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Optimal Design of Cable-Driven Parallel Robots for Large Industrial
Structures

Lorenzo Gagliardini1, Stéphane Caro2, Marc Gouttefarde3, Philippe Wenger2 and Alexis Girin1

Abstract— This paper presents the preliminary studies ded-
icated to the design of cable-driven parallel robots (CDPRs)
for industrial purposes. The goal is to transport the proper
tools around a jacket, an offshore structure supporting a
wind turbine, in order to perform painting and sandblasting
tasks. In this paper, a simplified case study consisting of
a structure composed of four tubes is investigated. A fully
constrained CDPR and a suspended CDPR are studied. The
design problems of the CDPRs at hand are formulated as
optimization problems. They aim at determining the locations
of the base anchor points of the cables that minimize the size
of the CDPR, while satisfying a set of constraints. Those
constraints guarantee that the moving platform can support the
external wrenches and that there is no interference between the
cables and between the cables and the environment, all along
the path to be followed by the moving platform.

I. INTRODUCTION
Nowadays part of the worldwide energy production comes

from renewable sources: offshore wind turbines represent a
leading technology in the renewable energy sector [1]. They
can be installed in the sea through different supports, like
jackets (offshore fixed structures, as illustrated in Fig. 1).
Due to their shape and size, the fabrication of jackets is
complicated and requires non standard procedures. The study
of efficient technological processes aims at producing these
structures in series and at limiting the risks for operators. In
this context, the IRT Jules Verne is cooperating with STX
Europe to investigate and develop a Cable Driven Parallel
Robot (CDPR) in order to perform painting and sandblasting
operations on jackets.

CDPRs can represent an appropriate technological solution
for the considered tasks. Indeed, CDPR are able to cover
wide spaces and their payload to weight ratio is usually very
high. They are relatively cheap and can be designed in such
a way to be reconfigurable and therefore adapted to different
tasks.

Although no CDPR has already been designed for the
application considered in this paper, research works have al-
ready been performed in similar sectors, like the naval, aero-
nautic and civil engineering ones. Albus et al. developed, at
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Fig. 1. Offshore wind turbine jacket, courtesy of STX Europe.

the beginning of the 90s, the NIST RoboCrane [2], a CDPR
able to perform several industrial operations, like painting of
military aeroplanes and displacement of heavy payloads. In
2001 Holland and Cannon filed the patent US6826452 B1 [3].
They proposed a robotic system composed of four cranes to
be employed as a CDPR for cargo transportation. Currently,
several research institutes and companies are involved in
the framework of the European Project CableBOT that aims
at developing modular and reconfigurable CDPRs able to
perform different operations during the fabrication of large-
scale structures [4]. CDPRs can be employed also for other
large workspace applications, e.g. the broadcasting of sport
events [5], [6] and rescue operations [7].

This paper presents a preliminary design study of a CDPR
transporting the tools necessary to perform painting and
sandblasting operations on a jacket. The designs of a fully
constrained CDPR and a suspended CDPR are investigated.
Due to the complexity of a real jacket, the analysis is applied
on a simplified structure made up of four tubes, as illustrated
in Fig. 2. This context represents a new challenge since it
introduces several constraints into the design problem. Due
to the cluttered industrial environment, interferences between
the cables and the environment need to be taken into account.
The cable tensions and the positioning precision of the CDPR
are constrained as well. In this paper, the design problem is
formulated as an optimization problem, aiming at minimizing
the size of the CDPR.

The paper is organized as follows: Section II describes the
industrial context and the problem formulation. Section III
introduces the CDPR models. Section IV presents the
design of a fully constrained CDPR for the given case
study. Section V describes the design of a suspended CDPR.
Section VI concludes the paper and presents our future work.



Fig. 2. Description of the task environment.

