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Geometry Selection of a Redundantly Actuated

Cable-Suspended Parallel Robot

Marc Gouttefarde, Member, IEEE, Jean-François Collard,

Nicolas Riehl and Cédric Baradat

Abstract—This paper is dedicated to the geometry selection of a redun-

dantly actuated cable-suspended parallel robot intended to manipulate

heavy payloads over a wide workspace. Cable-suspended refers here to
cable-driven parallel robots in a crane-like setting where all the cable

drawing points are located on top of the base frame, gravity being used

to keep the cables taut. Geometry selection consists in determining the
relative positions of the cable drawing points on the base frame and of the

cable attachment points on the mobile platform together with the cable

arrangement between these two sets of points. An original performance

index is introduced. It is defined as the maximum acceptable distance
between the mobile platform geometric center and the center of mass of

the set consisting of the platform and a payload. This performance index

is of particular interest in heavy payload handling applications. Used

within a two-phase geometry selection strategy, it yields a new cable-
suspended robot geometry having a very large workspace to footprint

ratio and able to handle heavy payloads. A large-dimension redundantly

actuated cable-suspended robot was built in order to demonstrate these
capabilities.

I. INTRODUCTION

This paper deals with cable-suspended parallel robots. As illus-

trated in Fig. 1, this name refers here to cable-driven parallel robots

whose cable drawing points are all located above the mobile platform.

A well-known 6-degree-of-freedom (DOF) cable-suspended robot is

the NIST ROBOCRANE [1]. As opposed to fully-constrained cable-

driven parallel robots such as the FALCON [2], the weight of the

mobile platform (and payload) is necessary to keep the cables taut.

The part of the workspace located below the mobile platform is free

of cables making this type of cable robot attractive for applications

like heavy payload handling. In the present work, we focus on 6-DOF

redundantly actuated cable-suspended robots and, hence, we do not

consider under-constrained robots [3] which are driven by less cables

than DOF. Additionally, unlike in [4], [5], the cable drawing points

are supposed to be fixed (no mobile bases).

The mobile platform of a cable-driven parallel robot is connected

to winches by means of a set of cables. The cables are attached

to the mobile platform and exit from the robot fixed base at some

points, referred to as the cable drawing points. The relative positions

in space of the cable drawing points define the base geometry. We

define the platform geometry as the relative positions of the cable

attachment points on the mobile platform. Moreover, a cable-driven

parallel robot geometry is defined as the set consisting of the base

geometry, the mobile platform geometry and the cable connections

(or arrangement) between them.

The selection of a cable-driven parallel robot geometry is a funda-

mental choice because it strongly influences the robot performances.

Most of the previous works dealing with geometry selection are

dedicated to fully-constrained cable-driven parallel robots. In several

papers [2], [6]–[11], the geometry selection process itself is either

not discussed or not the result of a systematic methodology. On the
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Fig. 1. Sketch of a cable-suspended parallel robot.

contrary, the use of various optimization techniques are presented

in [4], [5], [12]–[15]. The main criteria are the wrench-closure

workspace, or other types of wrench-feasible workspaces [16], and

avoidance of cable collisions. An initial geometry is usually required

to start the optimization process making the exploration of the design

space usually limited. Other fully-constrained cable robot geometries

were obtained by means of geometric or other ad hoc considerations

[17], [18]. The early work by Tadokoro et al [19] is an exception.

Indeed, unlike in the aforementioned papers, the combinatorial nature

of the possible cable connections between some given base and

platform geometries is explicitly considered. It enables a much wider

variety of fully-constrained cable robot geometries to be explored.

Recently, in the context of the synthesis of differential cable-driven

parallel robots, all possible arrangements of cable segments in a

differential were studied in [20].

The geometry selection of cable-suspended robots has been less

discussed than that of fully-constrained robots. In [1], the geometry

of the NIST ROBOCRANE is introduced as an upside-down Gough-

Stewart platform with triangular base and platform. The influences

of some geometric parameters on the static workspace and on

the global condition index of such 6-6 cable-suspended parallel

robots are studied in [21]. The dimensional design of the 6-cable

suspended parallel manipulator of FAST is reported in [22]. A less

conventional 6-cable suspended robot geometry is presented in [23]

for a particular application. In all these works, a limited number of

geometric parameters is considered and all possible cable connections

are not explicitly studied. Consequently, the set of investigated cable-

suspended robot geometries is not very large.

