algorithm

needs to decide how many paths should be covered in
each of the subtrees of its children. Seeing that it is infeasi-
ble to try all combinations, we employ, again, a dynamic
programming strategy solving this problem for a given
vertex v: We order the children of each vertex v arbitrarily
and let sv denote the sequence of children of v with sv[j]
denoting the jth child of v and sv[1..j] := Ui≤j sv[ j]. Then,
we update the global dynamic programming table of v in
order of sv. Thus, when we consider the jth child u of v, we
only have to split the paths to be covered between the two
subtrees Tu and the union of all previously considered sub-
trees rooted at children of v (that is, T [Uℓ<j Tsv [ℓ] ∪ {v}]).
In the following, for a vertex v, let C(v) denote its chil-

dren and par(v) its parent (or ⊥ if v = r), and let Tv denote
the subgraph of T that is rooted at v. For u, v ∈ V,
we define Tu +Tv := T [V(Tu)∪V(Tv)] and Tu +v := T [V
(Tu)∪{v}]. Let v ∈ V and 1 ≤ j ≤ |C(v)|. Then, we define
Tv
j :=

∑
i≤ j

Tsv[i] + v . Finally, we abbreviate sv := sv[1..0] := ⊥.
Algorithm 1: Algorithm to fill the dynamic program-

ming table.
1I ¬ leaves of T;
2 while ∃v ∈ V \ I s.t. C(v) ⊆ I do
3 foreach 1 ≤ j ≤ |C(v)| with u := sv[j] do
4 foreach i ≤ sp do
5 if uv ∈ M then
6 [0, i, j]v ¬ maxa∈{0,1} maxℓ≤i−(1−a)[a, ℓ, ∞]

u + [0, i − (ℓ − a + 1), j − 1]v;
7 [1, i, j]v ¬ maxa∈{0,1} maxℓ≤i[a, ℓ, ∞]u +

[1, i − (ℓ − a), j − 1]v;
8 else
9 [0, i, j]v ¬ maxℓ≤i maxa∈{0,1}[a, ℓ, ∞]u +

[0, i − ℓ, j − 1]v;

10[1, i, j]v ← max
�≤i

⎧⎪⎨
⎪⎩
maxα∈{0,1}[α, �,∞]u + [1, i − �, j − 1]v;

ω(uv) + [0, �,∞]u +

{
[0, i − (� − 1), j − 1]v ; ifw ∈ sv[1..j]

[0, i − �, j − 1]v otherwise

11 if v = r then return maxc∈{0,1}[c, sp, ∞]relse I ¬ I
∪ {v};
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Semantics: For (c, i, j, v) ∈ {0, 1} × [sp] × [|C(v)|] × V
we let [c, i, j]v denote the maximum weight of an i-0-cover

S for Tv
j such that v is incident with exactly c edges of S.

We abbreviate [c, i, ∞]v := [c, i, |C(v)|]v.
We maintain a set I of initialized vertices and, as soon as

r is initialized, the algorithm stops. Thus, we assume r ∉ I.
Finally, the maximum weight of a sp-0-cover for T can be
computed by maxc∈{0,1}[c, sp, ∞]r.
Lemma 1 Algorithm 1 is correct, that is, for all (i, j, c, v)

∈ [sp] × [|C(v)|] × {0, 1} × V and for any maximum-

weight i-0-cover S for Tv
j with respect to M such that v is

incident with exactly c edges of S we have [c, i, j]v = ω(S).
Concerning the running time, we note that the body of

the loop in line 3 is executed exactly once per vertex and,
hence, lines 6,7,9, and 10 are executed sp times per vertex.
As they compute the maximum over sp values, the whole
algorithm runs in O(n · σ 2

p ) time.
Corollary 1 SCAFFOLDINGon trees can be solved

inO(n · σ 2
p ) time.

Scaffolding with respect to treewidth
In this section, we develop a parameterized algorithm with
respect to the structural parameter “treewidth”, solving
SCAFFOLDING in O(twtw) poly(n, sp, sc) time. It is based
on using a dynamic programming table to keep track of
solutions that interact with the bags of a tree decomposi-
tion in a certain way (see Figure 2). Since we store for
each type of interaction only the best solution and the
number of interactions can be bounded in the treewidth,
we arrive at the claimed bounds.
To present our algorithm, we use special permutations

(involutions) to model matchings that allow reflexive pair-
ing (that is, matching a vertex with itself). Thus, slightly
abusing notation, we will consider permutations as sets of
pairs. We denote the subset of reflexive pairs of a permu-
tation P by P1 and the subset of non-reflexive pairs by P2.

Then, Gr(P) :=Gr(P2). For permutations P and Q, we
define P □ Q as the set of pairs uv such that P(x) = ⊥ ⊕ Q
(x) = ⊥ for all x ∈ uv and there is a u-v-path in Gr(P ∪ Q).
Furthermore, for a function d : A ® B and (x, y) ∈ A × B,
we define d[x ® y] as the result of setting d(x) := y (that is
(d \ ({x} × B)) ∪ {(x, y)}). Here, d[x ® ⊥] means to remove
x from the domain of d. Let T = (c, ET ) be a tree decom-
position of G with root X(r) ∈ c. For a bag X(i), let Gide-
note the subgraph of G that contains exactly those edges
of G that are introduced in a bag of the subtree of T that

is rooted at X(i) and let G
S

i := Gi[S ∪ M] .

A table entry for the bag X(i) will be indexed by (i) a
function d : X(i) ® {0, 1, 2}, (ii) a permutation P with
Uuv∈P uv = d−1(1) and(iii) integers p ≤ sp and c ≤ sc.
See Figure 2 for an illustration of d and P. An entry will
have the following semantics:
Definition 2 Let i ∈ VT. We call a set Si ⊆ E(Gi) \ M

eligible with respect to a tuple (d, P, p, c, i) if

1 each vertex v ∈ X(i) has degree d(v) in GSi
i ,

2 for each uv ∈ P, if u ≠ v, then there is a u-v-path in

GSi
i and, if u = v, then there is a path q of non-zero-

length in GSi
i that contains u and avoids d−1(1) − u

(we say that q is dangling from u).

3 GSi
i contains p paths and c cycles that do not inter-

sect d−1(1),

Semantics: A table entry [d, P, p, c]i is the maximum
weight of any set that is eligible with respect to (d, P, p, c, i).
Then, we can read the maximum weight of a solution

S for G from [∅, ∅, sp, sc]r.
Given a nice tree decomposition and a bag X(i) with

children X(j) and X(ℓ) (possibly j = ℓ), we compute [d, P, p,
c]i depending on the type of the bag X(i) (entries that are
not mentioned explicitly are set to −∞):

Figure 2 Setup of the dynamic programming on tree decompositions. A vertex u ∈ X(i) can have degree d(u) = 0 (white circle), d(u) = 1

(black circle), or d(u) = 2 (gray circle) in GS
i . Vertices with d(u) = 1 are always incident with paths in GS

i (gray ellipse), forming a pairing (a

permutation) P on them.
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Leaf bag: Set [∅, ∅, 0, 0]i := 0.
Introduce vertex v: Newly introduced vertices do not

have introduced edges yet. Thus, we force the degree of

v in GS
i to 0: Formally, let [d, P, p, c]i := [d[v ® ⊥], P,

p, c] jif d(v) = 0 and ∞, otherwise.
Forget vertex v: A vertex v that we forget in bag X(i)

can have degree 0,1, or 2 in GS
j . If it has degree 1, then

there is a path q dangling from it. If q ends in some other
vertex u ∈ X(i) \ {v} = X( j), then, the permutation for X(i)
contains uu and the permutation for X(j) contains uv.

Otherwise, q is dangling from v in GS
j so the permutation

for X(j) contains vv. Formally, let

[d,P, p, c]i := max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max
uu∈P

[d[v → 1], (P − uu) + uv, p, c]j ,

[d[v → 1],P + vv, p − 1, c]j,

max
x∈{0,2}

[d[v → x
]
,P, p, c

]
j.

