Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot
Marc Gouttefarde, Jean-François Collard, Nicolas Riehl, Cédric Baradat

To cite this version:

HAL Id: lirmm-01221397
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01221397
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot

Marc Gouttefarde, Member, IEEE, Jean-François Collard, Nicolas Riehl and Cédric Baradat

Abstract—This paper is dedicated to the geometry selection of a redundantly actuated cable-suspended parallel robot intended to manipulate heavy payloads over a wide workspace. Cable-suspended robots refer here to cable-driven parallel robots in a crane-like setting where all the cable drawing points are located on top of the base frame, gravity being used to keep the cables taut. Geometry selection consists in determining the relative positions of the cable drawing points on the base frame and of the cable attachment points on the mobile platform together with the cable arrangement between these two sets of points. An original performance index is introduced. It is defined as the maximum acceptable distance between the mobile platform geometric center and the center of mass of the set consisting of the platform and a payload. This performance index is of particular interest in heavy payload handling applications. Used within a two-phase geometry selection strategy, it yields a new cable-suspended robot geometry having a very large workspace to footprint ratio and able to handle heavy payloads. A large-dimension redundantly actuated cable-suspended robot was built in order to demonstrate these capabilities.

I. INTRODUCTION

This paper deals with cable-suspended parallel robots. As illustrated in Fig. 1, this name refers here to cable-driven parallel robots whose cable drawing points are all located above the mobile platform. A well-known 6-degree-of-freedom (DOF) cable-suspended robot is the NIST ROBOCRANE [1]. As opposed to fully-constrained cable-driven parallel robots such as the FALCON [2], the weight of the mobile platform (and payload) is necessary to keep the cables taut. The part of the workspace located below the mobile platform is free of cables making this type of cable robot attractive for applications like heavy payload handling. In the present work, we focus on 6-DOF redundantly actuated cable-suspended robots and, hence, we do not consider under-constrained robots [3] which are driven by less cables than DOF. Additionally, unlike in [4], [5], the cable drawing points are supposed to be fixed (no mobile bases).

The mobile platform of a cable-driven parallel robot is connected to winches by means of a set of cables. The cables are attached to the mobile platform and exit from the robot fixed base at some points, referred to as the cable drawing points. The relative positions in space of the cable drawing points define the base geometry. We define the platform geometry as the relative positions of the cable attachment points on the mobile platform. Moreover, a cable-driven parallel robot geometry is defined as the set consisting of the base geometry, the mobile platform geometry and the cable connections (or arrangement) between them.

The selection of a cable-driven parallel robot geometry is a fundamental choice because it strongly influences the robot performances. Most of the previous works dealing with geometry selection are dedicated to fully-constrained cable-driven parallel robots. In several papers [2], [6]–[11], the geometry selection process itself is either not discussed or not the result of a systematic methodology. On the contrary, the use of various optimization techniques are presented in [4], [5], [12]–[15]. The main criteria are the wrench-closure workspace, or other types of wrench-feasible workspaces [16], and avoidance of cable collisions. An initial geometry is usually required to start the optimization process making the exploration of the design space usually limited. Other fully-constrained cable robot geometries were obtained by means of geometric or other ad hoc considerations [17], [18]. The early work by Tadokoro et al [19] is an exception. Indeed, unlike in the aforementioned papers, the combinatorial nature of the possible cable connections between some given base and platform geometries is explicitly considered. It enables a much wider variety of fully-constrained cable robot geometries to be explored. Recently, in the context of the synthesis of differential cable-driven parallel robots, all possible arrangements of cable segments in a differential were studied in [20].

The geometry selection of cable-suspended robots has been less discussed than that of fully-constrained robots. In [1], the geometry of the NIST ROBOCRANE is introduced as an upside-down Gough-Stewart platform with triangular base and platform. The influences of some geometric parameters on the static workspace and on the global condition index of such 6-6 cable-suspended parallel robots are studied in [21]. The dimensional design of the 6-cable suspended parallel manipulator of FAST is reported in [22]. A less conventional 6-cable suspended robot geometry is presented in [23] for a particular application. In all these works, a limited number of geometric parameters is considered and all possible cable connections are not explicitly studied. Consequently, the set of investigated cable-suspended robot geometries is not very large.

None of the aforementioned previous works deals with the geometry selection of redundantly actuated cable-suspended parallel robots, which is the topic of the present paper. A two-phase geometry selection methodology is considered. Inspired by [19], the first phase of this methodology consists in testing a very large number of possible cable connections between various base and platform preselected geometries. The second phase aims at refining the result of the first phase using standard gradient-based optimization. While this two-stage methodology is not particularly novel, the result of its application to redundantly actuated cable-suspended parallel robots is the main contribution of this paper. Indeed, it yields a new cable-suspended robot geometry having a very large workspace to footprint ratio and able to manipulate heavy payloads. To demonstrate these capabilities, a large-dimension 8-cable 6-DOF robot was built in the framework of a research project called CoGiRo.