None of the aforementioned previous works deals with the ge-

ometry selection of redundantly actuated cable-suspended parallel

robots, which is the topic of the present paper. A two-phase geometry

selection methodology is considered. Inspired by [19], the first

phase of this methodology consists in testing a very large number

of possible cable connections between various base and platform

preselected geometries. The second phase aims at refining the result

of the first phase using standard gradient-based optimization. While

this two-stage methodology is not particularly novel, the result of its

application to redundantly actuated cable-suspended parallel robots

is the main contribution of this paper. Indeed, it yields a new cable-

suspended robot geometry having a very large workspace to footprint

ratio and able to manipulate heavy payloads. To demonstrate these

capabilities, a large-dimension 8-cable 6-DOF robot was built in the

framework of a research project called CoGiRo.

The second contribution of this paper is a particular wrench-

feasibility analysis. A mobile platform pose is said to be wrench-

feasible when a required wrench set is entirely contained within the

set of wrenches that the cables are able to apply, called the available
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wrench set [24]. The particularity of the analysis proposed in this

paper lies in the definition of the required wrench set. In previous

works, e.g. [24]–[27], this set is a hyperellipsoid, a hyperrectangle

or it is reduced to a unique wrench. Focusing on heavy payload

handling tasks, the required wrench set introduced in the present

work corresponds to the wrenches that permit to balance the total

weight of the platform and the payload. When both the mass and

the center of mass position are variable, this required wrench set is

a truncated cone. The analysis of the conditions under which this

cone is completely contained within the available wrench set leads

us to a new performance index defined as the maximum acceptable

horizontal distance between the mobile platform geometric center

and the center of mass of the set consisting of the platform and the

payload. This index is of particular interest in applications involving

heavy payload manipulations.

The paper is organized as follows. The particular wrench-feasibility

analysis and the resulting new performance index are introduced

in Section II. The two-phase geometry selection methodology is

summarized in Section III. The application of this methodology to

the geometry selection of a 6-DOF cable-suspended parallel robot

driven by 8 cables is presented in Section IV.

II. WRENCH-FEASIBILITY ANALYSIS

In this paper, the evaluation of cable-suspended parallel robot

geometries relies on their quasi-static behavior. Compared to the static

ones, the forces and moments due to the mobile platform dynamics

are neglected. Our goal is to evaluate the ability to handle payloads

that may not be centered with respect to the platform reference point.

To this end, we introduce an original performance index defined as

the maximum acceptable horizontal distance between the platform

reference point and the center of mass of the set composed of the

platform and a payload. Subsections II-A and II-B present the usual

static equilibrium equations and wrench feasibility analysis, respec-

tively. Subsection II-C introduces the particular required wrench set

considered in this paper. Finally, Subsection II-D shows how the

aforementioned original performance index can be computed.

A. Static modeling of cable-suspended parallel robots

Neglecting the mass of the cables, the static equilibrium of a 6-

DOF cable-driven parallel robot mobile platform is given by [9], [28]

W τ + fe = 0 (1)

where W is the so-called wrench matrix of dimension 6 × n, n
denotes the number of cables (n ≥ 6 in this paper), τ is the column

vector containing the cable tensions and fe is the external wrench

applied to the platform at its reference point.

Cable tensions are subjected to minimal and maximal admissible

values. The maximal value τmax is necessary in order to take

into account mechanical limits (e.g. cable breaking load, or force

sensor maximum load). The minimal value τmin must be non-

negative because the cables cannot push on the mobile platform.

For cable-suspended parallel robots, since the cables are not acting

antagonistically on the mobile platform, the minimal tension τmin

should be set to a small value or to zero.

B. Wrench feasibility analysis

Following the analysis proposed in [24], for a given pose (position

and orientation) of the platform, the available wrench set (AW) is

defined as the set of wrenches f that the cables can generate at the

mobile platform reference point

AW = {f = W τ | τmin ≤ τ ≤ τmax} (2)

where the components of the n-dimensional vector τmin are all

equal to the minimal admissible cable tension τmin ≥ 0 and all

the components of τmax are equal to τmax. Besides, the required

wrench set (RW) is the set of wrenches that the cables must exert on

the platform to complete a task. The exact definition of RW is directly

related to the application or task(s) at hand. A mobile platform pose

is said to be wrench-feasible when RW ⊆ AW, which means that the

cables can generate any wrench in RW while satisfying the constraints

τmin ≤ τ ≤ τmax.

Even for geometrically simple RW, testing wrench feasibility by

means of (2) is generally an issue. However, being the image of the

hypercube τmin ≤ τ ≤ τmax under the linear map represented by

matrix W, AW is a convex polytope and can thus be represented as

the solution set of a system of linear inequalities [29]

AW = {f | Cf ≤ d} (3)

Testing wrench feasibility by means of (3) is generally straightfor-

ward. For example, when RW is defined as a hypercube, RW ⊆ AW if

and only if all hypercube vertices fv satisfy Cfv ≤ d. The difficulty

lies in the determination of matrix C and vector d. They can be

obtained efficiently by means of the co-called hyperplane shifting

method introduced in [25]. Let us briefly present this method being

given that a comprehensive description can be found in [25], [30].