II. PROBLEM DESCRIPTION
A jacket is an offshore structure composed of several tubes

as shown in Fig. 1. One jacket has already been realized
by STX Europe. It has a base of 30 m× 30 m, an height
of 60 m and a weight of 1000 T. The upper part of the
jacket, which remains outside the water, is 20 m high. This
part should be painted and sandblasted, to be protected from
oxidation. STX Europe planned to automatize part of the
industrial process in order to produce several units per year.

The technical solution proposed in this paper consists in
painting and sandblasting the structure by means of proper
tools mounted on a CDPR platform: the Centre of Mass
(CoM) of the CDPR follows a path along the jacket tubes
approaching the tools to the jacket itself. When the CDPR is
in the correct pose, the tools can perform the required tasks.

Due to the complexity of the problem, a simplified case
study is introduced. Painting and sandblasting operations
have to be performed on a four-bar tubular rigid structure.
The structure is centered in an absolute reference frame, Fb,
of origin Ob and axes xb, yb, zb, as shown in Fig. 2. It has
an height, hs, of 10 m and a width, ws, of 5 m. The diameter
of the tube, φs, is equal to 50 cm.

The design problem can be summarized as follows. The
CDPR cable exit point positions have to be determined.
The CDPR should be able to follow a proper path to let
the embarked painting and sandblasting tools perform the
required operations along one side of the four-tube structure.
The other side can be painted by a similar CDPR. Both the
paths are illustrated in Fig. 2. They are 80 cm far from the
structure. The CDPR should avoid cable interferences and
collisions between the cables and the environment (here, the
four-bar tubular structure). The cable tensions must respect
given limits. The CDPR must be fully constrained during
the operations, or at least in static equilibrium (in the case
of a suspended design). The CDPR should be as compact as
possible.

III. GEOMETRIC AND STATIC ROBOT MODELS
A CDPR is composed of a mobile platform, a support

structure (the base) and m cables. Two reference frames are
considered: the fixed base frame, Fb, presented in Section II,
and a platform frame, Fp, of origin Op and axes xp, yp, zp.

Fig. 3. Cable driven robot geometry. Example of a suspended CDPR. The
same geometric description can be applied to a fully constrained CDPR.

The exit point of the i-th cable on the base, Ai, is de-
scribed, with respect to Fb, through the Cartesian coordinate
vector abi , i = 1, . . . ,m. The platform connection point
of the i-th cable, Bi, is defined, with respect to Fb, by
the Cartesian coordinate vector bb

i , i = 1, . . . ,m; the same
vector, expressed in Fp, is represented by bp

i , i = 1, . . . ,m.
The moving platform pose, p, expressed in Fb, is composed
of the Cartesian coordinate vector of the CoM position, t,
and the orientation angle vector Φ = [φ, θ, ψ]

T, described
through the Euler Angles φ, θ and ψ around zb, xb and yb,
respectively.

As illustrated in Fig. 3, the length of the i-th cable,
between points Ai and Bi, is the norm of the vector li
expressed in Fb as:

li = abi − t−Rbp
i i = 1, . . . ,m (1)

where R denotes the orientation matrix of the platform:

R = Rz(φ)Rx(θ)Ry(ψ) =

=

cφcψ − sφsθsψ −sφcθ cφsψ + sφsθcψ
sφcψ + cφsθsψ cφcθ sφsψ − cφsθcψ
−cθsψ sθ cθcψ

 (2)

The unit vector of the i-th cable, di, expressed in Fb, is
equal to:

di =
li
‖li‖2

i = 1, . . . ,m (3)

The CDPR static model is represented by the following
equilibrium equation [8]

Wτ + we = 0 (4)

τ = [τ1, ..., τm]
T denotes the cable tension vector. Due to the

non-rigid nature of the cables, tensions must be non-negative.
Moreover, they have to remain smaller than the maximum
tension value τmax. W denotes the wrench matrix composed
of the wrenches wi exerted by the cables on the platform at
point Op, namely,