The second contribution of this paper is a particular wrench-feasibility analysis. A mobile platform pose is said to be wrench-feasible when a required wrench set is entirely contained within the set of wrenches that the cables are able to apply, called the available...
wrench set [24]. The particularity of the analysis proposed in this paper lies in the definition of the required wrench set. In previous works, e.g. [24]-[27], this set is a hyperellipsoid, a hyperrectangle or it is reduced to a unique wrench. Focusing on heavy payload handling tasks, the required wrench set introduced in the present work corresponds to the wrenches that permit to balance the total weight of the platform and the payload. When both the mass and the center of mass position are variable, this required wrench set is a truncated cone. The analysis of the conditions under which this cone is completely contained within the available wrench set leads us to a new performance index defined as the maximum acceptable horizontal distance between the mobile platform geometric center and the center of mass of the set consisting of the platform and the payload. This index is of particular interest in applications involving heavy payload manipulations.

The paper is organized as follows. The particular wrench-feasibility analysis and the resulting new performance index are introduced in Section II. The two-phase geometry selection methodology is summarized in Section III. The application of this methodology to the geometry selection of a 6-DOF cable-suspended parallel robot driven by 8 cables is presented in Section IV.

II. WRENCH-FEASIBILITY ANALYSIS

In this paper, the evaluation of cable-suspended parallel robot geometries relies on their quasi-static behavior. Compared to the static ones, the forces and moments due to the mobile platform dynamics are neglected. Our goal is to evaluate the ability to handle payloads that may not be centered with respect to the platform reference point. To this end, we introduce an original performance index defined as the maximum acceptable horizontal distance between the platform reference point and the center of mass of the set composed of the platform and a payload. Subsections II-A and II-B present the usual static equilibrium equations and wrench feasibility analysis, respectively. Subsection II-C introduces the particular required wrench set considered in this paper. Finally, Subsection II-D shows how the aforementioned original performance index can be computed.

A. Static modeling of cable-suspended parallel robots

Neglecting the mass of the cables, the static equilibrium of a 6-DOF cable-driven parallel robot mobile platform is given by [9], [28]

$$\mathbf{W} \tau + \mathbf{f}_e = 0$$ \hspace{1cm} (1)

where \(\mathbf{W}\) is the so-called wrench matrix of dimension 6 \(\times n\), \(n\) denotes the number of cables (\(n \geq 6\) in this paper), \(\tau\) is the column vector containing the cable tensions and \(\mathbf{f}_e\) is the external wrench applied to the platform at its reference point.

Cable tensions are subjected to minimal and maximal admissible values. The maximal value \(\tau_{\text{max}}\) is necessary in order to take into account mechanical limits (e.g. cable breaking load, or force sensor maximum load). The minimal value \(\tau_{\text{min}}\) must be non-negative because the cables cannot push on the mobile platform. For cable-suspended parallel robots, since the cables are not acting antagonistically on the mobile platform, the minimal tension \(\tau_{\text{min}}\) should be set to a small value or to zero.

B. Wrench feasibility analysis

Following the analysis proposed in [24], for a given pose (position and orientation) of the platform, the available wrench set (AW) is defined as the set of wrenches \(\mathbf{f}\) that the cables can generate at the mobile platform reference point

$$\text{AW} = \{\mathbf{f} = \mathbf{W} \tau \mid \tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}\}$$ \hspace{1cm} (2)

where the components of the \(n\)-dimensional vector \(\tau_{\text{min}}\) are all equal to the minimal admissible cable tension \(\tau_{\text{min}} \geq 0\) and all the components of \(\tau_{\text{max}}\) are equal to \(\tau_{\text{max}}\). Besides, the required wrench set (RW) is the set of wrenches that the cables must exert on the platform to complete a task. The exact definition of RW is directly related to the application or task(s) at hand. A mobile platform pose is said to be wrench-feasible when \(\mathbf{RW} \subseteq \text{AW}\), which means that the cables can generate any wrench in RW while satisfying the constraints \(\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}\).

Even for geometrically simple RW, testing wrench feasibility by means of (2) is generally an issue. However, being the image of the hypercube \(\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}\) under the linear map represented by matrix \(\mathbf{W}\), AW is a convex polytope and can thus be represented as the solution set of a system of linear inequalities [29]

$$\text{AW} = \{\mathbf{f} \mid \mathbf{Cf} \leq \mathbf{d}\}$$ \hspace{1cm} (3)

Testing wrench feasibility by means of (3) is generally straightforward. For example, when RW is defined as a hypercube, \(\mathbf{RW} \subseteq \text{AW}\) if and only if all hypercube vertices \(\mathbf{f}_e\) satisfy \(\mathbf{Cf}_e \leq \mathbf{d}\). The difficulty lies in the determination of matrix \(\mathbf{C}\) and vector \(\mathbf{d}\). They can be obtained efficiently by means of the co-called hyperplane shifting method introduced in [25]. Let us briefly present this method being given that a comprehensive description can be found in [25], [30].