Introduce edge uv: Let d(u), d(v) ≥ 1 and, by symmetry,
let d(u) ≥ d(v) ≥ 1. We define a value z (representing the
assumption that uv is in S ) as follows. Let d′ := d[u ®d(u)
− 1, v ® d(v) − 1], that is, we let d′ be the result of
decreasing both d(u) and d(v) by one.
Case 1 d(u) = d(v) = 2. Then, P avoids u and v. Since we

assume uv ∈ S , this means that u and v have dangling

paths qu and qv in GS
i − uv = GS

j that both intersect d′−1

(1). If qu = qv, then adding uv to S closes a cycle in GS
i and

the permutation for X(j) contains uv (see Figure 3(a)).
Otherwise, qu≠ qv. Then, if qu intersects d′

−1(1) \ {u, v} in a
vertex x, then the permutation for X(j) contains ux
(see Figure 3(c) and Figure 3(d)), otherwise, it contains uu
(see Figure 3(b)). Likewise, if qv intersects d′

−1(1) \ {u, v} in
a vertex y, then the permutation for X(j) contains vy,
otherwise, it contains vv. Note that, if both qu and qv inter-
sect d′−1(1) \ {u, v} (see Figure 3(d)), then we have xy ∈ P.
Note further that, if neither qu nor qv intersects d′

−1(1) \

{u, v} (see Figure 3(b)), then qu ∪ qv ∪ {uv} is a path in GS
i

that does not intersect d−1(1) and, thus, we have to
decrease the number p of such paths we are looking for

in GS
j . Formally, let

z := max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[d′,P + uv, p, c − 1]j,

[d′,P ∪ {uu, vv}, p − 1, c]j,

max
xx∈P

{
[d′, (P − xx) ∪ {ux, vv}, p, c]j ,
[d′, (P − xx) ∪ {uu, vx}, p, c]j ,

max
xy∈P

{
[d′, (P − xy) ∪ {ux, vy}, p, c]j.

Case 2: d(u) = d(v) = 1. Then, both u and v are not

incident to any edges in GS
j and, in G

sj
j , there is just the

edge uv incident to both. Thus, we set z only if uv ∈ P.
Formally, let z := [d′, P − uv, p, c]j if uv ∈ P.
Case 3: d(u) = 2, d(v) = 1. Then, there is a path q con-

taining uv and ending in v in GS
i . If q ends in a vertex x in

d−1(1) − v, we have vx ∈ P and the permutation for X(j)
contains ux. Otherwise, we have vv ∈ P and the permuta-
tion for X(j) contains uu. Note that, since v ∈ d−1(1),
we know that P(v) ≠ ⊥. Formally, for vx ∈ P, let z := [d′,
(P − vv) + uu, p, c]j, if v = x and z := [d′, (P − vx) + ux,
p, c]j, otherwise. Finally, let [d, P, p, c]i := z if uv ∈ M and
[d, P, p, c]i := max{z + ω(uv), [d, P, p, c]j}, otherwise.
Join: The join bag X(i) “glues” the (disjoint) partial solu-

tions of its children together at the vertices of X(i) = X( j)

= X(ℓ). In particular, the degrees in GS
j and in GS

�
have to

add up to d. Furthermore, the permutations P1 and P2 for
X(j) and X(ℓ), respectively, have to “fit” P: For example, let
uv ∈ P1 and vw ∈ P2, implying that there are paths qj and

qℓ in GS
j and GS

�
, respectively, that are connecting u and v

and v and w, respectively. Then, in GS
i , there is a single

path qj ∪ qℓ connecting u and w and containing v (with d
(v) = 2). Finally, the numbers of paths and cycles have to
“fit” p and c: For example, if the permutations for both X

(j) and X(ℓ) contain uu (that is, u ∈ (P1 ∩ P2)
1), then GS

i

contains a path containing u that is neither in GS
j nor

in GS
�
. On top of this, the remaining paths must be dis-

tributed among GS
j and GS

�
. Formally, let

[d,P, p, c]i :=

max
d1, d2:X(i) → {0, 1, 2}

∀v ∈ X(i), d1(v) + d2(v) = d(v)

max
P1,P2

P = P1 
 P2

max
p1, p2, c1, c2

p1 + p2 + |(P1 ∩ P2)
1| = p

c1 + c2 + |(P1 ∩ P2)
2| = c

{
[d1,P1, p1, c1]j
+[d2,P2, p2, c2]�

}

Figure 3 The four cases for introducing an edge uv with d(u) = d(v) = 2 in the dynamic programming for X(i): (a) there is a u-v-path in
GS
j , (b) u and v have dangling paths in GS

j , (c) there is a u-x-path and a dangling path on v in GS
j , or (d) there is a u-x-path and a

v-y-path in GS
j .
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Lemma 2 The described algorithm is correct, that is,
the computed value [d, P, p, c]i corresponds to the
semantics.
Theorem 1 SCAFFOLDING can be solved in O(twtw

·sp · sc · n) time, given a width-tw tree decomposition
of the input instance.

Kernel for restricted scaffolding
Towards developing effective preprocessing for SCAF-
FOLDING, we consider a more restricted problem variant,
where all paths and cycles of the solution have to be
of certain, respective lengths. NP -hardness of this variant
can be inferred with the same reduction as used for
SCAFFOLDING[15].

RESTRICTED SCAFFOLDING (RSCA)
Input: G with perfect matching M, ω : E ® N with
ω(M) = 0, sp ∈ N, sc ∈ N, ℓp ∈ N*, ℓc ∈ N*, k ∈ N

Question: ∃X⊆E\M s.t. G − X is a collection of sp alter-
nating paths, each of length ℓp,b and sc alternating
cycles, each of length ℓc, and ω(E) − ω(X) ≥ k?

The length lp denotes the number of edges in the paths.
It is necessarily odd in a solution of RESTRICTED SCAF-
FOLDING. In the following, we show that RESTRICTED
SCAFFOLDING admits a linear-size problem kernel with
respect to the parameter FES (feedback edge set), which is
the size of a smallest set of edges whose deletion leaves an
acyclic graph. To this end, we present a number of intui-
tive polynomial-time executable reduction rules that
shrink the input graph. The first two rules shrink treelike
structures of the instance while the remaining rules con-
tract long chains.
For a u-v-path p, we call u and v its outer vertices while

all other vertices of p are inner vertices. Let V○ be the set
of vertices that are in some cycle in G and let G○ = G[V○].
Let G* = G[V*] denote the convex hull of G○, that is, V* is
the set of vertices on some shortest path between some
vertices u, v ∈ V○. For each v ∈ V*, the tree rooted at v
that is incident with v in G − E* is called the “pendant
tree” Tv of v.

Reducing pendant trees
First, we remove isolated paths by cutting them into pieces
of length ℓp. Since the correctness of this is trivial, we omit
the proof.
Tree Rule 1 (see Figure 4(a)) Let p be an isolated path

in G. If |p| ≥ ℓp, then split off a length-ℓp path q and
decrease (sp, k) by (1, ω(q)). Otherwise, return “NO”.
The next rule cuts branching edges in pendant trees.

To this end, it finds an occurrence of a path of length
ℓp that is furthest from the root of the pendant tree.
Tree Rule 2 (see Figure 4(b)) Let Tv be the pendant tree

of some v ∈ V*, let u be a leaf of maximal distance to v

in Tv. Let W be the set of vertices × of Tv such that a
length-ℓpalternating u-x-path exists and let w be a vertex
in W maximizing distTv (v, w). Then, delete from G all
edges that are incident with the least common ancestor of
u and w but are not on the unique u-w-path in Tv.
Lemma 3 Let I = (G, M, ω, sp, sc, ℓp, ℓc, k) be a yes-

instance of RESTRICTED SCAFFOLDING such that G is
reduced with respect to Tree Rule 2 and let v ∈ V*. Then,
Tv is a path p that is alternating with respect to M ∩ E(Tv)
and |p| < ℓp and v is an endpoint of p.
In the following, we assume that G is reduced with

respect to Tree Rule 2 and, thus, we can reject all
instances for which Lemma 3 does not hold. Hence, in the
following, we assume that Lemma 3 holds for the input
instance. The next reduction rule helps unify the way in
which pendant trees (which are now paths) attach to G*,
simplifying the rest of the presentation.
Tree Rule 3 (see Figure 4(c)) Let Tv be the pendant tree

of some v ∈ V* that is incident with an edge e ∈ E(Tv) \ M.
Then, delete from G all edges incident with v that are not
in M + e.

