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Dual-Space Adaptive Control of Redundantly Actuated Cable-Driven

Parallel Robots

Johann Lamaury1, Marc Gouttefarde1, Ahmed Chemori1 and Pierre-Élie Hervé1

Abstract— Cable-driven parallel robots (CDPR) are effi-
cient manipulators able to carry heavy payloads across large
workspaces. Therefore, the dynamic parameters such as the
mobile platform mass and center of mass location may consid-
erably vary. Without any adaption, the erroneous parametric
estimate results in mismatch terms added to the closed-loop
system, which may decrease the robot performances. In this
paper, we introduce an adaptive dual-space motion control
scheme for CDPR. The proposed method aims at increasing
the robot tracking performances, while keeping all the cable
tensed despite uncertainties and changes in the robot dynamic
parameters. Reel-time experimental tests, performed on a large
redundantly actuated CDPR prototype, validate the efficiency
of the proposed control scheme. These results are compared
to those obtained with a non-adaptive dual-space feedforward
control scheme.

I. INTRODUCTION

Cable-driven parallel robots (CDPR) consist of a mobile

platform (end-effector) linked to a fixed base through flex-

ible cables. The cable lengths are controlled by means of

winches allowing the platform motion control. Cables can be

unwound over great lengths such that large workspaces can

be obtained. This latter characteristic together with the cable

capability of carrying heavy payloads make CDPR particu-

larly well adapted to perform large dimension manipulation

or positioning tasks [1]–[4].

In order to drive the platform while controlling all its

degrees of freedom (DOF) and to obtain large workspace

to footprint ratios, redundant actuation can be used. Several

papers proposed redundancy resolution schemes (tension

distribution) [5], [6] based on optimization methods. In order

to fulfill practical real-time needs, a computationally efficient

non-iterative algorithm for tension distribution (TD) was

proposed in [7] based on the previous work of [8]. This

algorithm works for redundantly actuated CDPR having two

more actuators than DOF, i.e. m = n+2 where m is the cable

number and n the number of DOF of the mobile platform.

The proposed TD algorithm keeps the cable tension vector

t ∈ R
m between a non-negative minimum value tmin ≥

0 and a maximum value tmax (generally induced by the

mechanical design). If these constraints are satisfied, then

t is said to be admissible. Note that the non-negativity

condition on cable tensions is a key issue in CDPR control.

Indeed, cables are flexible links that cannot push on the

platform. Consequently, a control action in which a cable is
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required to push on the platform (i.e. with negative tension)

is not valid [5]. In this paper, we focus on motion control

of a redundantly actuated CDPR where the cable tension

constraints are ensured by the TD algorithm introduced in

[7].

Compared to the vast literature on robot motion control,

few studies deal with CDPR. Kawamura et al. proposed to

use a proportional and derivative (PD) controller in joint

space [9]. Oh and Agrawal introduced a PD controller

based on feedback linearization to asymptotically stabilize

the system to the desired pose, taking into account the

platform dynamics [5]. In order to compensate this dynamics,

computed-torque-like controllers using corrective feedfor-

ward terms were also studied. Fang et al. [3] applied a

joint space feedforward controller to compensate the motor

dynamics. Working in both joint and operational spaces,

Vafaei et al. proposed in [10] an integrated controller with

two feedforward terms. However, only the platform dynamics

is compensated. In order to compensate wind disturbances

applied to the cabin of their CDPR, Zi et al. designed a fuzzy

proportional-integral controller [11]. In [12], we introduced a

dual-space feedforward control scheme in operational space

with two feedforward terms to compensate both the platform

dynamics and the winch dynamics and friction. In this paper,

for performance comparison purposes, the control scheme of

[12] is also considered, but with a joint space controller.

The practical implementation of such feedforward control

schemes, which are based on inverse dynamics, requires a

good knowledge of the system dynamic parameters. Since

some of them can be unknown or may vary during the

execution of the task, these controllers can provide erroneous

inputs, decreasing the tracking and regulation performances.

In practice, these drawbacks were observed while experi-

menting on the CoGiRo suspended CDPR shown in Fig. 2.

