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A Reconfiguration Strategy for Reconfigurable Cable-Driven Parallel
Robots

Lorenzo Gagliardini1, Stéphane Caro2, Marc Gouttefarde3 and Alexis Girin1

Abstract— This paper deals with Reconfigurable Cable-
Driven Parallel Robots (RCDPRs). A RCDPR is able to change
the locations of its cable exit points, the latter being defined as
the connection points between the cables and the robot base
frame. Given a RCDPR, a set of possible reconfigurations,
a desired platform path and a description of the robot
environment, the reconfiguration strategy proposed in this
paper selects the optimal configurations to be associated to
each point of the desired path. The selection of the optimal
configurations can be performed with respect to several criteria
such as the number of configuration changes, the number of
cable reconfigurations and the robot stiffness. In this paper, the
optimization is performed using a Dijkstra’s based algorithm.

I. INTRODUCTION

Cable-Driven Parallel Robots (CDPR) are a particular
class of parallel robots whose legs consist of cables (Fig. 1
shows an example of CDPR). CDPRs have been widely
investigated in the last two decades. They are usually
characterised by a large workspace size, their payload
capability is quite high and their inertia is relatively low [1].
Therefore, CDPRs can be employed in several applications,
which require a combination of the previous characteristics:
A successful example is represented by the shooting of sport
events [2], [3]. Other applications have been proposed in the
construction and logistic sectors, where heavy loads have
to be moved [4], [5], [6]. CDPRs can also be used for
rehabilitation purposes [7] and as haptic devices [8]. CDPR
studies deal also with other applications, such as rescue
operations [9], artistic painting [10] and 3D scanning [11].

A drawback of CDPRs is related to the potential collisions
between the cables and the surrounding environment.
Furthermore, the non-rigid nature of the cables influences
the static equilibrium of the robot. In fact, the cables cannot
push on the platform and the equilibrium depends notably
on the cable layout.

When a task requires high performances, and when the
working environment is cluttered, Reconfigurable Cable-
Driven Robots (RCDPR) can provide better performances
than standard CDPRs. By reconfigurable we mean that
the RCDPR is able to change the locations of its cable
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Fig. 1. Example of a RCDPR design. The robot shown in the picture is a
concept created in the framework of the CAROCA project whose intent is
the painting of tubular structures.

exit points, defined as the connection points between the
cables and the robot base frame. Thereby, by changing
the cable layout, it should be possible to avoid collisions
between the cables and the environment. At the same time,
some robot characteristics may be improved: increasing
stiffness, augmenting payload capability or decreasing the
cable tensions.

The need of performing manufacturing operations over
wide products is the main motivation of this work. The
reconfiguration strategy proposed in this paper can notably
be used to avoid unacceptable cable-environment collisions
which usually take place when a non-configurable CDPR is
considered.

The first studies on RCDPR have been performed in the
frame of the NIST RoboCrane project [4]. More recent
investigations have been performed by Rosati et al. [12],
as well as by Zhuo et al. [13], Izard et al. [14] and Nguyen
et al. [15], [16]. The design of RCDPRs is one of the main
goal of the European project CableBot [17].

Rosati et al. [12] proposed a design and a reconfiguration
strategy based on an analytical optimal cable layout
characterization. This strategy can be applied efficiently
to planar robots. However, it can hardly be extended to
three-dimensional case studies, because the required cable
layout analytical description is unknown for spatial CDPRs.
Zhuo et al. [13] proposed to increase the Degrees of Freedom
(DoF) of the robot using mobile connection points on
the base. Nguyen et al. [15] developed a reconfiguration
strategy consisting of two sub-optimization problems. The
first sub-problem aims at finding the bounds on the



reconfiguration parameters with respect to a set of non-linear
constraints. The computed bounds can be used in the
second sub-problem, which is a box-constrained optimization
problem. Nguyen et al. proposed several criteria, related to
the cable tensions and the robot energy consumption.

For a RCDPR, several cable configurations may be
appropriate to perform a given task. A cable configuration is
defined as the positions of the exit points, the positions of
the cable connection points on the platform and the layout
(arrangement) of the cables between these two sets of points.
In the sequel, we suppose that the RCDPR under study
can assume a discrete set of cable configurations. Given a
desired platform path and the task working conditions, the
procedure is able to define the best set of configurations to
assign to each point of the desired path. The selection of
the optimal configurations is performed using a graph based
approach. This approach associates to each point of the path
a configuration by minimizing one or several criteria, such as
the overall number of cable reconfigurations or the platform
positioning error.

This paper is organized as follows. Section II presents
the geometric, static and elasto-static models used in
this work. Section III defines the main steps of a
reconfiguration. Section IV proposes a reconfiguration
strategy and details the corresponding algorithm, focusing
on Dijkstra’s algorithm [18], [19], [20] and on the graph
construction procedures. Section V provides an illustrative
example and Section VI concludes this paper.