For a 6 × n wrench matrix W (6 DOF and n ≥ 6 cables), each

combination of 5 linearly independent columns wi1 , . . . ,wi5 of W

provides two lines of C, say cTk and cTl . The line cTk is given by

ck = cI = null (MI), where cI = null (MI) denotes a vector

spanning the nullspace of the 5× 6 matrix

MI = [wi1 , wi2 , . . . , wi5 ]
T

(4)

and I denotes the index set {i1, . . . , i5} ⊂ {1, . . . , n}. The other

line is cTl = −cTI . The total number Nh of lines of matrix C is

equal to twice the number of possible combinations of five linearly

independent columns of the wrench matrix W.

Complementing the work done in [25], it was shown in [30] that

the two elements dk and dl of vector d corresponding to the lines

cTk and cTl of matrix C are given by

dk =
∑

i∈I+

τmaxc
T
I wi +

∑

i∈I−

τminc
T
I wi (5)

dl = −
∑

i∈I−

τmaxc
T
I wi −

∑

i∈I+

τminc
T
I wi (6)

where I+ and I− are the subsets of {1, . . . , n} defined as

I+ =
{

i | cTI wi > 0
}

and I− =
{

i | cTI wi < 0
}

(7)

In the sequel, the line cTj of matrix C is denoted as follows

c
T
j =

[

cjfx cjfy cjfz cjtx cjty cjtz

]

(8)

where fx, fy , . . ., tz stand for the force and moment components of

a wrench f = [fx, fy, fz, tx, ty, tz]
T

.

C. Required wrench set

The originality of the wrench-feasibility analysis conducted in this

paper comes mainly from the RW introduced in this subsection.

This RW is the wrench set that the cables must apply to the mobile

platform in order to balance the platform and payload weight for a set

of possible masses and positions of the center of mass (CoM). This

RW is notably relevant in cable-driven parallel robot applications

involving the manipulation of heavy payloads of various sizes and

weights. Indeed, in such applications, the CoM of the set composed

of the robot mobile platform and a payload is generally not coincident
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Fig. 2. Cable-suspended parallel robot mobile platform—Points Bi are the
cable attachment points, P is the platform reference point (“geometric center”)
and C is the platform and payload CoM. The reference frame (O,X, Y,Z)
is fixed and its axis Z is vertical. (P, xp, yp, zp) is a local frame attached

to the platform. The frame (P,X
′

, Y
′

, Z
′

) is centered at P but it has the

same orientation as the fixed reference frame, i.e., X
′

= X , Y
′

= Y and

Z
′

= Z . Axis Z
′

is thus vertical.

with the mobile platform reference point P and its position can

change from one payload to another.

In the sequel, we refer to the platform reference point P as the

platform geometric center. The CoM of the set consisting of the

mobile platform and a payload is denoted C. For a given platform

orientation, as illustrated in Fig. 2, C is usually not located on the ver-

tical line passing through point P . The (horizontal) distance between

C and this vertical line is denoted h. The sum of the platform and

payload masses is denoted m whereas g = 9.81 ms−2 is the gravity

acceleration. In a frame having a vertical z-axis and whose origin

is the platform geometric center P , e.g., the frame (P,X
′

, Y
′

, Z
′

)
shown in Fig. 2, the wrench f = [fx, fy , fz, tx, ty, tz]

T
that the

cables must apply to balance the platform and payload weights is

fx = fy = tz = 0, fz = mg and

√

t2x + t2y = mgh (9)

where fx, fy and fz are forces along the X
′

, Y
′

and Z
′

axes,

respectively, and tx, ty and tz are moments about these axes. Only

the horizontal distance h is relevant since f is not influenced by the

vertical position of the CoM C. Note that, for a given position of C
in the local platform frame, the distance h depends on the platform

orientation, i.e., on the angle between zp and the vertical axis.

Let us consider that the position of C and the mass m are not

exactly known and/or subjected to changes in such a way that 0 ≤
h ≤ r and mmin ≤ m ≤ mmax where r, mmin and mmax are

positive scalars. Typically, mmin is the mass of the empty mobile

platform and mmax is the sum of the platform and heaviest payload

masses. Such a situation leads to a set of possible wrenches at point

P that the cables must be able to apply to the set platform-payload

to balance their total weight. This wrench set is the RW considered

in this paper. It is defined as follows

RW = {f | fx = fy = tz = 0, mming ≤ fz ≤ mmaxg,

0 ≤
√

t2x + t2y ≤ mgr} (10)

In the space of wrenches applied by the cables at the platform

geometric center P , this RW is a truncated cone embedded in the

three-dimensional subspace fx = fy = tz = 0, as shown in Fig. 3.