Some parameter variations, specifically the payload mass, the

position of the center of mass (COM) of the loaded mobile

platform and uncertainties on the winch friction parameters

can significantly affect the global performances of the closed-

loop system.

In order to handle such parametric uncertainties and

variability, adaptive control may be a good solution [13],

[14]. Adaptive laws inspired from the controller in [15] have

been successfully applied to Delta-like parallel robots [16]

with online estimation of the mass of the payload together

with the arm and motor inertias. Besides, in [17], Kino

et al. used adaptive compensation on a fully constrained

CDPR in order to reduce errors on internal forces due

to uncertainties in actuator positions. However, dynamic
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Fig. 1. Schematic view of the 8-cable CoGiRo configuration.

parameter uncertainties were not considered.

The contribution of this paper is an adaptive dual-space

control scheme able to perform motion control of redun-

dantly actuated CDPR in presence of parameter uncertainties

and variability. Twenty-six parameters are estimated online,

namely the loaded (or unloaded) platform mass, the corre-

sponding COM location as well as inertia parameters and

the dry and viscous friction coefficients of the winches. The

proposed controller only requires the measurements of the

actuator rotational positions and speeds. The performances

of the proposed adaptive controller are shown through real-

time experimental results. The latter, obtained on the CoGiRo

suspended CDPR, are compared to those of the non-adaptive

dual-space feedforward controller introduced in [12] in order

to highlight the performance improvements.

This paper is organized as follows. The dynamic modeling

of CDPR is summarized in Section II. The dual-space feed-

forward control scheme is presented in Section III. Section IV

addresses the adaptive controller design while experimental

results are presented and discussed in Section V. Finally,

conclusions and future works are given in Section VI.

II. KINEMATIC AND DYNAMIC MODELING

A. Kinematics

This work aims at performing an accurate motion control

of 6-DOF suspended CDPR equipped with m actuators. The

mobile platform pose is defined by an operational space

vector xφ = [x y z φ θ ψ]
T

=
[

pT oT
]T

∈ R
6 (XYZ

Euler angle convention) which contains the position p and

orientation o of the platform frame ℜp = {P, xp, yp, zp }
with respect to the robot base frame ℜb = {0, xb, yb, zb}.

P is the reference point of the platform. On the CoGiRo

prototype, this point is located at the center of the bottom

face of the cubic platform, shown in Fig. 2.

The 3 × 3 rotation matrix Q which defines the platform

orientation is given by

Q(φ, θ, ψ) =





cθcψ −cθsψ sθ
cφsψ + sφsθcψ cφcψ − sφsθsψ −sφcθ
sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ



 ,

where cθ = cos(θ), sψ = sin(ψ) etc. The joint

coordinate vector of motor rotational positions, denoted

q = {q1, q2, ..., qm} ∈ R
m, and its time derivative q̇ are

assumed to be measured (by means of incremental encoders).

Fig. 2. The LIRMM/Tecnalia COGIRO suspended CDPR prototype.

The relationship between the ith motor angle and the corre-

sponding unwound cable length li is written as follows

li = ±riqi, (1)

where ri accounts for the mechanical transmission reduction

ratio and the drum pitch radius of the ith winch. The rela-

tionship between the operational and joint space coordinates

(inverse kinematics) is as follows

li = ‖(p + Qbi − ai)‖ , (2)

where ai and bi denote the base drawing point and platform

attachment point positions of the ith cable, respectively. The

time first derivative of (2) yields

l̇ = Rq̇ = Jẋ, (3)

where ẋ =
[

ṗ
T

ωT
]T

, ω being the mobile plat-

form angular velocity vector, l̇ is the time-derivative

of l = [l1 . . . lm] ∈ R
m, J is the m × 6 Jacobian ma-

trix of the CDPR and R is the diagonal matrix such

that diag(R) = {r1, r2, . . . , rm} ∈ R
m. The relationship be-

tween ω and ȯ, the first time derivative of the vector of Euler

angles, is given by

ω =





ω1

ω2

ω3



 =





1 0 sθ
0 cφ −sφcθ
0 sφ cφcθ









φ̇

θ̇

ψ̇



 = Sȯ. (4)

By time differentiation, we also have ω̇ = Ṡȯ+Sö. The time

differentiation of (3) yields

l̈ = Rq̈ = Jẍ + J̇ẋ. (5)

The dynamics of a CDPR may be separated into the

dynamics of the mobile parts and the winches. The mobile

parts are composed of the mobile platform (equipped with

the crane fork in the case of CoGiRo robot shown in Fig.2)

and a possible payload.