Reducing long paths
In the following, we assume that G is reduced with respect
to the tree reduction rules presented in the previous sec-
tion. For i ∈ N, let Vi denote the set of vertices of G that
have degree i in G. The goal in this subsection is to reduce
the length of chains of degree-two vertices in G. Thus, we
consider paths whose inner vertices are all in V2. We call
these paths deg-2 path. If the solution has a cycle running
through this path, then we cannot modify its length.
Therefore, we focus on paths that are guaranteed to not
be in a cycle in the solution:
The path reduction rules are based on the idea that the

path segments that a deg-2 path p in G is split into by the
solution are recurring, that is, if the solution contains the
third edge of p, then it also contains the 3 + (ℓp + 1)th

edge of p. This gets slightly more complicated if there are
pendants in p, but first, let us consider paths without any
pendants.
Path Rule 1 (see Figure 5(a)) Let p = (u0, u1, . . .) be a

deg-2 path with |p| > max{ℓp, ℓc} + ℓp + 1 and let ei := uiui
+1 for all i. Then, for all ei with i ≤ ℓp, add ω(ei) to ω(eℓp +i

+1) and contract ei. Finally, decrease sp by 1.
The remaining two rules deal with deg-2 paths con-

taining pendants. Note that any path in the solution
that contains the pendant can only “continue” in two
directions.
Path Rule 2 (see Figure 5(b)) Let p = (u0, u1, . . ., uℓp

+1 = w) and q = (w = v0, v1, . . ., vℓp +1) be deg-2 paths
and let Tw contain g > 0 edges. For all i ≤ ℓp, let ei :=
uiui+1, let fi := vivi+1 and let i+ := (i − g) mod (ℓp + 1).
Then, for all i ≤ ℓp, add ω(ei) to ω( fi+) and contract ei.
Finally, decrease sp by 1.

Weller et al. BMC Bioinformatics 2015, 16(Suppl 14):S2
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In case of two pendants, the solution is restricted by
the distance between the pendants. If we can infer what
the solution does by this length, we implement this
right away, otherwise, we can represent the choices that
a solution can take with a single pendant.
Path Rule 3 (see Figure 6) Let p = (x0, x1, . . .) be a u-v-

deg-2 path such that u, v ∈ V*. Let gu > 0 and gv > 0 be the
number of edges in Tu and Tv, respectively, and let w be
the vertex at maximum distance to u in Tu. Let g := |p|
mod (ℓp + 1) and let G′ be the result of replacing ux1 by
wx1 of the same weight in G.
(1) If g + gu≠ f ℓp + 1 = g + gv, then delete ux1 (see

Figure 6(a)).
(2) If g + gu = ℓp + 1 ≠ f g + gv, then delete vx|p|−1.
(3) If g + gu = ℓp + 1 = g + gv, then return G′ (see

Figure 6(b)).
(4) If g = 1 and gu + gv + 1 = ℓp, then return G′ (see

Figure 6(b)).
(5) If g = 1 and gu + gv + 1 ≠ ℓp, then delete ux1 (see

Figure 6(a)).
(6) If g ≠ 1 and g + gu + gv ≡ ℓp mod (ℓp + 1), then

delete all edges e ∈ E(G) \ (M ∪ {ux1}).
(7) In all other cases, return “NO”.
Finally, we can show that an input graph that is

reduced with respect to these rules cannot be larger
than 11ℓp · FES(G) or 11ℓc · FES(G). To prove this, let
G† = (V†, E†) be the result of contracting all degree-2
vertices in G*.
Lemma 4 Let G be reduced with respect to all pre-

sented reduction rules. Then, |V| ≤ ℓ · (|V†| + 3|E†|)
with ℓ := max{ℓc, ℓp}.

Proof By Lemma 3, we know that ∀v∈V†|E(Tv)| < ℓp.
Therefore, if Lemma 4 is false, there is an edge uv ∈ E†

such that there are > 3ℓ vertices between u and v (i.e. uv is
a contraction of more than 3ℓ edges of G). Nevertheless,
by irreducibility with respect to Path Rule 3, there is at
most one vertex w between u and v such that Twis not
empty and the distance between u and v cannot be greater
than 2ℓ + 1 (by irreducibility with respect to Path Rule 1
and 2). So, |E(Tw)| ≥ ℓ, contradicting Lemma 3.
Theorem 2 RESTRICTED SCAFFOLDING admits a

kernel containing at most 11ℓ · FES(G) vertices and
(11ℓ + 1) · FES(G) edges where ℓ := max{ℓp, ℓc}.

Results
Data
In our experiments, we worked with two datasets, all
derived from real genomes (see Table 1). The first one is a
set of eleven contig sets, produced from real genomes
using the following process: first, the genomes where
taken off the NCBI nucleotide database (http://www.ncbi.
nlm.nih.gov). Then, for each of them, a set of simulated
paired-end reads was generated with the tool wgsim ([28]),
with default parameters and a 20X mean covering depth.
Thereafter, assembly was performed with the tool minia
([29]) with a k-mer size k = 29. Reads were mapped on the
contigs with bwa ([30]), with default parameters and using
the sampe method. The second dataset is composed of
five scaffold graphs, already presented in [31] and [17].
Some of them have been produced by simulating reads,
other come from real paired-end reads libraries (see
Table 1). Finally, using the scaftools previously developed

Figure 4 Illustrations for the tree reduction rules.

Figure 5 Illustrations for the first path reduction rules.
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in [15,31], we produced the scaffold graphs corresponding
to these datasets. See [31] for a more detailed explanation
of this pipeline.
The aim of this process is first to produce a bench-

mark of test graphs that are more realistic than uni-
formly generated graphs to test our algorithms on,
second to study the different parameters that may be
interesting to consider for parameterized algorithms,
and finally to help to design a more realistic and conve-
nient scaffold graph generator allowing to generate
graphs directly, avoiding the complicated pipeline
described above (see Table 2 and Table 3). The second
dataset was used to study the influence of a preproces-
sing operation on the scaffold graph, aiming at filtering
low informative edges. Simplistically, we removed
respectively edges with weight less than 3, 6 and 10.
Results are presented in Table 3. We already know that
this operation improves the quality of the produced
scaffolds, when compared to the original reference gen-
ome. Here we would like to observe the behavior of our
putative interesting structural parameters according to
this filtering.

Graph parameters
Table 2 presents some parameters of the generated
graphs. The h-index is the maximum number such that
the graph contains h vertices of degree at least h. It
measures the degree of connectivity of a graph. The
feedback edge set (FES) is the size of a smallest set of
edges whose deletion leaves an acyclic graph. The
degeneracy is the smallest value d for which every sub-
graph has a vertex of degree at most d. It is a kind of
measure of sparsity of the graph. We notice that scaffold

graphs look quite sparse, with few vertices of high
degrees and a feedback edge set number that is usually
significantly lower than the number of vertices. While
degree-based graph parameters like the degeneracy d
are tiny in all instances, we recall that our problem gen-
eralizes Hamiltonian Cycle, which is already N P-hard
on 3-regular graphs. However, Table 2 shows that, for
instances that we expect to be seen in practice, these
measures can be assumed constant and, thus, it might
be worth considering a combination involving these
parameters.
Table 3 shows the same statistics for the second set of

graphs where edges of small weight (that is, low confi-
dence) were discarded (for weight thresholds of 10, 6, 3
and 0, yielding the original graph with all edges present).
We notice that even with a light filtering, the parameters
of the scaffold graph are considerably lowered, confirming
that raw data suffers from significant noise. Thus, filtering
low quality information not only increases the quality of
the scaffolding, but also may lead to a significant leap to
tractability. Note that, at the time of writing this article,
the Staphylococcus Aureus genome is no longer available
in the NCBI Nucleotide database ("This RefSeq genome
was suppressed because updated RefSeq validation criteria
identified problems with the assembly or annotation.”) and
the Escherichia Coli genome has been updated since the
presented version. Errors in assemblies are quite frequent
([37]) and yield additional issues in scaffolding. Having a
better idea of the structure of a classical scaffold graph,
and some simple criteria to determine what is anomalous
and what is normal (subgraphs induced by repeats for
instance) would be of real interest for the analysis of
genomes.

Figure 6 Illustrations for Path Rule 3.

Table 1 Details on the second dataset.