For a \(6 \times n\) wrench matrix \(\mathbf{W}\) (6 DOF and \(n \geq 6\) cables), each combination of 5 linearly independent columns \(\mathbf{w}_{i_1}, \ldots, \mathbf{w}_{i_5}\) of \(\mathbf{W}\) provides two lines of \(\mathbf{C}\), say \(\mathbf{c}_i^T\) and \(\mathbf{c}_j^T\). The line \(\mathbf{c}_i^T\) is defined as

$$\mathbf{M}_i = [\mathbf{w}_{i_1}, \mathbf{w}_{i_2}, \ldots, \mathbf{w}_{i_5}]^T$$ \hspace{1cm} (4)

and \(I\) denotes the index set \(\{i_2, \ldots, i_5\} \subset \{1, \ldots, n\}\). The other line is \(\mathbf{c}_j^T = -\mathbf{c}_i^T\). The total number \(N_h\) of lines of matrix \(\mathbf{C}\) is equal to twice the number of possible combinations of five linearly independent columns of the wrench matrix \(\mathbf{W}\).

Complementing the work done in [25], it was shown in [30] that the two elements \(d_k\) and \(d_l\) of vector \(\mathbf{d}\) corresponding to the lines \(\mathbf{c}_i^T\) and \(\mathbf{c}_j^T\) of matrix \(\mathbf{C}\) are given by

$$d_k = \sum_{i \in I^+} \tau_{\text{max}} \mathbf{c}_i^T \mathbf{w}_i + \sum_{i \in I^-} \tau_{\text{min}} \mathbf{c}_i^T \mathbf{w}_i$$ \hspace{1cm} (5)

$$d_l = -\sum_{i \in I^+} \tau_{\text{max}} \mathbf{c}_i^T \mathbf{w}_i - \sum_{i \in I^-} \tau_{\text{min}} \mathbf{c}_i^T \mathbf{w}_i$$ \hspace{1cm} (6)

where \(I^+\) and \(I^-\) are the subsets of \(\{1, \ldots, n\}\) defined as

$$I^+ = \{i \mid \mathbf{c}_i^T \mathbf{w}_i > 0\} \quad \text{and} \quad I^- = \{i \mid \mathbf{c}_i^T \mathbf{w}_i < 0\}$$ \hspace{1cm} (7)

In the sequel, the line \(\mathbf{c}_j^T\) of matrix \(\mathbf{C}\) is denoted as follows

$$\mathbf{c}_j^T = [c_{j_{f_1}} \ c_{j_{f_2}} \ c_{j_{f_3}} \ c_{j_{f_4}} \ c_{j_{f_5}} \ c_{j_{f_6}}]$$ \hspace{1cm} (8)

where \(f_1, f_2, \ldots, f_6\) stand for the force and moment components of a wrench \(\mathbf{f} = [f_x, f_y, f_z, t_x, t_y, t_z]^T\).

C. Required wrench set

The originality of the wrench-feasibility analysis conducted in this paper comes mainly from the RW introduced in this subsection. This RW is the wrench set that the cables must apply to the mobile platform in order to balance the platform and payload weight for a set of possible masses and positions of the center of mass (CoM). This RW is notably relevant in cable-driven parallel robot applications involving the manipulation of heavy payloads of various sizes and weights. Indeed, in such applications, the CoM of the set composed of the robot mobile platform and a payload is generally not coincident.
with the mobile platform reference point \(P \) and its position can change from one payload to another.

In the sequel, we refer to the reference point \(P \) as the platform geometric center. The CoM of the set consisting of the mobile platform and a payload is denoted \(C \). For a given platform orientation, as illustrated in Fig. 2, \(C \) is usually not located on the vertical line passing through point \(P \). The (horizontal) distance between \(C \) and this vertical line is denoted \(h \). The sum of the platform and payload masses is denoted \(m \) whereas \(g = 9.81 \text{ m s}^{-2} \) is the gravity acceleration. In a frame having a vertical \(z \)-axis and whose origin is the platform geometric center \(P \), e.g., the frame \((P, X', Y', Z')\) shown in Fig. 2, the wrench \(\mathbf{f} = \begin{bmatrix} f_x & f_y & t_x & t_y & t_z \end{bmatrix}^T \) that the cables must apply to balance the platform and payload weights is

\[
f_x = f_y = t_z = 0, \quad f_z = mg \quad \text{and} \quad \sqrt{t_x^2 + t_y^2} = mgh \tag{9}
\]

where \(f_x, f_y \) and \(f_z \) are forces along the \(X' \), \(Y' \) and \(Z' \) axes, respectively, and \(t_x, t_y \) and \(t_z \) are moments about these axes. Only the horizontal distance \(h \) is relevant since \(f \) is not influenced by the vertical position of the CoM \(C \). Note that, for a given position of \(C \) in the local platform frame, the distance \(h \) depends on the platform orientation, i.e., on the angle between \(z_p \) and the vertical axis.