B. Mobile platform and payload dynamics

Depending on the task at hand, e.g. if the CDPR performs

pick-and-place tasks, the mass, the COM location (called G
in the following) and the inertia parameters of the mobile

platform (loaded or unloaded) may vary. Consequently, G
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Fig. 3. Dual-space feedforward control scheme with joint space controller.

may not be coincident with P (G 6= P ), and the correspond-

ing displacement vector, expressed in the base frame ℜb, is

denoted by d =
−−→
PG = [u v w]

T
. Under this assumption,

Newton-Euler equations of motion are expressed by

M(x)ẍ + C(x, ẋ)ẋ − fg(x) = Wt, (6)

where M and C are 6× 6 matrices defined as

M(x) =

[

mtI3 −mt [d]
mt [d] H

]

, (7)

C(x, ẋ)ẋ =

[

mt[ω][ω]d
[ω]Hω

]

. (8)

In these expressions, mt denotes the total mass of the mobile

platform with payload and H is the 3× 3 symmetric matrix

H = QIGQT − mt[d][d], IG and H being the mobile

platform inertia matrices at the COM G and reference point

P , respectively. In addition, [d] and [ω] denote the 3 × 3
skew-symmetric cross product matrices associated to d and

ω, respectively.

In (6), fg = mtg [0 0 − 1 − v u 0]
T

denotes the

gravity induced wrench at P and f = Wt is the wrench

applied to the mobile platform by the cables, where W is

the 6×m wrench matrix than maps the cable tension vector

t ∈ R
m to the wrench f ∈ R

6. For CDPR, the wrench matrix

is related to the Jacobian matrix by W = −JT . It is worth

noting that the platform dynamics of Eq. (6) is only valid for

t ≥ 0. This requirement is verified by the proposed control

law using a TD algorithm.

Basically, this TD algorithm adds a homogeneous tension

solution tn to the particular tension solution tp stemming

from the Moore-Penrose generalized inverse such that

tTD = W+f + Nλ = tp + tn, (9)

where W+ is the Moore-Penrose generalized inverse of the

wrench matrix, N = ker(W) is its nullspace and λ is an

arbitrary vector. For a detailed description of this algorithm,

the reader is referred to [7].

C. Winch dynamics

The dynamics of the CDPR winches is written as follows

τm = Im(q)q̈ + Fvq̇ + Fs tanh(µq̇) + Rt, (10)

where Im ∈ R
m×m denotes the inertia matrix of the

motors, drums and other rotating parts, Fv ∈ R
m×m and

Fs ∈ R
m×m are the diagonal matrices of viscous and dry

friction coefficients, respectively, and τm ∈ R
m is the

actuator input torque vector. The approximation introduced

by the use of tanh(µq̇) in place of sgn(q̇) to model dry

friction is convenient as it avoids the discontinuities of the

latter. In the sequel, µ > 0 is set to 1000 in order to

approximate the sgn function.

The full robot dynamics can be written in operational

space by using (3) and (5), and by substituting t of (10) into

(6). However, both the loaded mobile platform and actuator

dynamic equations will be treated separately as implemented

in the dual-space feedforward control scheme introduced in

the next section.