It is apparent in the figure, and not difficult to prove, that this RW

is the convex hull of its lower disc L and upper disc U , where

L = {f | fx = fy = tz = 0, fz = mming,

0 ≤
√

t2x + t2y ≤ mmingr} (11)

mmaxgr

mmingr

ty

tx

fz

Truncated cone

Lower disc

mming

mmaxg

Upper disc

Fig. 3. RW considered in this paper: A truncated cone.

U = {f | fx = fy = tz = 0, fz = mmaxg,

0 ≤
√

t2x + t2y ≤ mmaxgr} (12)

The available wrench set AW being also a convex set, a given mobile

platform pose is wrench-feasible, i.e. RW ⊆ AW, if and only if both

the lower disc L and the upper disc U of RW are entirely contained

within AW.

D. Performance index definition

In this work, we are interested in the maximum value rmax of r
such that RW defined in (10) is fully included in AW. For a platform

and payload total mass comprised between mmin and mmax, rmax

corresponds to the maximum acceptable horizontal distance between

the platform geometric center P and the CoM C. According to the

definition of AW, admissible means that each cable tension lies in the

non-negative interval [τmin, τmax]. For a given pose of the mobile

platform, rmax indicates to which extent the CoM can be shifted with

respect to the platform reference point P while keeping admissible

cable tensions. It will be used in Section III as a performance index

to evaluate and optimize cable-suspended parallel robot geometries.

Referring to Section II-C, RW ⊆ AW if and only if both the lower

disc L and the upper disc U of RW are entirely contained in AW.

Consequently, rmax is the largest value of r such that both L and U
are fully included in AW. Let us first consider the case of the upper

disc U . As proved in the Appendix, the maximum value r1 of r such

that U is fully included in AW is equal to

r1 = min
j
r1,j = min

j

dj
mmaxg

− cjfz
√

c2jtx + c2jty

(13)

The case of the lower disc L is similar with mmin in place of mmax,

i.e., the maximum value r2 of r such that L is fully included in AW

is equal to

r2 = min
j
r2,j = min

j

dj

mming
− cjfz

√

c2jtx + c2jty

(14)

Therefore, for a given pose of the platform, the maximum acceptable

horizontal distance between the platform geometric center P and the

platform and payload CoM C, i.e. the largest value of r such that

RW ⊆ AW, is given by

rmax = min
i=1,2

ri = min
i,j

ri,j (15)

with

ri,j =

dj
mig

− cjfz
√

c2jtx + c2jty

, i = 1, 2, and j = 1, . . . , Nh (16)

where m1 = mmax and m2 = mmin.
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III. OPTIMAL GEOMETRY SELECTION METHODOLOGY

A. Phase 1: Exploration

The first phase of the geometry selection methodology used in this

paper consists in generating and testing a discrete but large number

of possible cable-driven parallel robot geometries. In contrast to a

local optimization, this first phase aims to explore “globally” the

very wide space of possible robot geometries in order to find a good

starting point for the optimization performed in the second phase

(Section III-B). To this end, a strategy divided into four subsequent

steps is summarized in this section.

1) Step 1: User defined parameters: The number of mobile

platform DOF and the number of cables are first defined. In this

paper, 6-DOF parallel robots driven by n = 8 cables are considered.

The user also defines a number of base and platform geometry types.

A base (resp. platform) geometry type is defined as a set of distinct

points at which the cables exit from the fixed base (resp. are attached

to the mobile platform) and a set of dimensional parameters defining

the relative positions between these distinct points. For instance, in

Fig. 5(a), four distinct cable attachment points define a rectangular

mobile platform geometry type whose dimensional parameters are

the edge lengths L1 and L2. For each dimensional parameter of the

base and platform geometry types, a discrete set of possible values

is defined by the user.

A base (resp. platform) geometry is fully specified by a base (resp.

platform) geometry type together with particular values assigned to

each of its dimensional parameters. These values are taken among

the discrete set of possible ones.

The base and platform geometry types may have some symmetry

properties, in which case the corresponding symmetry rules are

also specified. In many applications, the prescribed workspace is

symmetric. Moreover, symmetric cable-driven parallel robot geome-

tries should possess more homogeneous performances across their

workspace. In this paper, each point of a geometry type has a sym-

metric point with respect to the z-axis, i.e., points having coordinates

(x, y, z) and (−x,−y, z) are symmetrical to each other. Note that the

z-axis of the local frame attached to the mobile platform is vertical

when the platform lies in its reference orientation. Symmetries with

respect to this z-axis are considered because we are dealing with

cable-suspended parallel robots which rely on gravity to keep the

cables in tension.