W =

[
d1 d2 . . . dm

Rbp
1 × d1 Rbp

2 × d2 . . . Rbp
m × dm

]
(5)

we represents the external wrench acting on the platform:

we =
[
f ,m

]T
=
[
fx, fy, fz,mx,my,mz

]T
(6)



Its components are supposed to be bounded.

fmin ≤ fx, fy, fz ≤ fmax (7)
mmin ≤ mx,my,mz ≤ mmax (8)

When the number m of cables is greater than 6, the system
of equations (4) is underdetermined and the solution can be
expressed as:

τ = τn + τ 0 = W†we + λn τn ≥ 0 (9)

W† denotes the Moore-Penrose generalized inverse of W,
λ ∈ R and n is a vector in the null space of W [8].

IV. FULLY CONSTRAINED CDPR DESIGN
The first design problem aims at minimizing the size of a

fully constrained CDPR intended to paint a side of the tubular
structure. To perform this operation, the CDPR CoM should
follow the Path I shown in Fig. 2. The other side can be
painted by a symmetrically placed CDPR following Path II.
Each path is defined by a discretized curve P , composed of
600 equidistant points P . The CDPR static equilibrium is
an important issue to take into consideration since the cables
cannot push the platform. Therefore, the CDPR equilibrium
can be satisfied only through positive cable tensions. The
required robot accuracy is also considered, as well as the
collisions between cables and between cables and the tubular
structure. These constraints must be verified for all points
P ∈P .

The optimization is performed on a CDPR with eight
cables, m = 8, which corresponds to the minimum even
number of cables for a fully constrained CDPR [8]. This
choice should maintain the design of the CDPR as simple
and cheap as possible. Steel cables are considered. They are
characterized by the following properties: diameter, φc, of
0.4 cm, Young Modulus equal to 100 GPa, elastic coefficient
k of 1, 256 × 106N/m and tension limit, τmax, equal to
11 650 N. In order to simplify the problem, the layout of
points Bi, i = 1, . . . , 8 is predefined. Points Bi lie at the
corners of a parallelepiped, whose width, wp, length, lp, and
height, hp, are equal to 40 cm, 40 cm and 20 cm, respectively.

A. Design Variables
The decision variables of the optimization problem are

represented by the position vectors of points Ai. To reduce
the number of variables, the points Ai have been located at
the vertices of parallelepiped whose edges are parallel to the
axes xb, yb and zb. Hence, four variables, ux1, ux2, uy ,
uz , are sufficient to define the coordinates of points Ai with
respect to Fb, as illustrated in Fig. 4,

ab1 = [ux1, uy, uz]
T
, ab2 = [ux1, uy,−uz]

T (10)

ab3 = [ux2, uy, uz]
T
, ab4 = [ux2, uy,−uz]

T (11)

ab5 = [ux2,−uy, uz]
T
, ab6 = [ux2,−uy,−uz]

T (12)

ab7 = [ux1,−uy, uz]
T
, ab8 = [ux1,−uy,−uz]

T (13)

The boundaries of the design variables are defined as follows:

0.8 m ≤ ux1 ≤ 3.5 m, 0 m ≤ ux2 ≤ 0.8 m (14)
2.5 m ≤ uy ≤ 5 m, 5 m ≤ uz ≤ 7.5 m (15)

Fig. 4. Layout of points Ai for the fully constrained CDPR.

TABLE I
REQUIRED WRENCH SET DEFINITION

fx fy fz mx my mz

min −50N −50N −600N −7.5Nm −7.5Nm −7.5Nm
max 50N 50N −550N 7.5Nm 7.5Nm 7.5Nm

The vector gathering the design variables is denoted x,

x = [ux1, ux2, uy, uz] (16)

whereas q denotes the design parameter vector,

q = [m, τmax, φc, lp, wp, hp, hs, ws, φs] (17)

B. Objective Function

The objective function, V (x), of the optimisation problem
at hand is the volume of the parallelepiped whose vertices
are the points Ai, i = 1, . . . , 8:

V (x) = 4 (ux1 − ux2)uyuz (18)

This objective function has been selected in order to mini-
mize the space occupied by the CDPR inside the workshop.