Let us consider that the position of \(C \) and the mass \(m \) are not exactly known and/or subjected to changes in such a way that \(0 \leq h \leq r \) and \(m_{\text{min}} \leq m \leq m_{\text{max}} \) where \(r \), \(m_{\text{min}} \) and \(m_{\text{max}} \) are positive scalars. Typically, \(m_{\text{min}} \) is the mass of the empty mobile platform and \(m_{\text{max}} \) is the sum of the platform and heaviest payload masses. Such a situation leads to a set of possible wrenches at point \(P \) that the cables must be able to apply to the set platform-payload to balance their total weight. This wrench set is the RW considered in this paper. It is defined as follows

\[
\text{RW} = \{ \mathbf{f} \mid f_x = f_y = t_z = 0, \quad m_{\text{min}}g \leq f_z \leq m_{\text{max}}g, \quad 0 \leq \sqrt{t_x^2 + t_y^2} \leq mgr \} \tag{10}
\]

In the space of wrenches applied by the cables at the platform geometric center \(P \), this RW is a truncated cone embedded in the three-dimensional subspace \(f_x = f_y = t_z = 0 \), as shown in Fig. 3. It is apparent in the figure, and not difficult to prove, that this RW is the convex hull of its lower disc \(\mathcal{L} \) and upper disc \(\mathcal{U} \), where

\[
\mathcal{L} = \{ \mathbf{f} \mid f_x = f_y = t_z = 0, \quad f_z = m_{\text{min}}g, \quad 0 \leq \sqrt{t_x^2 + t_y^2} \leq m_{\text{min}}gr \} \tag{11}
\]

\[
\mathcal{U} = \{ \mathbf{f} \mid f_x = f_y = t_z = 0, \quad f_z = m_{\text{max}}g, \quad 0 \leq \sqrt{t_x^2 + t_y^2} \leq m_{\text{max}}gr \} \tag{12}
\]

The available wrench set \(\mathcal{A}_W \) being also a convex set, a given mobile platform pose is wrench-feasible, i.e. \(\mathcal{R} \subseteq \mathcal{A}_W \), if and only if both the lower disc \(\mathcal{L} \) and the upper disc \(\mathcal{U} \) of \(\mathcal{R} \) are entirely contained within \(\mathcal{A}_W \).

D. Performance index definition

In this work, we are interested in the maximum value \(r_{\text{max}} \) of \(r \) such that \(\mathcal{R} \) defined in (10) is fully included in \(\mathcal{A}_W \). For a platform and payload total mass comprised between \(m_{\text{min}} \) and \(m_{\text{max}} \), \(r_{\text{max}} \) corresponds to the maximum acceptable horizontal distance between the platform geometric center \(P \) and the CoM \(C \). According to the definition of \(\mathcal{A}_W \), admissible means that each cable tension lies in the non-negative interval \([r_{\text{min}}, r_{\text{max}}]\). For a given pose of the mobile platform, \(r_{\text{max}} \) indicates to which extent the CoM can be shifted with respect to the platform reference point \(P \) while keeping admissible cable tensions. It will be used in Section III as a performance index to evaluate and optimize cable-suspended parallel robot geometries.

Referring to Section II-C, \(\mathcal{R} \subseteq \mathcal{A}_W \) if and only if both the lower disc \(\mathcal{L} \) and the upper disc \(\mathcal{U} \) of \(\mathcal{R} \) are entirely contained in \(\mathcal{A}_W \). Consequently, \(r_{\text{max}} \) is the largest value of \(r \) such that both \(\mathcal{L} \) and \(\mathcal{U} \) are fully included in \(\mathcal{A}_W \). Let us first consider the case of the upper disc \(\mathcal{U} \). As proved in the Appendix, the maximum value \(r_1 \) of \(r \) such that \(\mathcal{U} \) is fully included in \(\mathcal{A}_W \) is equal to

\[
r_1 = \min_j r_{1,j} = \min_j \frac{d_j}{m_{\text{max}}g - G_j} \geq \frac{d_j}{m_{\text{min}}g - G_j} \geq \frac{d_j}{m_{\text{max}}g - G_j} \tag{13}
\]

The case of the lower disc \(\mathcal{L} \) is similar with \(m_{\text{min}} \) in place of \(m_{\text{max}} \), i.e., the maximum value \(r_2 \) of \(r \) such that \(\mathcal{L} \) is fully included in \(\mathcal{A}_W \) is equal to

\[
r_2 = \min_j r_{2,j} = \min_j \frac{d_j}{m_{\text{min}}g - G_j} \geq \frac{d_j}{m_{\text{max}}g - G_j} \tag{14}
\]

Therefore, for a given pose of the platform, the maximum acceptable horizontal distance between the platform geometric center \(P \) and the platform and payload CoM \(C \), i.e. the largest value of \(r \) such that \(\mathcal{R} \subseteq \mathcal{A}_W \), is given by

\[
r_{\text{max}} = \min_{i=1,2} \min_{j} r_{i,j} \tag{15}
\]

with

\[
r_{i,j} = \frac{d_j}{mg} - G_j, \quad i = 1, 2, \text{ and } j = 1, \ldots, N_h \tag{16}
\]

where \(m_1 = m_{\text{max}} \) and \(m_2 = m_{\text{min}} \).
III. Optimal Geometry Selection Methodology

A. Phase 1: Exploration

The first phase of the geometry selection methodology used in this paper consists in generating and testing a discrete but large number of possible cable-driven parallel robot geometries. In contrast to a local optimization, this first phase aims to explore “globally” the very wide space of possible robot geometries in order to find a good starting point for the optimization performed in the second phase (Section III-B). To this end, a strategy divided into four subsequent steps is summarized in this section.