Genome Reads library Assembly tool Mapping tool

staphylo short jump library (from GAGE [32]) velvet [33] bwa [30]

ecoli Illumina reads library SRR001665 velvet bowtie [34]

ypco92 simulated with wgsim minia [35] bwa

wolbachia simulated with toyseq for the Variathon experiment [36] minia bwa

arabido Illumina reads library SRR616966 velvet bowtie

Weller et al. BMC Bioinformatics 2015, 16(Suppl 14):S2
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Implementation and first results
We implemented the dynamic programming algorithm
presented in Section 11 in C++ using boost and the tree-
width optimization library TOL [38]. We ran it on a selec-
tion of the generated data sets (see Section 11) for which
the greedy fill-in heuristic produced tree decompositions
of width at most 45. We chose (sp, sc) = (3, 1) for the
ebola and monarch genomes and (sp, sc) = (20, 3) for the
more complicated inputs. The tests were run on an AMD
Opteron(tm) Processor 6376 at 2300 MHz.
Figure 7 shows running times and memory consumption

needed to produce a solution as well as details regarding
the used tree decompositions. Figure 8 shows optimal
solutions for the two smallest data-sets: ebola and

monarch. To validate the proposed scaffolding, we com-
pared the output to the alignment of the contigs on the
reference sequence using megablast ([39]). In the case of
the ebola genome, the two isolated contigs (in green) are
small (about 150 bp). One of them is placed between the
orange contig and its neighbor, the other one finds its
place at the other extremity of the chain. In the input scaf-
fold graph, we notice that they are linked to the wrong
node, we suppose this is due to their small size, disturbing
the alignment step. For the monarch mitochondrion, how-
ever, two of the contigs (appearing in red) did not match
on the sequence, meaning that the assembly yields some
errors. The isolated contig is also small and not correctly
connected in the scaffold graph.

Table 2 Scaffold graphs parameters.

Data |V| |E| Min/Max/Avg degree FES FVS (ub) tw(ub) h dcy

anophelesCh 84090 113497 1 / 51 / 2.70 29851 17962 12 3

anthraxCh 8110 11013 1 / 7 / 2.72 2906 1232 574 7 2

ebolaCo 34 43 1 / 5 / 2.53 10 6 3 4 2

gloeobacterCh 9034 12402 1 / 12 / 2.75 3375 2484 639 8 3

lactobacillusCh 3796 5233 1 / 12 / 2.76 1439 804 260 8 2

monarchMt 28 33 1 / 4 / 2.36 6 4 3 4 2

pandoraCo 4902 6722 1 / 7 / 2.74 1822 1277 327 7 2

pseudomonasCh 10496 14334 1 / 9 / 2.73 3851 2692 752 8 2

riceCp 168 223 1 / 6 / 2.65 56 31 9 5 2

sacchr3Ch 592 823 1 / 7 / 2.78 232 142 43 6 2

sacchr12Ch 1778 2411 1 / 10 / 2.12 637 575 124 7 2

FES = feedback edge set, FVS (ub) = upper bound on the feedback vertex set, dcy = degeneracy. Superscripts: Ch = Chromosome, Cp = Chloroplast, Co =
Complete, Mt = Mitochondrion

Table 3 Scaffold graph parameters for select genomes and different cut-off thresholds: 0, 3, 6, and 10.

Data & threshold (|V|) |E| Min/Max/Avg degree FES FVS(ub) tw(ub) h dcy

arabido
(345232)

0
3
6
10

318984
252762
230333
215094

1 / 31 / 1.85
1 / 14 / 1.46
1 / 9 / 1.33
1 / 9 / 1.25

43593
8024
3247
1224

15703
5881
2814
1020

10610
792
74
51

18
9
8
8

4
3
2
2

ecoli
(1732)

0
3
6
10

8142
4043
3105
2695

2 / 46 / 9.40
2 / 23 / 4.67
2 / 18 / 3.59
2 / 16 / 3.11

6411
2312
1374
964

644
406
327
278

551
303
162
102

32
16
13
11

9
4
4
3

staphylo
(602)

0
3
6
10

4765
1743
1017
790

1 / 128 / 15.83
1 / 58 / 5.79
1 / 22 / 3.37
1 / 16 / 2.62

4164
1152
464
279

167
113
78
65

124
57
25
14

52
25
14
11

28
11
5
4

wolbachia
(560)

0
3
6
10

1036
523
459
399

1 / 56 / 3.70
1 / 15 / 1.86
1 / 15 / 1.63
1 / 5 / 1.43

481
47
19
12

106
30
16
11

26
3
2
2

11
6
5
5

3
2
2
2

ypco92
(2656)

0
3
6
10

3465
2849
2651
2525

1 / 8 / 2.61
1 / 6 / 2.15
1 / 5 / 1.99
1 / 5 / 1.90

821
241
99
73

313
136
86
68

191
38
3
2

7
6
5
5

2
2
2
2

FES = feedback edge set, FVS (ub) = upper bound on the feedback vertex set, tw(ub) = upper bound on the treewidth (by greedy fill-in), h = h-index, dcy =
degeneracy.
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Concerning the rice chloroplast, among the 84 contigs,
only three were misplaced. All three of them are small
(< 130 bp), two of them strongly overlap and the third has
two occurrences in the reference genome, one complete
and one partial. The seven remaining scaffolds follow
exactly the right relative order and orientation of the con-
tigs on the reference genome. Chloroplast genomes have a
particularity which make them interesting as data for scaf-
folding. They present an inverted repeat region of

approximately 20 kbp [40]. Figure 9 focuses on one of the
scaffolds, where this inverted repeat is shown in pink. The
other occurrence is not present in the scaffolding. To
notice, the weights inside this repeat are in average higher
than outside, which is totally expected since the read
cover is approximately doubled for these sequences. Thus,
areas of the graph with higher weight would lead to repeat
hypothesis, if we are confident in the homogeneity of the
cover.

Figure 7 Information on the tree decomposition and resource requirements of running the algorithm for select instances with small
treewidth. We chose (sp, sc) = (3, 1) for ebola and monarch, (20, 3) for rice and (256, 16) for the second data set (with edge cut-offs).

Figure 8 Optimal solutions for the ebola (left) and monarch (right) graphs. Edges have their weights on the right. Matching edges are
bold and normalized to weight 0.
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Discussion and conclusion
In this paper, we considered exact approaches to the
NP -hard SCAFFOLDING problem which is an integral
part of genome sequencing. We showed that it can be
solved in polynomial time on trees or graphs that are close
to being trees (constant treewidth) by a dynamic program-
ming algorithm. We proved a linear-size problem kernel
for the parameter “feedback edge set” for a restricted ver-
sion in which the lengths of paths and cycles are fixed. We
implemented an exact algorithm solving SCAFFOLDING
in f(tw) · poly(n) time and evaluated our implementation
experimentally, supporting the claim that this method
produces high-quality scaffolds. Our experiments are run
on data sets that are based on specific real-world genomes,
which we also examined to identify a number of interest-
ing parameters that may help design parameterized algo-
rithms and random scaffold graph generators that produce
more realistic instances. We are currently transferring the
preprocessing rules to the general problem variant. We
are highly interested in further graph classes that are
closer to real-world instances than trees and on which the
problem might be polynomial-time solvable. From an
algorithmic point of view, we remark that only few bags of
the used tree decompositions are small (see Figure 7).
Thus, we envision a hybrid strategy of branching on the
vertices in the largest bags before running the dynamic-
programming algorithm and using this “distance x to tree-
width-x“ parameter to re-analyze the problem.
We intend to perform more extensive tests on diverse

datasets, in particular comparing the quality of this
approach to existing ones using, for instance, the criteria
presented in [9]. This work demands reliable benchmarks,
with up-to-date and well assembled genomes. From a
bioinformatics point of view, we lay the groundwork for a
careful analysis of the scaffold graph, as well as a tool to
speed up the above algorithms, as a help to analyze the
quality of the assembly, and maybe the structure of the
genome itself.

Appendix
Proof of Lemma 1 The proof is by induction over the
distance of v to r (descending) and, in case of ties, j
(ascending).

Induction Base: The statement holds for all vertices v if
j = 0 since Tv

0 = T[{v}] does not contain edges.
Induction Step (≥): First, we show that [c, i, j]v ≥ ω(S).