Additionally, a prescribed workspace is defined together with a

discrete set of poses defining a discretization of this workspace. Other

necessary modeling and performance criterion related parameters are

finally to be specified. In this paper, only the minimum and maximum

mass values mmin and mmax need to be defined.

2) Step 2: Generation of cable arrangements: All possible cable

arrangements between the base and platform geometry types defined

in Step 1 are generated. The only information needed is the number

of distinct points of these geometry types, as well as the potential

symmetry properties.

Let us consider the nb distinct points of a given base geometry type

and the np distinct points of a platform geometry type. The cable

arrangements between these two sets of points can be represented by

matrices AS of dimension nb×np. The components of AS are such

that ASi,j
= 1 if point i of the base geometry type is connected

to point j of the platform geometry type, and ASi,j
= 0 otherwise.

Moreover, in order to generate valid cable arrangements, the two

following rules must also be respected.

1) All base points must be used: The sum of the components in

each row of AS must not be zero.

2) All platform points must be used: The sum of the components

in each column of AS must not be zero.

In this step, all such matrices AS are generated. For instance, when

n = nb = np = 8, the total number of matrices AS is 8! = 40 320.

Symmetry properties can also be reflected in the generation of

cable arrangements. In this paper, as introduced in Section III-A1,

point i of a base (resp. platform) geometry type has a symmetrical

point. Let the latter be numbered nb − i + 1 (resp. np − i + 1).

Then, in order to reflect this symmetry into the cable arrangements,

we only keep the matrices AS such that if ASi,j
= 1 then

ASnb−i+1,np−j+1
= 1. For example, in the case n = nb = np = 8,

the number of symmetric valid cable arrangements is equal to 384.

3) Step 3: Generation of cable-driven parallel robot geometries:

One cable-driven parallel robot geometry is obtained for each possible

combination of the following three elements.

• A base geometry type and values of its dimensional parameters

chosen among the discrete set of values defined in Step 1.

• A platform geometry type and values of its dimensional param-

eters taken among the discrete set of values defined in Step 1.

• A cable arrangement between these base and platform geome-

tries, taken among the arrangement set generated in Step 2.

Each such combination defines a cable-driven parallel robot geometry

consisting of the cable drawing point positions in the fixed reference

frame, the cable attachment point positions in the platform local frame

and the cable arrangement between these two point sets.

4) Step 4: Performance evaluation and collision detection: All

the cable-driven parallel robot geometries generated in Step 3 are

considered in turn. For each one of them, at each pose of the

discretized prescribed workspace defined in Step 1, the absence of

cable-cable collisions is tested and the value of rmax (Eq. (15)) is

computed. The performance index of the geometry at hand is defined

as the minimum value of rmax over all the poses of the discretized

prescribed workspace. Among the cable-driven parallel robot geome-

tries having no collision between the cables, the geometry having the

largest performance index is considered to be the best one. The cables

being assumed to be straight line segments (cable mass is neglected),

the absence of collision between two cables is tested by computing

the distance between them [31], [32].

A rough discretization of the prescribed workspace should be

used in order to get a reasonable computation time. Consequently,

the performances and avoidance of cable-cable collisions should be

ascertained at the end of the geometry selection procedure (after the

second phase described in Section III-B), e.g. by means of a fine

discretization or of interval analysis.

B. Phase 2: Optimization

The second phase of the optimal geometry selection methodology

is briefly introduced in this section. By formulating a nonlinear

optimization problem, we aim at locally refining the best cable-driven

parallel robot geometry obtained in the first phase (Section III-A). The

latter robot geometry is thus taken as the initial guess of a standard

iterative gradient-based optimization algorithm.

1) Problem formulation: In this paper, optimizing a cable-driven

parallel robot geometry consists in maximizing the maximum accept-

able horizontal distance rmax between the platform geometric center

P and the platform and payload CoM C (Eq. (15)) over all the

poses of a discretized prescribed workspace. For all these poses, the

avoidance of cable-cable collisions is formulated as a set of inequality

constraints kcollision ≤ 0 as specified in Section III-B3. Hence, the

maximization problem considered here can be written as

maximize min
i = 1, 2

j = 1, . . . , NhNp

ri,j (17)

subject to kcollision ≤ 0,
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over p ∈ [pmin, pmax]

where ri,j is defined in (16), Nh is the number of inequalities in

Cf ≤ d (Eq. (3)) and Np is the number of poses in the discretized

prescribed workspace. Index j refers here to both the inequalities in

Cf ≤ d and the poses of the discretized prescribed workspace.