III. DUAL-SPACE FEEDFORWARD CONTROL

The dual-space feedforward control scheme presented in

Fig. 3 is designed with a joint space PD controller. As

opposed to the operational space PD controller introduced

in [12], which uses an operational space controller, its

tuning is much simpler in practice. The “inverse dynamics”

bloc embeds Eq. (6) in order to compensate the loaded

platform dynamics with an operational space feedforward

force vector term fff . The actuator dynamics of Eq. (10)

is also compensated by a joint space feedforward torque

vector term τ ff . Compared to the other considered torques,

in the case of the CoGiRo CDPR considered in Section V, the

torques generated by the motor inertia are insignificant due

to the winch design, reduction ratio and relatively low motor

accelerations. Consequently, Im will be neglected in the

following. However, if necessary, note that the consideration

of Im would represent no particular difficulty. It is also

assumed that the mass of the cables is negligible compared

to the other involved forces. The actuator input is then given

by

τm = τ ff + τ TD, (11)

where τ ff = Fvq̇d + Fs tanh(µq̇d) compensates for the

winch dynamics and τ TD = RtTD is the output torque vector

of the TD algorithm. τ TD is obtained from

τ TD = RW+ (fPD + fff ) + RNλ, (12)
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Fig. 4. Dual-space adaptive control scheme with joint space controller.

where fff = M(x)ẍd+C(x, ẋ)ẋd−fg(x) compensates for the

platform dynamics and fPD = WR−1 (Kpeq(t) + Kdėq(t))
tracks the desired trajectory. Here, Kp and Kd are diagonal

positive definite m×m gain matrices, eq is the actuator ro-

tational position error vector eq = qd−q and ėq the actuator

rotational speed error vector ėq = q̇d − q̇. Combining (11)

and (12), the overall control law is written as

τm = τ ff + RW+fff + RNλ

+RW+WR−1 (Kpeq(t) + Kdėq(t)) .
(13)

In order to keep the platform dynamics valid (i.e. t ≥ 0),

the “Tension distribution” bloc embeds the efficient real-time

compatible TD algorithm of [7]. Additionally, the desired

accelerations stemming from the “Trajectory generation”

bloc are bounded, especially in the −z direction since the

considered CDPR is suspended. However, while experiment-

ing on the CoGiRo redundantly actuated CDPR prototype, it

has sometimes been observed that the TD algorithm failed,

which means that the forces fc to be applied by the cables

to the platform cannot be performed. This is attributed to

model uncertainties. If the inverse dynamics mismatch the

CDPR actual dynamics, then feedforward terms provide

wrong signals. The PD controller is led to overwork and fc
may become impossible to balance. Such a situation leads to

a failure of the TD algorithm which may yield large tracking

errors.

In order to solve these modeling uncertainty and variation

issues and to improve the global performances of the CDPR,

an adaptive dual-space feedforward control scheme able

to estimate online the dynamic and friction parameters is

proposed in the next section. The new control law is inspired

from (13) and allows the feedforward terms τ ff and fff to

be adapted during the task.

IV. ADAPTIVE CONTROL DESIGN

This paper proposes to keep separated the two dynamics

equations (6) and (10) in order to apply two corrective

feedforward terms in the framework of the dual-space adap-

tive control scheme shown in Fig. 4. Classical feedforward

control relies on a good knowledge of the system param-

eters. Some of them, such as friction, are very difficult

to estimate and may change over time. In the same way,

while performing pick-and-place tasks, the total mass of

the loaded or unloaded mobile platform together with its

COM location can be largely modified. These variations

and uncertainties, acting as disturbances on the closed-loop

system, may significantly affect the controller performances.

In order to deal with this issue, the inverse dynamics is now

reformulated with parameter estimations.

A. Joint space adaptive terms

Eq. (11), can be rewritten as

τm = Yq (q̇)θq + τTD, (14)

where the winch friction terms are expressed as

Fvq̇ + Fs tanh(µq̇) = Yq(q̇)θq. (15)