C. Constraints

The path to be followed by the CoM of the CDPR
platform should be included in the Wrench Feasible
Workspace (WFW) of the robot for the latter to be in static
equilibrium and controllable [9], [10]. The WFW is the set
of platform poses that are wrench feasible. A pose is wrench
feasible if the CDPR is able to balance any external wrench
within a given set, with non-negative cable tensions lying
in a given admissible interval [11]. Hence, for the pose of
the moving platform to be inside the WFW, the following
condition should be fulfilled,

∀we ∈ [w]r, ∃τ ∈ [τ ] | Wτ + we = 0 (19)

where [w]r denotes the required wrench set, representing the
set of wrenches that can be applied on the CDPR platform.
Its boundaries have already been defined in Eq. (7) and
Eq. (8). Their values are given in Table I. [τ ] represents



the set of admissible cable tensions, whose components are
bounded as follows:

0 ≤ τi ≤ τmax, ∀i = 1, . . . , 8 (20)

[w]r and [τ ] are defined in different spaces, connected
through the static equilibrium equation by the wrench matrix.
The wrenches that can be generated by [τ ], through Eq. (4),
is a zonotope, called the available wrench set, [w]a =
−W[τ ]. In order to verify the wrench feasibility of the poses
belonging to Path I, the technique described in [12] and [13]
has been used. The algorithm verifies that all the vertices of
[w]r are included in [w]a, [w]r ⊆ [w]a. According to [12]
and [13], this condition can be translated into verifying the
satisfaction of a finite set of linear inequalities:

Cw ≤ d, ∀w ∈ [w]r (21)

Moreover, cable-cable and cable-structure potential colli-
sions are taken into account. Being given that two cables i
and j are represented as straight line segments, a possible
cable interference can be verified by computing the distance
dcci,j between the cables i and j. This distance dcci,j is
calculated by means of Lumelsky’s approach [14] and has
to be larger than the diameter, φc, of the cables, i.e.,

dcci,j ≥ φc ∀i, j = 1, . . . ,m, i 6= j (22)

For m = 8, the number of tests to be performed for each
point P is equal to C2

8 = 8!
2!6! = 28. Given a cable i and one

of the four tubes k of the structure, cable-structure potential
collisions are tested by means of the distance dcsi,k between
the i-th cable and the k-th tube of the structure. The i-th
cable and the k-th tube do not collide when dcsi,k is greater
than the sum of the cable and tube radii.

dcsi,k ≥
(φc + φs)

2
∀i = 1, . . . ,m, ∀k = 1, . . . , nc (23)

where nc = 4 is the number of tubes of the structure
considered in this paper. Consequently, the number of
constraints to be considered is equal to mnc = 32.

Due to operational requirements, the positioning errors
δtx, δty and δtz of the CoM of the moving platform along
the xb, yb and xb axes should be smaller than 1 cm:

−1 cm ≤ δtx, δty, δtz ≤ 1 cm (24)

The orientation errors δrx, δry and δrz of the moving
platform about xb, yb and zb axes should be smaller than
0.1 rad:

−0.1 rad ≤ δrx, δry, δrz ≤ 0.1 rad (25)

The elastostatic model of the CDPR is defined as follows:

wext = Kδp = K
[
δrT δtT

]T
(26)

where K is the stiffness matrix of the CDPR and the vector
δp denotes the moving platform pose displacement generated
by an external wrench wext exerted on the moving-platform.
Hence, vector δp can be computed as:

δp = K−1we (27)

TABLE II
DESIGN VARIABLE AND OBJECTIVE FUNCTION VALUES OF THE

OPTIMUM FULLY CONSTRAINED CDPR

ux1 ux2 uy uz V
0.8207m 0.7807m 3.1165m 6.2461m 3.1146m3

From [15], matrix K can be expressed as K = Kk + Kt,
with

Kk =

8∑
i=1

(
ki −

τi
ρi

)[
did

T
i did

T
i b̂b

i

T

b̂b
i

T
did

T
i b̂b

idid
T
i b̂b

i

T

]