The vector p of optimization variables contains the coordinates of

the position vectors ai = [aix, aiy, aiz]
T of the cable drawing points

(in the fixed base frame) and the position vectors bi = [bix, biy, biz]
T

of the cable attachment points (in the mobile platform frame). It also

contains an angle ψ0 which defines an offset of the platform reference

orientation about the vertical Z-axis of the base frame. The vectors

of bound values pmin and pmax report the extreme values of ai and

bi, which are computed from user defined bounds on the dimensional

parameters of the base and platform geometry types, as well as the

extreme values −π and +π of ψ0.

In order to solve problem (17) using standard algorithms, it is

written in the following equivalent form

minimize z (18)

subject to − arctan (ri,j) ≤ z,

i = 1, 2 and j = 1, . . . , NhNp

kcollision ≤ 0,

over z ∈ R, p ∈ [pmin, pmax]

where, to improve the numerical behavior of the optimization solver,

the values of ri,j have been scaled using the arctan function to

highlight the smallest values with respect to the largest ones. It is

a large-scale optimization problem involving 6n + 2 variables and

2NhNp + Nc inequality constraints, where Nc is the total number

of collision constraints. For instance, the geometry optimization of

a 8-cable robot (n = 8, Nh = 2C5
8 = 112 [30]) evaluated over

27 positions in a given box (center, 8 vertices, 12 mid-edges and 6

mid-faces) for 2 orientation angles around the vertical axis (Np =
27× 2 = 54) involves 6× 8+ 2 = 50 variables and 2× 112× 54+
1512 = 13 608 inequality constraints. The total number Nc = 1512
of collision constraints is obtained by multiplying the number of cable

pairs by Np.

2) Derivatives of the performance criterion: The use of a gradient-

based optimization algorithm requires the computation of the deriva-

tives of ri,j with respect to (w.r.t) the design variables gathered in

vector p. According to (16), this computation amounts to calculating

the derivatives of the components of vector d and matrix C (namely

of dj , cjfz , cjtx and cjty ) w.r.t. to p. These components depend on p

via the wrench matrix W. The explicit expression of W in terms of

the design variables p is well-known [9], [28] and the determination

of its derivatives w.r.t. to p is straightforward. Moreover, referring to

the hyperplane shifting method outlined in Section II-B, calculating

the derivatives of d and C w.r.t. W amounts to computing the

derivatives of cI = null (MI) w.r.t. W. The latter derivatives can

be obtained by two means. The first one consists in considering

the singular value decomposition of MI and then in following the

procedure proposed in [33]. The second one is to use a determinant

based expression of a nullspace spanning vector [34] and then apply

the well-known formula of the derivatives of a determinant.

3) Collision avoidance constraints: Each collision avoidance in-

equality constraint in (18) is based on the computation of the distance

between two cables. In this paper, the cables are considered to be

straight line segments. The distance between two segments Li and Lj

must remain greater than the cable diameter δc (a small non-negative

value). Hence, the corresponding collision avoidance constraint is

kcollision = δc − dist (Li, Lj) ≤ 0 (19)

This scalar constraint has to be fulfilled by all cable pairs in every

platform poses of the discretized prescribed workspace. All the

resulting constraints are gathered in vector kcollision.

In this work, the algorithm proposed in [32] has been used to

compute the distance between two straight line segments and the

derivatives of the collision avoidance constraints computed accord-

ingly.

IV. GEOMETRY SELECTION OF A LARGE CABLE-SUSPENDED

ROBOT

This section reports the application of the two-phase optimal

geometry selection methodology presented in Section III to the design

of a cable-suspended parallel robot. The obtained geometry is new

and provides effective performances across a very large workspace.

Based on this result, a large cable-suspended parallel robot has been

built in the framework of a research project called CoGiRo [35].

A. Input data

The cable-suspended parallel robot whose geometry is to be

determined has 6 DOF and is driven by 8 cables.

1) Workspace dimensions: The inner volume of the fixed base

structure is a box of dimensions 14.81 m × 10.81 m × 5.58 m (l ×
w × h). The prescribed constant-orientation workspace is defined by

a scaling of this box: 2/3 of the length and 1/2 of the width and

height. Its discretization consists of 27 positions (center, 8 vertices,

12 mid-edges and 6 mid-faces). The required platform rotations are

about the vertical axis only, with a limited range of ±π/12. To define

the discretization of the prescribed workspace, five different angles

in the range ±π/12 were considered in Step 4 of Section III-A. In

the local optimization problem of Section III-B1, the two extreme

angles −π/12 and +π/12 were used.

2) Platform and payload masses and cable tensions: The mobile

platform mass is mmin = 40 kg whereas the total mass of the

platform loaded up with the heaviest payload is mmax = 200 kg.