Here, Yq is the m×2m regression matrix of known functions

Yq(q̇) = [diag {tanh(µq̇1), . . . , tanh(µq̇m)} ,
diag {q̇1, . . . , q̇m}] ,

(16)

and θq is the vector of the 2m winch dynamic parameters

θq = [fs1 fs2 · · · fsm fv1 fv2 · · · fvm ]T , (17)

m of them being the winch dry friction coefficients fsi and

the other m being the winch viscous friction coefficients fvi .
In the proposed control scheme, θq is estimated in the

feedforward loop using “reference” velocities, introduced in

[14] as

τ̂ ff = Yqr (q̇r) θ̂q = F̂vq̇r + F̂s tanh(µq̇r), (18)

where F̂v and F̂s are the estimates of Fv and Fs, re-

spectively. The reference velocity vector q̇r is defined as

q̇r = q̇d + λeq , where λ is a strictly positive scalar defined

as λ = λ0/(1 + ‖eq‖) [18], λ0 being a positive constant to

be tuned by the user. Using the projection algorithm of Khalil

[15], the joint space estimated parameters vary according to

the following adaptation law
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˙̂
θqi =







































γqiφqi
if

aqi < θ̂qi < bqi or

θ̂qi ≥ bqi & φqi
≤ 0 or

θ̂qi ≤ aqi & φqi
≥ 0

γqi

(

1 +
bqi

−θ̂qi
δq

)

φqi
if θ̂qi ≥ bqi & φqi

≥ 0

γqi

(

1 +
θ̂qi

−aqi
δq

)

φqi
if θ̂qi ≤ aqi & φqi

≤ 0

(19)

for i = 1 . . . 2m and where δq ≥ 0. Let us denote

Γq = diag {γq1 , . . . , γq2m} the positive diagonal matrix of

adaptive gains in the joint space. aqi and bqi are the lower

and upper bounds on the ith parameter to be estimated,

respectively. Furthermore, φq = −YTqrsq , where sq is the

joint space combined error sq = ėq + λeq , φqi being the ith
component of φq . Using (19), for all time t ≥ 0 and with

aqi ≤ θ̂qi(0) ≤ bqi , all estimated parameters are bounded

such that aqi ≤ θ̂qi ≤ bqi .

B. Operational space adaptive terms

Let us now consider the tension distribution algorithm

output of Eq. (12), which can be rewritten as

τ TD = RW+ (fPD + Yx (x, ẋ, ẍ)θx) + RNλ, (20)

where the platform dynamics are expressed as

M(x)ẍd + C(x, ẋ)ẋd − fg(x) = Yx (x, ẋ, ẍ)θx. (21)

θx is the vector of the following 10 platform dynamic

parameters:

• the total mass mt of the mobile platform and load;

• the three components of mtd, where d = [u v w] is the

COM location as defined in Section II;

• the six different components of the matrix H:

H =





hxx −hxy −hxz
−hxy hyy −hyz
−hxz −hyz hzz



 . (22)

Thus, θx is defined as follows

θx = [mt mtu mtv mtw hxx hyy hzz hxy hxz hyz]
T
.

(23)

The decomposition of the corresponding 6 × 10 regres-

sor matrix Yx as a sum of three 6 × 10 matrices

gives Yx(ẋ, ẍ) = Yx1
(ẍ) + Yx2

(ẋ) + Yx3
. Yx1

(ẍ) denotes

the known functions composing the expression of acceler-

ation forces. It has the following structure

Yx1
(ẍ) =

[

p̈ [ω̇] 03×3 03×3

03×1 − [p̈] diag(ω̇) E

]

, (24)

where

E =





−ω̇2 −ω̇3 0
−ω̇1 0 −ω̇3

0 −ω̇1 −ω̇2



 . (25)

The expression of Yx2
(ẋ), the matrix of known functions of

the centrifugal and Coriolis forces, takes the following form

Yx2
(ẋ) =

[

03×1 A(ω) 03×6

03×1 03×3 B(ω)

]

, (26)

where A is the following 3× 3 symmetric matrix

A =

[

−(ω2

2
+ω2

3) ω2

1
ω2

2
ω2

1
ω2

3

ω2

1
ω2

2
−(ω2

1
+ω2

3) ω2

2
ω2

3

ω2

1
ω2

3
ω2

2
ω2

3
−(ω2

1
+ω2

2)

]

, (27)

and B is a 3× 6 matrix

B =

[

0 −ω2ω3 ω2ω3 ω1ω3 −ω1ω2 (ω2

3
−ω2

2)
ω1ω3 0 −ω1ω3 −ω2ω3 (ω2

1
−ω2

3) ω1ω2

−ω1ω2 ω1ω2 0 (ω2

2
−ω2

1) ω2ω3 −ω1ω3

]

.