1) Step 1: User defined parameters: The number of mobile platform DOF and the number of cables are first defined. In this paper, 6-DOF parallel robots driven by \(n = 8 \) cables are considered. The user also defines a number of base and platform geometry types. A base (resp. platform) geometry type is defined as a set of distinct points at which the cables exit from the fixed base (resp. are attached to the mobile platform) and a set of dimensional parameters defining the relative positions between these distinct points. For instance, in Fig. 5(a), four distinct cable attachment points define a rectangular mobile platform geometry type whose dimensional parameters are the edge lengths \(L_1 \) and \(L_2 \). For each dimensional parameter of the base and platform geometry types, a discrete set of possible values is defined by the user.

A base (resp. platform) geometry is fully specified by a base (resp. platform) geometry type together with particular values assigned to each of its dimensional parameters. These values are taken among the discrete set of possible ones.

The base and platform geometry types may have some symmetry properties, in which case the corresponding symmetry rules are also specified. In many applications, the prescribed workspace is symmetric. Moreover, symmetric cable-driven parallel robot geometries should possess more homogeneous performances across their workspace. In this paper, each point of a geometry type has a symmetric point with respect to the z-axis, i.e., points having coordinates \((x, y, z)\) and \((-x, -y, z)\) are symmetrical to each other. Note that the z-axis of the local frame attached to the mobile platform is vertical when the platform lies in its reference orientation. Symmetries with respect to this z-axis are considered because we are dealing with cable-suspended parallel robots which rely on gravity to keep the cables in tension.

Additionally, a prescribed workspace is defined together with a discrete set of poses defining a discretization of this workspace. Other necessary modeling and performance criterion related parameters are finally to be specified. In this paper, only the minimum and maximum mass values \(m_{\text{min}} \) and \(m_{\text{max}} \) need to be defined.

2) Step 2: Generation of cable arrangements: All possible cable arrangements between the base and platform geometry types defined in Step 1 are generated. The only information needed is the number of distinct points of these geometry types, as well as the potential symmetry properties.

Let us consider the \(n_b \) distinct points of a given base geometry type and the \(n_p \) distinct points of a platform geometry type. The cable arrangements between these two sets of points can be represented by matrices \(A_S \) of dimension \(n_b \times n_p \). The components of \(A_S \) are such that \(A_{S,i,j} = 1 \) if point \(i \) of the base geometry type is connected to point \(j \) of the platform geometry type, and \(A_{S,i,j} = 0 \) otherwise. Moreover, in order to generate valid cable arrangements, the two following rules must also be respected.

1) All base points must be used: The sum of the components in each row of \(A_S \) must not be zero.
2) All platform points must be used: The sum of the components in each column of \(A_S \) must not be zero.

In this step, all such matrices \(A_S \) are generated. For instance, when \(n = n_b = n_p = 8 \), the total number of matrices \(A_S \) is \(8! = 40 \, 320 \).

Symmetry properties can also be reflected in the generation of cable arrangements. In this paper, as introduced in Section III-A1, point \(i \) of a base (resp. platform) geometry type has a symmetrical point. Let the latter be numbered \(n_b - i + 1 \) (resp. \(n_p - i + 1 \)). Then, in order to reflect this symmetry into the cable arrangements, we only keep the matrices \(A_S \) such that if \(A_{S,i,j} = 1 \) then \(A_{S,n_b-i+1,n_p-j+1} = 1 \). For example, in the case \(n = n_b = n_p = 8 \), the number of symmetric valid cable arrangements is equal to \(384 \).

3) Step 3: Generation of cable-driven parallel robot geometries: One cable-driven parallel robot geometry is obtained for each possible combination of the following three elements.

- A base geometry type and values of its dimensional parameters chosen among the discrete set of values defined in Step 1.
- A platform geometry type and values of its dimensional parameters taken among the discrete set of values defined in Step 1.
- A cable arrangement between these base and platform geometries, taken among the arrangement set generated in Step 2.

Each such combination defines a cable-driven parallel robot geometry consisting of the cable drawing point positions in the fixed reference frame, the cable attachment point positions in the platform local frame and the cable arrangement between these two point sets.

4) Step 4: Performance evaluation and collision detection: All the cable-driven parallel robot geometries generated in Step 3 are considered in turn. For each one of them, at each pose of the discretized prescribed workspace defined in Step 1, the absence of cable-cable collisions is tested and the value of \(r_{\text{max}} \) (Eq. (15)) is computed. The performance index of the geometry at hand is defined as the minimum value of \(r_{\text{max}} \) over all the poses of the discretized prescribed workspace. Among the cable-driven parallel robot geometries having no collision between the cables, the geometry having the largest performance index is considered to be the best one. The cables being assumed to be straight line segments (cable mass is neglected), the absence of collision between two cables is tested by computing the distance between them [31], [32].

A rough discretization of the prescribed workspace should be used in order to get a reasonable computation time. Consequently, the performances and avoidance of cable-cable collisions should be ascertained at the end of the geometry selection procedure (after the second phase described in Section III-B), e.g. by means of a fine discretization or of interval analysis.