+

8∑
i=1

τi
ρi

[
I3x3 b̂b

i

T

b̂b
i b̂b

i b̂
b
i

T

]
(28)

Kt = −
8∑

i=1

τi

[
03x3 03x3

03x3 d̂ib̂
b
i

]
(29)

where ki denotes the i-th cable stiffness. ki is set equal to
k. I3x3 denotes the 3 × 3 identity matrix. b̂b

i is the cross
product matrix of vector bb

i =
[
bbi,x, b

b
i,y, b

b
i,z

]T
defined as:

b̂b
i =

 0 −bbi,z bbi,y
bbi,z 0 −bbi,x
−bbi,y bbi,x 0

 (30)

d̂i denotes the cross product matrix of di. Eq. (27) should
be verified with respect to the bounds defined in Eq. (24)
and Eq. (25) for all the vertices of [w]r.

D. Design Problem Formulation

The design problem of the CDPR can be formulated as
follows:

mininimize V (x) = 4 (ux1 − ux2)uyuz

over x = [ux1, ux2, uy, uz]

subject to

∀P ∈P



Cw ≤ d, ∀w ∈ [w]r

dcci,j ≥ φc ∀i, j = 1, . . . , 8, i 6= j

dcsi,k ≥
(φc + φs)

2
∀i = 1, . . . , 8, ∀k = 1, . . . , 4

−1 cm ≤ δtx, δty, δtz ≤ 1 cm
−0.1 rad ≤ δrx, δry, δrz ≤ 0.1 rad

(31)

E. Optimum Fully Constrained CDPR Design

The previous optimization problem has been solved by
using the GlobalSearch Algorithm developed by Zsolt et
al. [16]. The optimum design is illustrated in Fig. 5. Table II
provides the design variables and objective function values
for the optimum fully constrained CDPR. This design is the
most compact one, as visible by the short distances between
the points Ai along xb. This small distance prevents the
cables from interfering and represents an interesting technical
solution in terms of cable setting on the base.



Fig. 5. Optimum design of the fully constrained CDPR. Solution of the
optimization problem (31).

V. SUSPENDED CDPR DESIGN

The second design optimization problem aims at finding
the positions of the cable exit and connection points that
minimize the size of a suspended CDPR intended to perform
the task detailed in Section IV. The chosen number of cables
is equal to six, i.e., m = 6. To simplify the problem, we
assume that no external wrench is applied on the moving
platform: only gravity is acting on the platform weighting
60 kg. The wrench produced by the platform weight is
defined by the vector wg .

A. Design Variables

Unlike in Section IV, the length lp, the width wp and the
height hp of the box-shaped moving platform are part of the
variables of the design problem at hand. The configuration
of points Bi has a higher influence, in terms of static
equilibrium, for suspended CDPR than for fully constrained
ones. The Cartesian coordinates of points Bi, i = 1, . . . , 6
are expressed in the moving platform frame as follows:

bp
1 =

[
lp
2
,
wp

2
,
hp
2

]T
, bp

2 =

[
0,
wp

2
,
−hp

2

]T
(32)

bp
3 =

[
−lp
2
,
wp

2
,
hp
2

]T
, bp

4 =

[
−lp
2
,
−wp

2
,
hp
2

]T
(33)

bp
5 =

[
0,
−wp

2
,
−hp

2

]T
, bp

6 =

[
lp
2
,
−wp

2
,
hp
2

]T
(34)

The layout of points Bi is shown in Fig. 6. The different
positions of points Bi along zp aim at balancing the external
wrenches. The Cartesian coordinates of points Ai, illustrated
in Fig. 6, are defined in terms of variables ux1, ux2, uy , uz ,
as:

ab1 = [ux1, uy, uz]
T
, ab2 = [ux12, uy, uz]

T (35)

ab3 = [ux2, uy, uz]
T
, ab4 = [ux2,−uy, uz]

T (36)

ab5 = [ux12,−uy, uz]
T
, ab6 = [ux1,−uy, uz]

T (37)

where ux12 = (ux1 + ux2) /2.