(28)

The last matrix Yx3
denotes the known functions of the

gravity action

Yx3
=





02×3 02×7

G 03×7

01×3 01×7



 , G =





g 0 0
0 0 g
0 −g 0



 . (29)

Using reference velocities and accelerations in the feed-

forward loop, the platform dynamic parameters are estimated

by

f̂ff = Yxr
(x, ẋ, ẋr, ẍr) θ̂x = M̂(x)ẍr + Ĉ(x, ẋ)ẋr − f̂g(x),

(30)

where M̂, Ĉ and f̂g are the estimates of M, C and fg ,

respectively. The reference velocities ẋr and accelerations ẍr
are defined as ẋr = ẋd+λex and ẍr = ẍd+λėx, respectively,

where ex and ėx denote the position and velocity operational

space errors. The adaptive law updating the 10 operational

space parameters is given by

˙̂
θxj

=











































γxj
φxj

if

axj
< θ̂xj

< bxj
or

θ̂xj
≥ bxj

& φxj
≤ 0 or

θ̂xj
≤ axj

& φxj
≥ 0

γxj

(

1 +
bxj

−θ̂xj
δx

)

φxj
if θ̂xj

≥ bxj
& φxj

≥ 0

γxj

(

1 +
θ̂xj

−axj
δx

)

φxj
if θ̂xj

≤ axj
& φxj

≤ 0

(31)

for j = 1 . . . 10 and where δx ≥ 0. Let us denote

Γx = diag {γx1
, . . . , γx10

} the positive diagonal matrix of

adaptive gains in the operational space. axj
and bxj

are the

lower and upper bounds on the jth parameter to be estimated,

respectively. Furthermore, φx = −YTxrsx, where sx is the

operational space combined error sx = ėx+λex = J+sq , φxj

being the jth component of φx. Again, using (19), ∀t ≥ 0
and with axi

≤ θ̂xi
(0) ≤ bxi

, all these parameters are

bounded such that axi
≤ θ̂xi

≤ bxi
. All bounds, δ values,

adaption gains γ and λ0 must be defined by the user.

C. Overall control law

Finally, combining Eq. (14) and (20) while substituting the

adaptive terms of Eq. (18) and (30), the proposed adaptive

control law is written as

τm = Yqr (q̇r)θ̂q + RW+Yxr
(x, ẋ, ẋr, ẍr)θ̂x

+RNλ+ RW+WR−1 (Kpeq(t) + Kdėq(t)) .
(32)

The dual-space adaptive control scheme shown in Fig. 4

has been implemented in the CoGiRo CDPR control system.

Experimental results are given in the following section.
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V. REAL-TIME EXPERIMENTAL RESULTS

A. CoGiRo prototype

The CoGiRo CDPR prototype shown in Fig. 2 has the

following main characteristics:

• 15m× 11m× 6m (L× l× h) overall dimensions with

a potential workspace of 677m3;

• Cubic mobile platform of side length 1m in suspended

configuration equipped with a crane fork. Its total mass

is about mp = 93 kg;

• 6 degrees of freedom (DOF) mobile platform;

• m = 8 actuators so that the robot has 2 degrees of

actuation redundancy;

• At least 300 kg payload capability over all the

workspace and 500 kg as long as the platform is not

too close to the workspace boundary;

• tmin = 0N in order to respect the non-negativity con-

straint on cable tensions and tmax = 5000N according

to the maximum capabilities of the force sensors.

• The motor rotational positions and speeds are obtained

by means of incremental absolute encoders.

• The reference point P is located at the center of the

bottom face of the platform.

As shown in Fig. 1 and Fig. 2, CoGiRo is a suspended

CDPR since all the cable drawing points are located near

the top of the base frame. In contrast to fully constrained

CDPR for which there exists at least one mobile platform

pose having force-closure [9], gravity is here used to help

keeping the cables tensed.

This section reports some experimental results of the

implementation in ANSI C code in the control system of

CoGiRo CDPR of the control scheme proposed in Section IV

with a 2 kHz sampling frequency. The control system pro-

gramming interface is B&R Automation Studio.