To this end, let u := sv[j] and, noting that all vertices
except maybe v of Tv

j are incident with edges in M, let q
denote the path in G[S ∪ M] containing u. Let w be the
vertex paired with v by M. Let a denote the number of
edges in q ∩ E(Tu + v) \ M incident with u and let b ≤ c
denote the number of edges in q ∩ E(Tv

j−1)\M incident

with sv[1..(j − 1)]. Let Su := Up∈S p ∩ E(Tu) and let
Sj−1 := ∪p∈Sp ∩ E(Tv

j−1) and note that S u and S j−1 are

path covers of Tu and Tv
j−1 , respectively. Thus, by induc-

tion hypothesis,

ω(Su) ≤ [α, ‖ Su‖p,∞]u and ω(Sj−1) ≤ [β , ‖ Sj−1‖p, j − 1]v. (1)

Case 1: uv ∈ M and c = 0. Then, ‖ S‖p =‖ Su ‖Tu+vp + ‖ Sj−1‖p =‖ Su‖p + (1 − α)+ ‖ Sj−1‖p

and, thus,

[c, i, j]v
line 6≥ [α, ‖ Su‖p,∞]u+[0, i − (‖ Su‖p − α + 1), j − 1]v

(1)≥ ω(Su)+ω(Sj−1) = ω(S).

Case 2: uv ∈ M and c = 1. Then, b = 1. Furthermore,
the path containing u is split over S u + uv and S j-1,
implying ‖ S‖p =‖ Su ‖Tu+vp + ‖ Sj−1‖p − 1 =‖ Su‖p − α+ ‖ Sj−1‖p .
Thus,

[c, i, j]v
line7≥ [α, ‖ Su‖p,∞]u+[0, i − (‖ Su‖p − α), j − 1]v

(1)≥ ω(Su)+ω(Sj−1) = ω(S).

Case 3: uv ∉M and c = 0. Then, ||S||p = ||Su||p+ ||S j−1||p
and we have

[c, i, j]v
line9≥ [α, ‖ Su‖p,∞]u + [0, i− ‖ Su‖p, j − 1]v

(1)≥ ω(Su) + ω(Sj−1) = ω(S).

Case 4: uv ∉ M and c = 1. If uv ∉ S , then b = 1.
Furthermore, ||S||p = ||Su||p + ||Sj−1||p and we have

[c, i, j]v
line10≥ [α, ‖ Su‖p,∞]u + [1, i− ‖ Su‖p, j − 1]v

(1)≥ ω(Su) + ω(Sj−1) = ω(S).

Otherwise, uv ∈ S , implying a = b = 0. If w ∉ sv[1..j],

then ‖ S‖p =‖ Su + uv ‖Tu+vp + ‖ Sj−1‖p =‖ Su‖p+ ‖ Sj−1‖p
and

[c, i, j]v
line10≥ ω(uv)+[0, ‖ Su‖p,∞]u+[0, i− ‖ Su‖p, j − 1]v

(1)≥ ω(uv)+ω(Su)+ω(Sj−1) =
ω(S).

Figure 9 Scaffold in the rice chloroplast genome, including the inverted repeat.
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Otherwise, w ∈ sv[1..j] and the path containing u is split
over S u and S j−1. Thus, ‖ S‖p =‖ Su + uv ‖Tu+vp + ‖ Sj−1‖p − 1 =‖ Su‖p+ ‖ Sj−1‖p − 1,
implying

[c, i, j]v
line10≥ ω(uv)+[0, ‖ Su‖p,∞]u+[0, i − (‖ Su‖p − 1), j − 1]v

(1)≥ ω(uv)+ω(Su)+
ω(Sj−1) = ω(S).

Induction Step (≤): Next, we show that [c, i, j]v ≤ ω(S )

by proving that a i-path cover S′ for Tv
j of weight [c, i, j]v

exists and, thus, [c, i, j]v = ω(S′) ≤ ω(S ) by optimality of S.
To this end, let u := sv[j] and let w := M(v).
Case 1: w = u and c = 0. By line 6, there are ℓ and a

such that [0, i, j]v= [a, ℓ, ∞]u +[0, i− (ℓ − a + 1), j − 1]v. By
induction hypothesis, there are path covers S u and S j−1

corresponding to [a, ℓ, ∞]u and [0, i − (ℓ − a + 1), j − 1]v,

respectively. Then, S′ := Su � Sj−1 is a path cover for Tv
j

and ‖ S′‖p =‖ Su ‖Tu+vp + ‖ Sj−1‖p =‖ Su‖p + 1 − α+ ‖ Sj−1‖p = i .

Furthermore,

ω(S′) = ω(Su) + ω(Sj−1)
ind. hyp.
= [α, �,∞]u + [0, i − (� − α + 1), j − 1]v

line 6= [0, i, j]v.

Case 2: u = w and c = 1. By line 7, there are ℓ and a
such that [1, i, j]v= [a, ℓ, ∞]u+[1, i− (ℓ − a), j − 1]v. By
induction hypothesis, there are path covers S u and S j

−1corresponding to [a, ℓ, ∞]u and [1, i − (ℓ − a), j − 1]v,
respectively. Then, S′ := S u∪ S j−1 is a path cover for Tv

j

and ‖ S′‖p =‖ Su ‖Tu+vp + ‖ Sj−1‖p − 1 since S j−1contains an edge

incident to v. Thus, ‖ S′‖p =‖ Su‖p+ ‖ Sj−1‖p − α = i .
Furthermore,

ω(S′) = ω(Su) + ω(Sj−1)
ind.hyp.
= [α, �,∞]u + [1, i − (� − α), j − 1]v

line7= [1, i, j]v.

Case 3: w ≠ u and c = 0. By line 9, there are ℓ and a
such that [0, i, j]v = [a, ℓ, ∞]u + [0, i − ℓ, j − 1]v. By induc-
tion hypothesis, there are path covers S u and S j−1 corre-
sponding to [a, ℓ, ∞]u and [0, i − ℓ, j − 1]v, respectively.
Since c = 0 we have uv ∉ S u and, thus, S

′ := Su � Sj−1 is a

path cover for Tv
j and ‖ S′‖p =‖ Su‖p+ ‖ Sj−1‖p = i .

Furthermore,

ω(S′) = ω(Su) + ω(Sj−1)
ind. hyp.
= [α, �,∞]u + [0, i − �, j − 1]v

line9= [0, i, j]v.

Case 4: w ≠ u and c = 1.
Case 4a: There are ℓ and a such that [1, i, j]v = [a, ℓ, ∞]

u + [1, i − ℓ, j − 1]v (see line 10). By induction hypothesis,
there are path covers S u and S j−1 corresponding to [a, ℓ,
∞]u and [1, i − ℓ + 1, j − 1]v, respectively. Since uv ∉ M,
some edge incident to u in Tu is in M. Then,
S′ := Su � Sj−1 is a path cover for Tv

j and ||S′||p = ||S u||p
+ ||S j−1||p= i. Furthermore,

ω(S′) = ω(Su) + ω(Sj−1)
ind. hyp.
= [α, �, ∞]u + [1, i − �, j − 1]v

line10= [1, i, j]v.

Case 4b: There is some ℓ such that [1, i, j]v = ω(uv) +
[0, ℓ, ∞]u + [1, i − (ℓ − 1), j − 1]v (see line 10). Then, w ∈

sv[1..j] and, by induction hypothesis, there are path covers
S u and S j−1 corresponding to [0, ℓ, ∞]u and [1, i−ℓ+1, j−1]

v, respectively. Then, S′ := (S u+uv) ∪ S j−1is a path cover
for Tv

j and w,v and u are on the same path p in

Tv
j [S

′ ∪ M] . Since u is incident to an edge of M in Tu, we
know that p does not end in u. Thus, ||S′||p = ||S u||p+ ||
S j−1||p− 1 = i. Furthermore,

ω(S′) = ω(Su)+ω(Sj−1)+ω(uv)
ind. hyp.
= [0, �, ∞]u+[1, i − (� + 1), j − 1]v

line10= [1, i, j]v.

Case 4c: There is some ℓ such that [1, i, j]v = ω(uv) + [0,
ℓ, ∞]u + [1, i − ℓ, j − 1]v (see line 10). Then, w ∉ sv[1..j]
and, by induction hypothesis, there are path covers S u and
S j−1 corresponding to [0, ℓ, ∞]u and [1, i − ℓ, j − 1]v,
respectively. Thus, S′ := (S u + uv) ∪ S j−1 is a path cover
for Tv

j . Since u is incident to an edge of M in Tu, we have
||S′||p = ||S u||p + ||S j−1||p = i. Furthermore,

ω(S′) = ω(Su) + ω(Sj−1) + ω(uv)
ind.hyp.
= [0, �,∞]u + [1, i − �, j − 1]v

line10= [1, i, j]v.