The cables are anti-rotation steel cables of diameter 4 mm. Accord-

ing to the breaking loads of various mechanical parts, the maximum

admissible cable tension τmax is 5825 N (50% of the cable breaking

load). A small positive value should be chosen for τmin to restrict

cable sagging. In this work, τmin = 20 N has been selected.

3) Base geometries: A unique fixed base geometry type is consid-

ered. It is enclosed in the inner volume of the fixed base structure so

that its dimensional parameters L, l and h, shown in Fig. 4, are set to

14.81 m, 10.81 m and 5.58 m, respectively. It consists of 8 drawing

points all located at the top as illustrated in Fig. 4. The relative

positions between these 8 points are defined by distances ∆L and

∆l. Due to manufacturing constraints, ∆L and ∆l must both be com-

prised between 255 mm and 425 mm. In phase 1 (Section III-A), all

acceptable combinations of these bounding values were considered.

In phase 2 (Section III-B), ∆L and ∆l were left free between these

bounding values.

4) Mobile platform geometries: We constrained the cable attach-

ment points to be enclosed in a cube of side length 1 m. The

considered platform geometry types are shown in Fig. 5 to 9 where 2
to 4 dimensional parameters L1 to L4 are required depending on the

geometry type at hand. In the first phase of the geometry selection

procedure (Section III-A), a discrete set of four values included in

the interval [0.25, 1] (m) was considered for each parameter. The

attachment point positions were left free within the one-meter side

cube in the second phase (Section III-B).
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Fig. 4. Base geometry type parameterized by L, l, h, ∆L and ∆l.
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Fig. 5. Two four-point platform geometry types parameterized by L1 and
L2.

B. Optimal geometry selection results

In the first phase (Section III-A), 1888 cable arrangements were

generated, leading to 686080 different cable-suspended robot ge-

ometries. The corresponding performance evaluation and cable-cable

collision detection took 3.8 hours on a desktop computer (2.53 GHz,

3 Gb of RAM). The best geometry obtained is depicted in Fig. 10(a)

and defined in Table I. Only the coordinates of points 1 to 4 are given

since points 5 to 8 are symmetrical according to the rule specified

in Section III-A. The platform geometry has 8 different attachment

points located at the vertices of a parallelepiped. It comes from the

spatial eight-point geometry type shown in Fig. 9.

The computation time of the second phase (Section III-B) was 25

minutes on the same computer (2.53 GHz processor). The resulting

optimized geometry is shown in Fig. 10(b) and defined in Table II.

Compared to the result of phase 1, it can be observed that the platform

geometry is not a parallelepiped anymore and that the orientation

offset ψ0 about the vertical axis is not negligible. The optimization

significantly improved the performance index rmax from 16.4 cm to

28 cm. Such a value of the maximum acceptable horizontal distance

between the platform geometric center and platform and payload

CoM provides a certain robustness in handling heavy payloads.

In the framework of a research project called CoGiRo [35], the

novel geometry shown in Fig. 10(b) has been used to build a

large cable-suspended robot. This geometry yields characteristics that

largely outperform the initial requirements given in Section IV-A.

Indeed, the prescribed constant orientation workspace was specified

as 2/3 of the length and 1/2 of the width and height of the fixed
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1

2 4
3
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Fig. 6. Two five-point platform geometry types parameterized by L1 and L2.
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4
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(b) Spatial platform

Fig. 7. Two six-point platform geometry types parameterized by L1, L2 and
L3.

base inner volume which represents 16.6 % of this volume. The

actual constant-orientation static workspace (set of feasible static

equilibria) for the platform reference orientation and for m = 100
kg, τmax = 5825 N and τmin = 0 N occupies 77 % of the volume,

where m denotes the sum of the mobile platform and payload masses.

The projection on soil of this static workspace spans 78 % of the

robot total footprint. Only small rotations about the vertical axis were

initially required. The actual mobile platform orientation capabilities

are much better. For instance, at 2 m above the ground in the middle of

the workspace, the total orientation range about the vertical axis Z is

105◦ (−70◦ to +35◦) and the orientation ranges about the horizontal

X and Y axes are both of ±40◦ (taking into account cable collisions

with the actual cube-shaped mobile platform shown in Fig. 11). With

appropriate cable tension distributions, the mechanical design allows

the robot to lift masses up to m = 300 kg across 77 % of the footprint

and 75 % of the robot overall volume and up to m = 500 kg across

76 % of the footprint and 70 % of the robot overall volume.