B. Scenario

The tracking and adaptive performances will be evaluated

along the pick-and-place trajectory of the reference point

P shown in Fig. 5. The mobile platform, equipped with a

crane fork, starts from point 0. It goes to point A and moves

forward to pick up a 110 kg pallet (∆m = 120%) at point B
at time t1 = 19 s. The pallet is then displaced and dropped

off at point C at time t2 = 40 s before a backward move of

the platform to point D. In a last step, the mobile platform

comes back to its initial position 0. The paper is accompanied

by a video, showing the CoGiRo CDPR performing this pick-

and-place task via the proposed adaptive control scheme.

In this section, this pick-and-place task will be firstly

performed with a feedforward-free control scheme (i.e. con-

troller of Fig. 3 with fff = 0 and τ ff = 0), and secondly

using the dual-space feedforward control scheme shown in

Fig 3. Finally, the dual-space adaptive control scheme shown

in Fig. 4 is applied. The performances of the proposed control

schemes are quantified by comparison of the maximum value

ǫmax and root mean square (RMS) value ǫrms of both the

position tracking error (PTE) and orientation tracking error

(OTE) in the operational space.
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Fig. 5. Pick-and-place trajectory performing a 110 kg pallet lifting.

TABLE I

MAXIMUM AND RMS TRACKING ERRORS OF THE DIFFERENT

CONTROLLER CONFIGURATIONS.

error type no feedfor-
ward

feedforward
controller

adaptive
controller

maximum PTE 37mm 24mm 19mm

maximum OTE 7.8e−3 rad 4.1e−3 rad 3.9e−3 rad

RMS PTE 20.24mm 7.02mm 0.71mm

RMS OTE 2.1e−3 rad 1.2e−3 rad 8.7e−5 rad

Note that CoGiRo is here not equipped with external

measurement system able to provide the current operational

pose x and velocity ẋ of the mobile platform. In order

to get the operational tracking errors ex and ėx, the joint

tracking errors eq and ėq are converted by means of the

pseudo-inverse of the Jacobian matrix. Indeed, from (3) we

write ėx = J+Rėq . Furthermore, the sampling period being

small (∆t is equal to 0.5ms), we can write eq = q̇∆t and

ex = ẋ∆t and, consequently, ex = J+Req .

C. Dual-space feedforward control results

In the first case, the proposed scenario is applied on

CoGiRo without any dynamic compensations (fff = 0 and

τ ff = 0). The controller gains are tuned to be diag (Kp) =
{30, 30, . . . , 30} and diag (Kd) = {1, 1, . . . , 1}. The

position and orientation maximum tracking error values and

0 10 20 30 40 50 60
−0.04

−0.02

0

0.02

0.04

Time [s]

P
T

E
 a

n
d

 O
T

E
[m

] 
a

n
d

 [
ra

d
]

 

 

x y z φ θ ψ

0 10 20 30 40 50 60
−0.1

−0.05

0

0.05

0.1

Time [s]

V
e

lo
c
it
y
 e

rr
o

rs
[m

/s
] 

a
n

d
 [

ra
d

/s
]

Fig. 6. Position and velocity tracking errors in operational space without
feedforward compensation terms.
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RMS error values are large, as shown in Table I. The obtained

operational tracking errors (calculated from articular tracking

errors, see Section V-B) are depicted in Fig 6. As shown in

the latter figure, the most important tracking error is along

the z-axis: As the mass of the mobile platform and payload

is not compensated, primarily, the error remains superior to

0, with a maximum value of 3.7 cm.