Proof of Section 11
Proof of Lemma 2 The proof is by induction on the

distance of i to r (descending). In the induction base, i
is a leaf of T and X(i) = ∅ and Gi is empty. Thus, the
domains of d and P are empty. Thus, [∅, ∅, 0, 0]i = 0
and all other entries are −∞.
For the induction step, we distinguish the possible bag

types of X(i) with children X( j) and X(ℓ) (possibly j = ℓ):
Introduce vertex v: Since Gi does not contain edges

incident to v, only tuples with d(v) = 0 and P(v) = ⊥ are
valid.
Forget vertex v: Let Si be a maximum weight set that

is eligible for (d, P, p, c, i). We show that [d, P, p, c]i =
ω(Si).
“≤":

Case 1: [d, P, p, c]i = [d[v ® 1], P + vv, p − 1, c] j. By
induction hypothesis, there is a set Sj corresponding[1]
to [d[v ® 1], P + vv, p − 1, c] j. We show that Sj is eli-
gible for (d, P, p, c, i) and, thus, ω(S i) ≥ ω(S j) = [d, P,
p, c]i. Since X(i) ⊂ X( j) and all paths between vertices
in d−1(1) that are represented by P + vv are also repre-
sented by P, the first two conditions are satisfied by Sj

for i. Since deg
G
Sj
j

(v) = 1 , there is a path q in G
sj
j

containing v. But since v ∉ d−1(1), we know that GSi
i

contains one path more that does not intersect d−1(1).

Thus, GSi
i contains p paths that do not intersect d−1(1)

and Sj satisfies the third condition.
Case 2: [d, P, p, c]i = [d[v ® 1], (P − uu) + uv, p, c]
j for some uu ∈ P. By induction hypothesis, there is
a set Sj corresponding to [d[v ® 1], (P−uu)+uv, p, c]
j. Since uv ∈ (P − uu) + uv, there is a u-v-path q in

G
sj
j (by Definition 2(2)) and q intersects d−1(1) in u.
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Thus, GSi
i contains p paths that do not intersect d−1

(1) and, thus, Sj is eligible for (d, P, p, c, i).
Case 3: [d, P, p, c]i = [d[v ® x], P, p, c] j for some x ∈
{0, 2}. By induction hypothesis, there is a set Sj corre-
sponding to [d[v ® x], P, p, c] j. Then, Sj is also eligible
for (d, P, p, c, i).

“≥": Let x := degGsi
i
(v) .

Case 1: x ∈ {0, 2}. Then, Si is eligible for (d[v ® x],
P, p, c, j) and, by induction hypothesis, ω(S i) ≤ [d[v
® x], P, p, c] j ≤ [d, P, p, c]i.
Case 2: x = 1. Then, by Definition 2(1), there is a path

q in GSi
i ending in v. If q has another end u in d−1(1),

then Si is eligible for (d[v ® 1], (P − uu) + uv, p − 1,
c, j) and, thus, ω(S i) ≤ [d[v ® 1], (P − uu) + uv, p − 1,
c]. Otherwise, Si is eligible for (d[v ® 1], P + vv, p − 1,
c, j). In both cases, ω(S i) ≤ [d, P, p, c]i.

Introduce edge uv: Let S icorrespond to [d, P, p, c]i. We
show that [d, P, p, c]i= ω(S i). Let d′ and z be as described

in the dynamic programming and note that G=
j G

−
i uv. “≤":

First, if [d, P, p, c]i = [d, P, p, c] j, then, by induction
hypothesis, there is a set S jcorresponding to [d, P, p, c] j

and uv ∉ M. Then, G
sj
j = G

sj
i implying that Sj is eligible for

(d, P, p, c, i) and, thus, ω(S i) ≥ ω(S j) = [d, P, p, c]i.
In the following, we proceed in a similar manner for the

case that [d, P, p, c]i = z + ω(uv): To show [d, P, p, c]i ≤
ω(S i), we consider a set Sj that corresponds to the entry
for X( j) from which [d, P, p, c]i is computed and whose
existence is granted by induction hypothesis. Then,
we show that S j+ uv is eligible for (d, P, p, c, i), implying
ω(S i) ≥ ω(Sj + uv) = z + ω(uv) if uv ∉ M and ω(S i) ≥
ω(S j) = z if uv ∈ M. Note that, in each of the cases, the

degrees of u and v in G
sj
j are one less than their degrees in

G
sj+uv
i . Thus, Sj satisfies Definition 2(1) for d′.
[1]We say a set S corresponds to an entry [d, P, p, c]i if

S is eligible for (d, P, p, c, i) and its weight ω(S ) = [d, P,
p, c]iis maximum among all sets that are.

Case 1: d(u) = d(v) = 2. Then, both u and v have
degree 1 in G

sj
j .

Case 1a: z = [d′, P + uv, p, c − 1]j. Then, there is a u-

v-path in G
sj
j (see Figure 3(a)). Since d−1(1) = d′−1(1) \

{u, v}, adding uv does not touch any paths intersecting
d−1(1). Thus, Definition 2(2) is satisfied. Further, add-

ing uv closes a cycle in G
sj+uv
i and, thus, G

sj+uv
i contains

one more cycle that does not intersect d−1(1) than G
sj
j .

Thus, also Definition 2(3) is satisfied.
Case 1b: z = [d′, P ∪ {uu, vv}, p − 1, c] j. Then, both u

and v have dangling paths in G
sj
j (see Figure 3(b)). By

the same arguments as in Case 1a, Definition 2(2) is
satisfied. Further, adding uv connects two paths such
that the resulting path does not intersect d−1(1). Thus,

there are one more such paths in G
sj+uv
i than in G

sj
j ,

implying that Definition 2(3) is satisfied.
Case 1c: z = [d′, (P − xx) ∪ {ux, vv}, p, c] j for some

x ∈ d−1(1) = d′−1(1) \ {u, v} with xx ∈ P. Then, G
sj
j

contains a path dangling from v and a u-x-path (see
Figure 3(c)). Thus, adding uv connects two paths
such that the resulting path intersects d−1(1) exclu-
sively in x. Hence, there is a path dangling from x in

G
sj+uv
i and, hence, Sj + uv satisfies Definition 2(2).

Since no paths or cycles avoiding d′−1(1) are affected
by adding uv, Definition 2(3) is satisfied. The case
that z = [d′, (P − xx) ∪ {vx, uu}, p, c] j is analogous.
Case 1d: z = [d′, (P − xy) ∪ {ux, vy}, p, c] j for some

x, y ∈ d−1(1) with xy ∈ P. Then, G
sj
j contains paths

qu and qv that start in u and v, respectively, and end
in x and y, respectively (see Figure 3(d)). Thus, add-
ing uv connects qu and qv to a single path q that
starts in x and ends in y, thus intersecting d−1(1).
Hence both Definition 2(2) and (3) are satisfied.
Case 2: d(u) = d(v) = 1. Thus, u and v are not incident

to any edges in G
sj
j . Thus, uv forms a new path con-

necting u and v in G
sj+uv
i . Since, in this case, z = [d′, P

−uv, p, c]jand uv ∈ P, we conclude that both Definition
2(2) and (3) are satisfied.
Case 3: d(u) = 2, d(v) = 1. Then, v has no incident

edges in G
sj
j and, thus, it is only adjacent to u in G

sj+uv
i .

Further, u has degree 1 in G
sj
j , so it is endpoint to a

path q in G
sj
j . Thus, vx ∈ P for some x ∈ d−1(1) and

G
sj+uv
i contains the path q′ := q + uv.

Case 3a: x = v. Then, z = [d′, (P − vv) + uu, p, c] j.

Since G
sj+uv
i contains q′ which is a path dangling from

u, Definition 2(2) is satisfied. Since no other paths are
touched, Definition 2(3) is satisfied.
Case 3b: x ≠ v. Then, z = [d′, (P − vx) + ux, p, c]j.

Since G
sj+uv
i contains q′ which is a u-x-path, Definition

2(2) is satisfied. Since no other paths are touched,
Definition 2(3) is satisfied.

“≥": If uv ∉ Si ∩ M, then Gsi
i = G

sj
j and, thus, Si is eligi-

ble for (d, P, p, c, j). By induction hypothesis, [d, P, p,
c] j ≥ ω(S i) and, thus, [d, P, p, c]i ≥ [d, P, p, c] j} ≥ ω(S
i). Otherwise, uv ∈ Si ∪ M
In the following, we show that Si − uv is eligible for a
tuple corresponding to one of the entries over which
we maximize to compute z. Thus, ω(S i) ≤ ω(Si − uv) +
ω(uv) ≤ z + ω(uv) if uv tt M and ω(S i) ≤ z if uv ∈ M.
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Note that, in each case, Si − uv satisfies Definition 2(1)
since the degrees of u and v decrease by one when
removing uv.
Case 1: d(u) = d(v) = 2. Then, uv is part of a path q

in GSi
i and neither u nor v is an endpoint of q.