B. Phase 2: Optimization

The second phase of the optimal geometry selection methodology is briefly introduced in this section. By formulating a nonlinear optimization problem, we aim at locally refining the best cable-driven parallel robot geometry obtained in the first phase (Section III-A). The latter robot geometry is thus taken as the initial guess of a standard iterative gradient-based optimization algorithm.

1) Problem formulation: In this paper, optimizing a cable-driven parallel robot geometry consists in maximizing the maximum acceptable horizontal distance \(r_{\text{max}} \) between the platform geometric center \(P \) and the platform and payload CoM \(C \) (Eq. (15)) over all the poses of a discretized prescribed workspace. For all these poses, the avoidance of cable-cable collisions is formulated as a set of inequality constraints \(k_{\text{collision}} \leq 0 \) as specified in Section III-B3. Hence, the maximization problem considered here can be written as

\[
\text{maximize } \min_{i=1,2} \left(r_{i,j} \right) (17) \\
\text{subject to } k_{\text{collision}} \leq 0, \]
where $r_{i,j}$ is defined in (16), N_h is the number of inequalities in $\mathbf{C}_f \leq \mathbf{d}$ (Eq. (3)) and N_c is the number of poses in the discretized prescribed workspace. Index j refers here to both the inequalities in $\mathbf{C}_f \leq \mathbf{d}$ and the poses of the discretized prescribed workspace.

The vector \mathbf{p} of optimization variables contains the coordinates of the position vectors $\mathbf{a}_i = [a_{i,x}, a_{i,y}, a_{i,z}]^T$ of the cable drawing points (in the fixed base frame) and the position vectors $\mathbf{b}_j = [b_{j,x}, b_{j,y}, b_{j,z}]^T$ of the cable attachment points (in the mobile platform frame). It also contains an angle ψ_0 which defines an offset of the platform reference orientation about the vertical Z-axis of the base frame. The vectors of bound values \mathbf{p}_{min} and \mathbf{p}_{max} report the extreme values of \mathbf{a}_i and \mathbf{b}_j, which are computed from user defined bounds on the dimensional parameters of the base and platform geometry types, as well as the extreme values $-\pi$ and $+\pi$ of ψ_0.

In order to solve problem (17) using standard algorithms, it is written in the following equivalent form

$$\begin{align*}
\text{minimize} & \quad z \\
\text{subject to} & \quad -\arctan(r_{i,j}) \leq z, \\
& \quad i = 1, 2 \text{ and } j = 1, \ldots, N_hN_p \\
& \quad k_{\text{collision}} \leq 0, \\
& \quad z \in \mathbb{R}, \quad \mathbf{p} \in [\mathbf{p}_{\text{min}}, \mathbf{p}_{\text{max}}]
\end{align*}$$

where, to improve the numerical behavior of the optimization solver, the values of $r_{i,j}$ have been scaled using the arctan function to highlight the smallest values with respect to the largest ones. It is a large-scale optimization problem involving $6n + 2$ variables and $2N_hN_p + N_c$ inequality constraints, where N_c is the total number of collision constraints. For instance, the geometry optimization of a 8-cable robot ($n = 8$, $N_h = 2C_2^8 = 112$ [30]) evaluated over 27 positions in a given box (center, 8 vertices, 12 mid-edges and 6 mid-faces) for 2 orientation angles around the vertical axis ($N_p = 2 \times 2 = 54$) involves $6 \times 8 + 2 \times 50$ variables and $2 \times 112 \times 54 + 1512 = 13 \times 608$ inequality constraints. The total number $N_c = 1512$ of collision constraints is obtained by multiplying the number of cable pairs by N_p.

2) Derivatives of the performance criterion: The use of a gradient-based optimization algorithm requires the computation of the derivatives of $r_{i,j}$ with respect to (w.r.t) the design variables gathered in vector \mathbf{p}. According to (16), this computation amounts to calculating the derivatives of the components of vector \mathbf{d} and matrix \mathbf{C} (namely of d_j, c_{jx}, c_{jy} and c_{jz}) w.r.t. to \mathbf{p}. These components depend on \mathbf{p} via the wrench matrix \mathbf{W}. The explicit expression of \mathbf{W} in terms of the design variables \mathbf{p} is well-known [9], [28] and the determination of its derivatives w.r.t. to \mathbf{p} is straightforward. Moreover, referring to the hyperplane shifting method outlined in Section II-B, calculating the derivatives of \mathbf{d} and \mathbf{C} w.r.t. \mathbf{W} amounts to computing the derivatives of $c_j = \text{null}(\mathbf{M}_I)$ w.r.t. \mathbf{W}. The latter derivatives can be obtained by two means. The first one consists in considering the singular value decomposition of \mathbf{M}_I and then in following the procedure proposed in [33]. The second one is to use a determinant based expression of a nullspace spanning vector [34] and then apply the well-known formula of the derivatives of a determinant.

3) Collision avoidance constraints: Each collision avoidance inequality constraint in (18) is based on the computation of the distance between two cables. In this paper, the cables are considered to be straight line segments. The distance between two segments \mathcal{L}_i and \mathcal{L}_j must remain greater than the cable diameter δ_c (a small non-negative value). Hence, the corresponding collision avoidance constraint is

$$k_{\text{collision}} = \delta_c - \text{dist}(\mathcal{L}_i, \mathcal{L}_j) \leq 0$$

This scalar constraint has to be fulfilled by all cable pairs in every platform poses of the discretized prescribed workspace. All the resulting constraints are gathered in vector $\mathbf{k}_{\text{collision}}$.