Fig. 6. Layouts of points Ai and Bi for the suspended CDPR.

The bounds on the design variables ux1, ux2, uy , uz are
defined in Eq. (14) and Eq. (15). The bounds on variables
lp, wp and hp are the following:

0.3 m ≤ lp, wp, hp ≤ 0.6 m (38)

The design variables are collected in the vector x:

x = [ux1, ux2, uy, uz, lp, wp, hp] (39)

The design parameter vector q is defined as:

q = [m, τmax, φc, hs, ws, φs] (40)

B. Design Problem Formulation
The objective function of the optimization problem is

defined by Eq. (18). The constraints provided in Sec. IV-C
are still valid. Hence, the design problem of the suspended
CDPR can be formulated as follows:

mininimize V (x) = 4 (ux1 − ux2)uyuz

over x = [ux1, ux2, uy, uz, lp, wp, hp]

subject to

∀P ∈P



Cwg ≤ d

dcci,j ≥ φc ∀i, j = 1, . . . , 6, i 6= j

dcsi,k ≥
(φc + φs)

2
∀i = 1, . . . , 6, ∀k = 1, . . . , 4

−1 cm ≤ δtx, δty, δtz ≤ 1 cm
−0.1 rad ≤ δrx, δry, δrz ≤ 0.1 rad

(41)

C. Optimum Suspended CDPR Design
The optimum design of the suspended CDPR, solution of

problem (41), is shown in Fig. 7. The design variables and
the objective function values associated with this design are
given in Table III. Similarly to the optimum design of the
fully constrained CDPR, the distance between the connection
points, along xb, are reduced as much as possible, while
respecting the static equilibrium constraint. The robot is in
static equilibrium thanks to the gravity forces acting on the
moving platform. To balance any external wrenches belong-
ing to [x]r it would be necessary to increase the distance
between points Ai along the axis xb, possibly generating
some collisions between the cables and the structure.



TABLE III
DESIGN VARIABLE AND OBJECTIVE FUNCTION VALUES OF THE

OPTIMUM SUSPENDED CDPR

hp lp wp ux1 ux2 uy uz V
0.3m 0.3m 0.6m 0.9m 0.7m 4.363m 4.701m 16.408m3

Fig. 7. Optimum design of the suspended CDPR. Solution of the
optimization problem (41).

VI. CONCLUSIONS
This paper introduced a preliminary design study of CD-

PRs intended to displace painting and sandblasting tools
around jackets. This preliminary study considers a simplified
four-tube structure in place of a jacket.

The design optimization problem has been formulated
for a fully constrained CDPR considering the Cartesian
coordinates of points Ai as design variables. A suspended
CDPR has been studied as well. The minimization of the
size of the CDPRs was the objective of both the optimization
problems. The size of the optimum fully constrained CDPR
is smaller than the size of the optimum suspended CDPR.
In the fully constrained CDPR, the connection points are
very close to each other along the axis xb. The optimum
fully constrained CDPR can assure the static equilibrium of
the robot in presence of relevant external wrenches, along
the xb and yb axes. However, the fully constrained CDPR
requires a higher number of cables than the suspended
CDPR. Furthermore, the suspended design frees the space
below the platform from cables. Overall, if the presence of
cable connected to the ground does not generate any issue,
the fully constrained solution should be preferred.

The results presented in this paper could be applied to
the design of a CDPR painting a single jacket side. The
painting and sandblasting of a full jacket may require some
reconfigurabilities. The study of reconfigurable CDPRs able
to work around a jacket is part of our future work.
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