Case 1a: q is closed (that is, a cycle) (see Figure 3(a)).

Then, q does not intersect d−1(1), implying that GSi
i

contains one more such cycle than Gsi−uv
j . Further, q −

uv is a u-v-path in Gsi−uv
j intersecting d′−1(1) only in

u and v. Thus, Si − uv is eligible for (d′, P + uv, p,
c − 1, j).
Case 1b: q is open and does not intersect d−1(1) (see

Figure 3(b)). Then, GSi
i contains one more of such

paths than Gsi−uv
j . Further, q − uv decomposes into

paths qu and qvintersecting d′−1(1) only in u and v,
respectively. Thus, Si − uv is eligible for (d′, P +
{uu, vv}, p − 1, c, j).
Case 1c: q is open and intersects d−1(1) in a single
vertex x (see Figure 3(c)). Then, q − uv decomposes

into paths qu and qv in Gsi−uv
j , one of which intersects

d′−1(1) in x. Since no path avoiding d−1(1) is
touched, Si − uv is eligible for either (d′, (P − xx) ∪
{xu, vv}, p, c, j) or (d′, (P − xx) ∪ {uu, vx}, p, c, j).
Case 1d: q is open and intersects d−1(1) in 2 distinct
vertices x and y (see Figure 3(d)). Then, q − uv
decomposes into a u-x-path qu and a v-y-path qv
in Gsi−uv

j . Thus, Si - uv is eligible for (d′, (P − xy) ∪
{ux, vy}, p, c, j).

Case 2: d(u) = d(v) = 1. Then, q = {uv} is a path in GSi
i

and, thus, u and v are isolated in Gsi−uv
j . Thus, uv ∈ P

and Si − uv is eligible for (d′, P − uv, p, c, j).

Case 3: d(u) = 2 and d(v) = 1. Thus, GSi
i contains a

path q = (v, u, . . .). If q intersects d−1(1) − v in a vertex
x, then q − uv intersects d′−1(1) − u and, thus, Si − uv
is eligible for (d′, (P − vx) + ux, p, c, j). Otherwise, q

is a dangling from v in GSi
i and q − uv is a dangling

from u in Gsi−uv
j , implying that Si − uv is eligible for (d′,

(P − vv) + uu, p, c, j).

Join: “≤": Let d1, d2, P1, P2, p1, p2, c1, c2 be such that
[d, P, p, c]i = [d1, P1, p1, c1] j + [d2, P2, p2, c2]ℓ. By induction
hypothesis, there are sets Sj and S ℓ corresponding to [d1,
P1, p1, c1] j and [d2, P2, p2, c2]ℓ, respectively, such that

∀v∈X(i) d(v) = d1(v) + d2(v) , (2)

P = P1 
 P2, (3)

p = p1 + p2 + |(P1 ∩ P2)1|, and (4)

c = c1 + c2 + |(P1 ∩ P2)2|. (5)

We show that Si := S j∪ S t is eligible for (d, P, p, c, i)
and, thus, ω(S ) ≥ ω(S i) = [d1, P1, p1, c1] j + [d2, P2, p2,
c2]ℓ = [d, P, p, c]i. First, by (2), we have that Definition
2(1) is satisfied. Second, to show that Definition 2(2) is
satisfied, consider some uv ∈ P. Then, there is a path q
= (u, x1, x2, . . ., v) in Gr(P1 ∪ P2). Note that

x1, x2, . . . ∈ d−1
1 (1) ∪ d−1

2 (1) . Thus, G
Sj∪S�

i = Gsi
i
con-

tains a u-x1-path, an x1-x2-path, . . . . The concatena-

tion of these paths forms a u-v path in GSi
i . Third,

note that, for each uu ∈ (P1)
1, there is a path qu1 dan-

gling from u in G
sj
j such that the only vertex of

d−1
1 (1) ∪ d−1

1 (0) ⊇ d−1(1) in qu1 is u. Analogously, a

similar path qu2 exists for each uu ∈ (P2)
1 in Gs�

� .
Thus, for each uu ∈ (P1 ∩ P2)

1, there is a path

qu := qu1 ∪ qu2 in G
Sj∪S�

i
containing u and avoiding d−1

(1) and qu is neither in G
sj
j nor in GS�

�
. Since G

sj
j con-

tains p1 paths avoiding d−1
1 (1) ∪ d−1

1 (0) ⊇ d−1(1)

and GS�

�
contains p2 paths avoiding d−1

2 (1) ∪ d−1
2 (0) ⊇ d−1(1) ,

we have that G
Sj∪S�

i
contains p1 + p2 + |(P1 ∩ P2)

1|

such paths. Similarly, G
Sj∪S�

i
concontains c1 + c2 + |(P1

∩ P2)
2| cycles avoiding d−1(1).

“≥": Let Sj := Si ∩E(G j) and let Sℓ := Si ∩E(Gℓ). We
show that Sj and S ℓare eligible for tuples (d1, P1, p1, c1,
j) and (d2, P2, p2, c2, ℓ), respectively, such that (2)-(5)
hold. First, for all u ∈ X(i) = X( j) = X(ℓ) let d1 (d2) be
the number of edges of G j (Gℓ) incident with u. Since

E(Gsi
i ) = E(G

sj
j ) � E(GS�

� ) , we conclude that (2) holds

and Definition 2(1) is satisfied. Second, let P1 be the

set of pairs uv with u, v ∈ d1
−1(1) such that, if u ≠ v,

then there is a u-v path in G
sj
j and, if u = v, then G

sj
j

contains a path dangling from u. Let P2 be defined
analogously for d2 and Gs�

� . Then, Definition 2(2) is

satisfied. Further, for all uv ∈ P, since d(u) = 1 ⇐⇒ d1
(u) = 1 ⊕ d2(u) = 1, we have P1(u) = ⊥ ⊕ P2(u) = ⊥
and there is a u-v-path q in GSi

i that decomposes into

paths of G
sj
j that connect vertices of d1

−1(1) and

paths of Gs�
� that connect vertices of d2

−1(1) . Thus,
Gr(P1 ∪ P2) contains a u-v-path and we conclude that
(3) holds. Third, let p1 and c1 be the number of paths

and cycles, respectively, in G
sj
j that avoid d1

−1(1) .

Likewise for p2 and c2 in Gs�
� and d2. Then Definition

2(3) is satisfied. Further, let p ′ denote the number of
pairs uu ∈ P1 ∩ P2, that is, p ′ := |(P1 ∩ P2)

1|. Then,
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since G
Sj∪S�

i
contains, for each such pair uu, a different

path consisting of the concatenation of the two paths

dangling from u in G
sj
j and Gs�

� , respectively, G
sj∪s�
i

contains exactly p1 + p2 + p′ paths avoiding d−1(1).
Thus, (4) holds and, in complete analogy, (5) holds. □

Proof of Theorem 1, sketch The bottleneck in the compu-
tation are the join nodes so we focus on computing their
dynamic programming table. To calculate the number of
entries that have to be considered in order to compute [d,
P, p, c]i, assume that P1 and P2 are fixed. Then so is P and

d1
−1(1) and d2

−1(1) . Now, consider a vertex

u ∈ X(j)\d−1
1 (1) . If u is incident to an edge in G�

j , that is,

an edge in M that has been introduced in the subtree
rooted at j, then d1(u) > 0 and, thus, d1(u) = 2. However, if

u is not incident with any matching edges in G�
j , then d1

(u) < 2, since otherwise, u would be incident to two non-

matching edges. Thus, u ∈ d−1
1 (2) if and only if u is inci-

dent to a matching edge in G�
j and, consequently, fixing

P1 and P2 also fixes d1 and, by extension, d2. Finally, we
can choose p1 and c1 in order to compute p2 and c2. Since
we need to consider only permutations that are also invo-
lutions, there are less than twtw ways to choose P1 and P2.
Thus, the maximum is over at most twtw ·sp · sc elements.
Since there are O(n) bags in the tree decomposition,
the algorithm can be executed in the claimed running
time. □
Lemma 5 Tree Rule 2 is correct, that is, the instance