In this work, the algorithm proposed in [32] has been used to compute the distance between two straight line segments and the derivatives of the collision avoidance constraints computed accordingly.

IV. GEOMETRY SELECTION OF A LARGE CABLE-SUSPENDED ROBOT

This section reports the application of the two-phase optimal geometry selection methodology presented in Section III to the design of a cable-suspended parallel robot. The obtained geometry is new and provides effective performances across a very large workspace. Based on this result, a large cable-suspended parallel robot has been built in the framework of a research project called CoGiRo [35].

A. Input data

The cable-suspended parallel robot whose geometry is to be determined has 6 DOF and is driven by 8 cables.

1) Workspace dimensions: The inner volume of the fixed base structure is a box of dimensions $14.81 \times 10.81 \times 5.58$ m ($l \times w \times h$). The prescribed constant-orientation workspace is defined by a scaling of this box: $2/3$ of the length and $1/2$ of the width and height. Its discretization consists of 27 positions (center, 8 vertices, 12 mid-edges and 6 mid-faces). The required platform rotations are about the vertical axis only, with a limited range of $\pm \pi/12$. To define the discretization of the prescribed workspace, five different angles in the range $\pm \pi/12$ were considered in Step 4 of Section III-A. In the local optimization problem of Section III-B1, the two extreme angles $-\pi/12$ and $+\pi/12$ were used.

2) Platform and payload masses and cable tensions: The mobile platform mass is $m_{\text{min}} = 40$ kg whereas the total mass of the platform loaded up with the heaviest payload is $m_{\text{max}} = 200$ kg.

The cables are anti-rotation steel cables of diameter 4 mm. According to the breaking loads of various mechanical parts, the maximum admissible cable tension τ_{max} is 5825 N (50% of the cable breaking load). A small positive value should be chosen for τ_{min} to restrict cable sagging. In this work, $\tau_{\text{min}} = 20$ N has been selected.

3) Base geometries: A unique fixed base geometry type is considered. It is enclosed in the inner volume of the fixed base structure so that its dimensional parameters L_l, l and h, shown in Fig. 4, are set to 14.81 m, 10.81 m and 5.58 m, respectively. It consists of 8 drawing points all located at the top as illustrated in Fig. 4. The relative positions between these 8 points are defined by distances ΔL and Δl. Due to manufacturing constraints, ΔL and Δl must both be comprised between 255 mm and 425 mm. In phase 1 (Section III-A), all acceptable combinations of these bounding values were considered. In phase 2 (Section III-B), ΔL and Δl were left free between these bounding values.

4) Mobile platform geometries: We constrained the cable attachment points to be enclosed in a cube of side length 1 m. The considered platform geometry types are shown in Fig. 5 to 9 where 2 to 4 dimensional parameters L_1 to L_4 are required depending on the geometry type at hand. In the first phase of the geometry selection procedure (Section III-A), a discrete set of four values included in the interval $[0.25, 1]$ (m) was considered for each parameter. The attachment point positions were left free within the one-meter side cube in the second phase (Section III-B).
base inner volume which represents 16.6 % of this volume. The actual constant-orientation static workspace (set of feasible static equilibria) for the platform reference orientation and for \(m = 100 \) kg, \(T_{\text{max}} = 5825 \) N and \(\tau_{\text{min}} = 0 \) N occupies 77 % of the volume, where \(m \) denotes the sum of the mobile platform and payload masses. The projection on soil of this static workspace spans 78 % of the robot total footprint. Only small rotations about the vertical axis were initially required. The actual mobile platform orientation capabilities are much better. For instance, at 2 m above the ground in the middle of the workspace, the total orientation range about the vertical axis is \(105^{\circ} (-70^{\circ} \text{ to } +35^{\circ}) \) and the orientation ranges about the horizontal \(X \) and \(Y \) axes are both of \(\pm 40^{\circ} \) (taking into account cable collisions with the actual cube-shaped mobile platform shown in Fig. 11). With appropriate cable tension distributions, the mechanical design allows the robot to lift masses up to \(m = 300 \) kg across 77 % of the footprint and 75 % of the robot overall volume and up to \(m = 500 \) kg across 76 % of the footprint and 70 % of the robot overall volume.

V. CONCLUSION

This paper presented the geometry selection of a large redundantly actuated cable-suspended parallel robot. Based on a particular wrench-feasibility analysis, an original performance index was defined as the maximum acceptable horizontal distance between the mobile platform reference point and the platform and payload center of mass. It is of particular interest in applications involving heavy payload manipulations over large workspaces. Used within a two-phase geometry selection strategy, it yielded a new and efficient geometry for 6-DOF cable-suspended robots driven by 8 cables. The main merit of this geometry is a very large workspace to footprint ratio. Based on this result, a large 6-DOF cable-suspended robot was built. Its performances demonstrate the relevance of redundant actuation for cable-suspended parallel robots and of the particular robot geometry disclosed in this work.