V. CONCLUSION

This paper presented the geometry selection of a large redun-

dantly actuated cable-suspended parallel robot. Based on a partic-

ular wrench-feasibility analysis, an original performance index was

defined as the maximum acceptable horizontal distance between the

mobile platform reference point and the platform and payload center

of mass. It is of particular interest in applications involving heavy

payload manipulations over large workspaces. Used within a two-

phase geometry selection strategy, it yielded a new and efficient

geometry for 6-DOF cable-suspended robots driven by 8 cables. The

main merit of this geometry is a very large workspace to footprint

ratio. Based on this result, a large 6-DOF cable-suspended robot

was built. Its performances demonstrate the relevance of redundant

actuation for cable-suspended parallel robots and of the particular

robot geometry disclosed in this work.

A quasi-static modeling was used in this paper since static forces

and moments were considered to be predominant. Moreover, the cable

mass was neglected. The extension to cases in which the mobile

platform dynamics and the cable mass have to be taken into account

is part of our ongoing work.
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Fig. 9. Two eight-point platform geometry types parameterized by
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APPENDIX

PROOFS OF (13) AND (14)

Let us first consider the case of the upper disc U defined in (12).

AW being a convex set, U ⊆ AW if and only if (iff) the bounding

circle CU of U is entirely contained in AW, i.e., CU ⊆ AW. The

wrenches f = [fx, fy , fz, tx, ty, tz]
T

belonging to CU are such that

fx = fy = tz = 0, fz = mmaxg, tx = mmaxgr cos(α),

ty = mmaxgr sin(α), −π < α ≤ π (20)

According to (3), CU ⊆ AW iff all the wrenches in (20) satisfy all

the inequalities in Cf ≤ d. Let us first consider the j-th inequality

alone

c
T
j f ≤ dj (21)

With the notations in (8) and according to (20), all the wrenches of

CU verify this inequality iff

cjfz +cjtx r cos(α)+cjty r sin(α) ≤
dj

mmaxg
, ∀α ∈]−π, π] (22)

which is equivalent to

r(cjtx cos(α)+cjty sin(α)) ≤
dj

mmaxg
−cjfz , ∀α ∈]−π, π] (23)

The left-hand side of the latter inequality is a function of α which

reaches its maximum when

sin(α) = cjty /
√

c2jtx + c2jty (24)

cos(α) = cjtx /
√

c2jtx + c2jty (25)

Consequently, (23) is true iff

r
√

c2jtx + c2jty ≤
dj

mmaxg
− cjfz ⇐⇒ r ≤

dj

mmaxg
− cjfz

√

c2jtx + c2jty

(26)
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Fig. 10. Results of the geometry selection methodology.

TABLE I
BASE DRAWING POINT AND PLATFORM ATTACHMENT POINT

COORDINATES OBTAINED AFTER PHASE 1 (IN METERS)

rmax = 16.4 cm, ψ0 = 0◦

1 2 3 4

Base
x -7.15 7.15 -7.41 7.41
y 5.405 5.405 5.15 5.15
z 5.576 5.576 5.576 5.576

Platform
x .375 -.375 -.375 .375
y .5 .5 -.5 -.5
z .5 -.5 -.5 .5

It follows directly from (26) that the maximum value r1,j of r such

that all the wrenches of CU verify the j-th inequality (21) is equal to

r1,j =

dj

mmaxg
− cjfz

√

c2jtx + c2jty

(27)

Hence, the maximum value r1 of r such that all the wrenches

belonging to CU satisfy all the inequalities in Cf ≤ d, i.e. such

that CU ⊆ AW, is equal to

r1 = min
j
r1,j = min

j

dj
mmaxg

− cjfz
√

c2jtx + c2jty

(28)

Finally, as stated at the beginning of this appendix, U ⊆ AW iff

CU ⊆ AW so that (13) is proved, i.e., the maximum value r1 of r
such that the upper disc U of RW is fully included in AW is given

by (28).

The proof of (14) is exactly similar to the one proposed above for

(13) with mmin in place of mmax.
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J. Lenarc̆ic̆ and M. M. Stanis̆ić, Eds. Springer, 2010, pp. 475–482.

[31] V. Lumelsky, “On fast computations of distance between line segments,”
Information Processing Letters, vol. 21, no. 2, pp. 55–61, Aug. 1985.

[32] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann Series
in Interactive 3-D Technology, Jan. 2005.

[33] T. Papadopoulo and M. Lourakis, “Estimating the jacobian of the
singular value decomposition: Theory and applications,” in European
Conference on Computer Vision, Dublin, Ireland, jun 2000, pp. 554–
570.

[34] M. Gouttefarde and C. M. Gosselin, “On the properties and the de-
termination of the wrench-closure workspace of planar parallel cable-
driven mechanisms,” in Proc. ASME Design Engineering Technical

Conf. and Computers and Information in Engineering Conf., no. Paper
DETC2004/MECH-57127 [CD-ROM], Salt Lake City, UT, Sep. 2004.

[35] “Website of project CoGiRo,” http://www.lirmm.fr/cogiro/, 2013.