I = (G, M, sp, sc, ℓp, ℓc) is yes if and only if the result
I′ = (G′, M′, sp − 1, sc, ℓp, ℓc) of applying Tree Rule 2
to I is yes.
Proof Clearly, since all vertices of the graph G must be

covered, then the only way to pack the vertex u is to
include it into a path of length lp included the vertex v
′ = LCA(u, w) and then decrease the number of paths
by one. □
Proof of Lemma 3 We show that Tv does not contain

branching vertices (vertices with at least two children)
since it is straightforward that, if Tv is a path, it has to be
alternating for I to be a yes-instance and, if its length
exceeds ℓp, then Tree Rule 2 applies. Towards a contradic-
tion, assume that Tv has branching vertices and let z
denote such a vertex in Tv such that, among all branching
vertices, z is furthest from v. Let u be a leaf of Tz that has
maximum distance to z and let d denote this distance.
Since z is the only branching vertex in Tz and I is a yes-
instance, the unique u-z path in Tz is alternating. Thus, by
irreducibility with respect to Tree Rule 2, we know that d
< ℓp. However, since z is branching, there is another leaf w
at distance d′ ≤ d < ℓp to z in Tz. Thus, if the unique

u-w-path in Tz is not alternating or its length is not ℓp,
then I is not a yes-instance. But otherwise, Tree Rule 2 is
applicable to u and w, contradicting irreducibility. □
Lemma 6 Tree Rule 3 is correct, that is, the instance

I = (G, ω, M, sp, sc, ℓp, ℓc) is a yes-instance if and only
if the result of applying Tree Rule 3 to I is.
Proof Let v and e be as defined in Tree Rule 3 and let

e = {u, v}. To show correctness of Tree Rule 3, we prove
that all optimal solutions for I contain e. To this end, let S
be an optimal solution with e ∉ S . By Lemma 3, Tv is an
alternating path p ending in v with |p| < ℓp. By definition,
M(u) is on p, so |p| ≥ 2. But then, G − e contains an
isolated path of length strictly less than ℓp, implying that S
is not a solution for I. □
Lemma 7 Path Rule 1 is correct, that is, the instance

I = (G, ω, M, sp, sc, ℓp, ℓc) is a yes-instance if and only
if the result I′ = (G′, ω, M′, sp − 1, sc, ℓp, ℓc) of applying
Path Rule 1 to I is.
Proof Let p = (u0, u1, . . . , u2lp+2) be as in Path Rule 1

and let p′ := (u0, u1, . . . , u�p+1) . Note that e�p+1, e�p+2, . . .

exist in G′.
“⇒": Let S be a solution for I, let p′ := (u0, u1, . . . , u�p+1)

and note that no cycle of G[S ∪ M] contains p since
|p| > ℓc. We show that S ′ := S \ p ′ is a solution of for
I′ with ω′(S ′) = ω(S ). First, note that all vertices of G′

are covered by S ′. Second, note that p \ p′ is alternating
since |p| = ℓp + 1. Finally, G′[S ′ ∪ M′] contains one
path less than G[S ∪ M].
“⇐": Let S ′ be a solution for I′ and let u denote the

vertex onto which u0, u1, . . . , u�p+1 have been con-
tracted in I′ and let e := uu�p+2 . We construct a solution
S for I with ω(S ) = ω′(S ′). First, since |p| > ℓc + ℓp + 1,
no cycle in G[S ∪ M] contains e. If e ∉ S ′ ∪ M′, then S :
= S ′ ∪ (p′ − e0). If e ∈ S ′ ∪ M′, then e j∉ S ′ ∪ M′ for
some ℓp <j ≤ 2ℓp. Then, S := S′ ∪ (p′ − ej−(�p+1)) □
Lemma 8 Path Rule 2 is correct, that is, the instance

I = (G, ω, M, sp, sc, ℓp, ℓc) is a yes-instance if and only
if the result I′ = (G′, ω′, M′, sp − 1, sc, ℓp, ℓc) of applying
Path Rule 2 to I is.
Proof First, note that no solution for I or I′ covers w in a

cycle since Tw is necessarily covered by a path. Also note
that q exists in I′.
“⇒": Let S be a solution for I and note that there is some

i ≤ ℓp such that ei∉ S ∪M (in fact, i ∈ {ℓp, g}). Then,
however, fi−g∉ S and S ′ := S \ p is a solution for I′ and
ω′(S ′) = ω(S ).
“⇐": Let S ′ be a solution for I′ and note that there is some

i ≤ ℓp − g such that fi ∉ S ′ ∪ M′ (in fact, i ∈ {0, ℓp − g}). But
then, S ′ ∪ (p − ei+g) is a solution for I and ω(S ) = ω′(S ′). □
Lemma 9 Path Rule 3 is correct, that is, the instance I

= (G, ω, M, sp, sc, ℓp, ℓc) is a yes-instance if and only if
the result I′ = (G′, ω, M, sp − 1, sc, ℓp, ℓc) of applying
Path Rule 3 to I is.
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Proof “⇒": Let S be solution for I and let qu and qv denote
the paths containing u and v, respectively, in G[S ∪ M].
Case 1: Neither qu nor qv contain edges of p. Then,

g = 1 and ux1 ∉ S ∪ M. If gu +gv +1 = ℓp, then Case (4)
applies and otherwise, Case (5) applies. In both cases, S is
also a solution for I′.
Case 2: qv contains edges of p, but qu does not. Then,

gv + g = ℓp + 1 and ux1 ∉ S ∪ M. If gu + g = ℓp + 1, then
Case (3) applies and otherwise, Case (1) applies. In both
cases, S is also a solution for I′.
Case 3: qu contains edges of p, but qv does not. Then,

gu + g = ℓp + 1 and vx|p|−1 ∉ S ∪ M and ux1 ∈ S \ M. If
gu + g = ℓp + 1, then Case (3) applies and switching ux1
for wx1 in S gives a solution of same weight for I ′.
Otherwise, Case (2) applies and S is also a solution
for I′.
Case 4: Both qu and qv contain edges of p. Then, gu + gv

+ g ≡ ℓp mod (ℓp + 1) and ux1 ∈ S \ M. If g ≠ 1, then Case
(6) applies and S is also a solution for I′. Otherwise, Case
(3) applies and switching ux1 for wx1 in S gives a solution
of same weight for I′.
“⇐": Let S ′ be a solution for I′. Note that, if G′ does not

contain wx1, then S is clearly also a solution for I. Thus,
assume that G′ contains wx1 and, thus, either Case (3) or
(4) applies to I. We show that the result S of switching wx1
for ux1 in S ′ is a solution of the same weight for I. To
show this, it suffices to show that, if a path q contains wx1,
then q ends at u. Assume this is false, that is, q contains
wx1 and some edge e ∈ E(G′) \ M incident with u. Since
Tw is not empty, no cycle in G′[S ′ ∪ M] contains u. Then,
the length of the u-v-path containing p − ux1 in G′ is
equivalent to g + gu modulo ℓp + 1.
Case 1: vx|p|−1 ∈ S ∪ M. Then, since q does not end in u,

we have γu + γ + γv �≡ �p mod (�p + 1) . Thus, Case (4)
does not apply to I, implying that Case (3) applies to I. But
then, g + gv = ℓp + 1 and, hence, wx1 ∉ S ∪ M.
Case 2: vx|p|−1 ∉ S ∪ M. Then, since q does not end in u,

we have γu + γ �≡ 0mod (�p + 1) , implying gu + g ≠ ℓp +
1 since 0 < g ≤ ℓp and 0 < gu < ℓp. Thus, Case (3) does not
apply to I, implying that Case (4) applies to I. But then, g =
1 and, since vx|p|−1 ∉ S ∪ M, we have wx1 ∉ S ∪ M. □
Observation 1 Let G be connected. Then, |V†| ≤ 2 FES

(G) since |E†| ≤ |V†| + FES(G†) ≤ |V†| + FES(G) and 2|E†|
≥ 3|V†|.
Proof of Theorem 2 By Lemma 4, we have

|V| ≤ �(|V†|+3|E†|) Observation 1≤ �(2 FES(G)+3(FES(G)+2 FES(G)) = 11� FES(G) and, thus, we obtain
|E| ≤ 11� FES(G) + FES(G) = (11� + 1) · FES(G). □
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