A quasi-static modeling was used in this paper since static forces and moments were considered to be predominant. Moreover, the cable mass was neglected. The extension to cases in which the mobile platform dynamics and the cable mass have to be taken into account is part of our ongoing work.
With the notations in (8) and according to (20), all the wrenches of \(C \subseteq \mathbb{R}^3 \) alone are greatly acknowledged.

According to (3), \(C_{\mathcal{U}} \subseteq \mathbb{R}^3 \) iff all the wrenches in (20) satisfy all the inequalities in \(C_{\mathcal{F}} \subseteq \mathbb{A} \). Let us first consider the case of the upper disc \(U \), i.e., \(C_{\mathcal{U}} \subseteq \mathbb{A} \) is entirely contained in \(\mathbb{A} \), i.e., \(C_{\mathcal{U}} \subseteq \mathbb{A} \). The wrenches

\[
\begin{align*}
 f_\alpha &= \left[f_x, f_y, f_z, t_x, t_y, t_z \right]^T \\
 t_x &= m_{\max} g r \cos(\alpha), \\
 t_y &= m_{\max} g r \sin(\alpha), \\
 r_\alpha^2 &= c_j = c_{jx}^2 + c_{jy}^2, \\
 \alpha \in [0, \pi]
\end{align*}
\]

which is equivalent to

\[
\begin{align*}
 r(c_{jx} \cos(\alpha) + c_{jy} \sin(\alpha)) &\leq \frac{d_j}{m_{\max} g r}, \\
 \forall \alpha \in [0, \pi]
\end{align*}
\]

The left-hand side of the latter inequality is a function of \(\alpha\) which reaches its maximum when

\[
\begin{align*}
 \sin(\alpha) &= c_{jy}/\sqrt{c_{jx}^2 + c_{jy}^2} \\
 \cos(\alpha) &= c_{jx}/\sqrt{c_{jx}^2 + c_{jy}^2}
\end{align*}
\]

Consequently, (23) is true iff

\[
\begin{align*}
 r \sqrt{c_{jx}^2 + c_{jy}^2} &\leq \frac{d_j}{m_{\max} g r} - c_{jx} \\
 \iff r &\leq \frac{d_j}{m_{\max} g r} - c_{jx} / \sqrt{c_{jx}^2 + c_{jy}^2}
\end{align*}
\]

APPENDIX

Proofs of (13) and (14)

Let us first consider the case of the upper disc \(U \) defined in (12). \(AW \) being a convex set, \(U \subseteq AW \) if and only if (iff) the bounding circle \(C_{\mathcal{U}} \) of \(U \) is entirely contained in \(AW \), i.e., \(C_{\mathcal{U}} \subseteq AW \). The wrenches

\[
\begin{align*}
 f_\alpha &= \left[f_x, f_y, f_z, t_x, t_y, t_z \right]^T \\
 t_x &= m_{\max} g r \cos(\alpha), \\
 t_y &= m_{\max} g r \sin(\alpha), \\
 c_j &= c_j = c_{jx}^2 + c_{jy}^2, \\
 \alpha \in [0, \pi]
\end{align*}
\]

It follows directly from (26) that the maximum value \(r_{1,j} \) of \(r \) such that all the wrenches of \(C_{\mathcal{U}} \) verify the \(j\)-th inequality (21) is equal to

\[
 r_{1,j} = \frac{d_j}{m_{\max} g r} - c_{j,x} \sqrt{c_{j,x}^2 + c_{j,y}^2}
\]

Hence, the maximum value \(r_{1,j} \) of \(r \) such that all the wrenches belonging to \(C_{\mathcal{U}} \) satisfy all the inequalities in \(C_{\mathcal{F}} \subseteq \mathbb{A} \), i.e. such that \(C_{\mathcal{U}} \subseteq \mathbb{A} \), is equal to

\[
 r_{1} = \min_j r_{1,j} = \min_j \frac{d_j}{m_{\max} g r} - c_{j,x} \sqrt{c_{j,x}^2 + c_{j,y}^2}
\]

Finally, as stated at the beginning of this appendix, \(U \subseteq AW \) iff \(C_{\mathcal{U}} \subseteq AW \) so that (13) is proved, i.e., the maximum value \(r_{1} \) of \(r \) such that the upper disc \(U \) of RW is fully included in \(AW \) is given by (28).

The proof of (14) is exactly similar to the one proposed above for (13) with \(m_{\min} \) in place of \(m_{\max} \).

REFERENCES

Robot overall dimensions 15 m x 11 m x 6 m (L x l x h).

<table>
<thead>
<tr>
<th>(r_{\text{max}})</th>
<th>(\psi_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 cm</td>
<td>(-8.97^\circ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>7.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>5.405</td>
</tr>
<tr>
<td>z</td>
<td>5.576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>-356</td>
<td>-266</td>
<td>-5</td>
</tr>
<tr>
<td>y</td>
<td>.942</td>
<td>.5</td>
<td>-5</td>
</tr>
<tr>
<td>z</td>
<td>.5</td>
<td>.5</td>
<td>-5</td>
</tr>
</tbody>
</table>