In the second case, the dual-space feedforward control

scheme is applied to CoGiRo in order to perform the pick-

and-place task defined in Section V-B. The controller gain

tuning of the previous case is retained. The sum of the mobile

platform and the crane fork masses is set to 93 kg. The

corresponding COM location and the inertia parameters have

been computed using a CAD model. Dry and viscous friction

coefficients were estimated empirically (not without difficul-

ties). The obtained operational tracking errors are depicted in

Fig 7. Compared to the previous case, the maximum tracking

position error is reduced by 50% and the RMS position error

is almost divided by 3. The position tracking error remains

close to 0 when the platform is unloaded. However, when

the payload is lifted (between t1 = 19 s and t2 = 40 s),

the error along the z-axis reaches 2.4 cm. Table I shows the

maximum and RMS tracking error values in position and

orientation of the platform. In order to further improve the

tracking performances, we now apply the proposed adaptive

control scheme introduced in Section IV.

D. Dual-space adaptive control results

CoGiRo is equipped with 8 actuators so that 2m = 16
parameters are estimated in the joint space. The following

table summarizes the whole adaptive control settings.

The control input signals are shown in Fig. 8. As the motor

maximum torques are about 280Nm, these signals remain

far from the limits of the actuators. The obtained operational

tracking errors are depicted in Fig. 9. As shown, when

the payload is picked at time t1 = 19 s the error along

the z-axis suddently raises so that the maximum PTE is

barely decreased, but it then returns close to 0 due to the

adaption process. Consequently, compared to the dual-space

feedforward controller, the mean PTE between t1 = 19 s and
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Fig. 7. Position and velocity tracking errors in operational space with the
non-adaptive dual-space feedforward controller.

0 10 20 30 40 50 60
0

10

20

30

Time [s]

C
o

n
tr

o
l 
in

p
u

ts
 [

N
m

]

Fig. 8. Control input signals.

TABLE II

ADAPTIVE CONTROLLER TUNING.

Adaptive gains Γq diag(Γq) =
{

0.5, . . . , 0.5, 1e−4, . . . , 1e−4
}

Adaptive gains Γx diag(Γx) =
{

120, 10, 10, 10, 1e3 . . . , 1e3
}

aq [0 0 . . . 0]
bq [5 . . . 5 0.03 . . . 0.03]
ax [0 − 250 − 250 − 250 − 150 . . . − 150]
bx [600 250 250 50 150 . . . 150]
λ0 10
δq 0.001
δx 0.1

Proportional gains diag(Kp) = {30, 30, . . . , 30}
Derivate gains diag(Kv) = {1, 1, . . . , 1}

t2 = 40 s is strongly decreased. As reported in Table I, the

RMS PTE and RMS OTE are divided by 10 and 14, respec-

tively. The parameters estimations are depicted in Fig. 10.

The evolution of the adapted mass parameter indicates that

the unloaded platform is estimated to 150 kg instead of the

expected 93 kg. This may be due to non-modeled frictions

induced by the drawing point eyelets. However, the increase

of the 110 kg mass between t1 and t2 is correctly estimated.

In Fig. 10, δ denotes the COM location with respect to the

reference point P expressed in the mobile frame ℜp. The

mass and COM location decrease at the very end of the

estimations because the platform is put down on the ground,

back at the initial point 0.

Note that in the three cases of Fig. 6, Fig. 7 and Fig. 9, the

velocity tracking errors are similar.

These experiments show clearly the effectiveness of the

proposed adaptive controller as well as the effect of the
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Fig. 9. Position and velocity tracking errors in operational space with the
adaptive dual-space feedforward controller.
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Fig. 10. Parameter estimations.

feedforwards in the performance of the closed-loop con-

trolled system. Ongoing works aim at further improving the

controller performances. Notably, as illustrated in Fig. 10,

the reactivity of the parameter online estimations could be

improved, especially those of the friction coefficients, which

should in turn reduce the tracking error of Fig.9.

VI. CONCLUSIONS

The main contribution of this paper is a dual-space adap-

tive controller applied to redundantly actuated CDPR. A

dual-space feedforward control scheme with a joint space

controller was first introduced. An adaptive version of this

controller was then proposed to improve its tracking perfor-

mances. As the former is prone to parametric uncertainties

and variations, the adaptive online estimation of the mobile

platform and actuator dynamic parameters resulted in better

tracking performances. In our experiments on a redundant

CDPR, the proposed adaptive controller proved to be stable.

Part of our future works will be dedicated to a rigorous

stability analysis of the resulting closed-loop system.
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