II. GEOMETRIC AND ELASTO-STATIC ROBOT
MODELS

A CDPR is composed of a mobile platform connected
to a fixed base by m cables. The pose of the platform, p,
is described with respect to a fixed absolute frame, Fb, of
origin Ob and axes xb, yb and zb. The pose is composed by
the vector of the Cartesian coordinates of the platform Centre
of Mass (CoM), t, and the vector Φ = [φ, θ, ψ]

T containing
the roll, pitch and yaw angles, φ, θ and ψ, around the axes
zb, yb and xb, respectively.

The cable connection points on the base, the so-called exit
points, Ai, i = 1, . . . ,m, are defined, with respect to Fb,
through the Cartesian coordinate vectors abi , i = 1, . . . ,m.
The platform-cable connection points, Bi, i = 1, . . . ,m, are
defined, with respect to a local reference frame Fp, through
the Cartesian coordinate vectors bpi , i = 1, . . . ,m. This local
reference frame, of origin Op and axes xp, yp and zp, is
attached to the mobile platform.

A. GEOMETRIC MODEL

The geometric model of the robot consists of the chain
closure equations for the cable vectors, lbi , i = 1, . . . ,m.
Those vectors can be defined, with respect to Fb, as:

lbi = abi − t−Rbpi , i = 1, . . . ,m (1)

Fig. 2. CDPR geometric description.

where R denotes the orientation matrix of the platform:

R = Rz (φ)Ry (θ)Rx (ψ) =

=

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ

 (2)

The corresponding unit vectors are defined, with respect
to Fb, as:

dbi =
lbi
||lbi ||2

, i = 1, . . . ,m (3)

The geometric model of a generic CDPR is shown in Fig. 2.

B. STATIC MODEL

The static equilibrium of the CDPR mobile platform is
described by the following equation:

Wτ + we = 0 (4)

where τ = [τ1, . . . , τm] is the vector collecting all the
cable tensions; W is the wrench matrix, whose columns are
composed of the unit wrenches ŵi exerted by the cables on
the platform:

W =

[
db1 db2 . . . dbm

Rbp1 × db1 Rbp2 × db2 . . . Rbpm × dbm

]
(5)

we is the external wrench acting on the platform:

we =
[
fT,mT

]T
= [fx, fy, fz,mx,my,mz]

T (6)

The components of the force vector, f , as well as the
components of the moment vector, m, are bounded as
follows:

fmin ≤ fx, fy, fz ≤ fmax (7)
mmin ≤ mx,my,mz ≤ mmax (8)

In the following section, we will consider only fully
constrained CDPRs. Hence, the inverse static problem is
under-constrained and can be defined as:

τ = τn + τ 0 = W†we + λn τ ≥ 0 (9)



where W† denotes the Moore-Penrose generalized inverse
of W, λ ∈ R and n is a vector in the null space of W [21].
A possible solution to (9) can be found by minimizing the
2-norm of the cable tension vector, ||τ ||2.

C. ELASTO-STATIC MODEL

In order to quantify the stiffness of the system, an elasto-
static model is used:

δwe = Kδp (10)

where the matrix K defines the relation between an
infinitesimal change in the external wrench, δwe, and the
corresponding infinitesimal change in the pose of the CDPR
platform, δp =

[
δtT, δΦT,

]T
. The reader is referred to [22]

for a complete description of the stiffness matrix K.

III. THE TECHNICAL RECONFIGURATION
PROCEDURE

This section focuses on the technical description of the
reconfiguration while section IV describes the procedure
to be used in order to select the optimal configurations
and their reconfiguration order. The core of the proposed
reconfiguration algorithm, based on a Dijkstra’s algorithm,
is detailed in Section IV-B. In this paper, we mean by
reconfiguration that the RCDPR is able to change the
locations of its cable exit points. For some RCDPRs the
choice is limited to a given number of reconfigurations:
this is the typical case of a RCDPR whose cables can be
connected to a grid of exit points, e.g. as illustrated in
[22]. Other RCDPRs have at disposal an infinite number of
configurations: this is the typical case of a RCDPR whose
exit points are sliding on rails or along linear guides, e.g. as
proposed in [15]. The RCDPRs analysed in this paper are
restricted to the first category.

When the working environment is not cluttered, and the
ground is free, it is possible to perform the reconfiguration on
the ground. The CDPR platform is moved from the current
pose to a home position on the ground. Then, when no
external wrench is applied on the platform and the cables
are slack, the cables can be disconnected easily from the
platform. Once the exit points are reconfigured, the cables
can be attached again to the platform, and the platform can
be moved to a desired working pose.

The previous strategy cannot always be applied. For
instance, a cluttered environment may not permit to put
the CDPR platform in a home position on the ground. In
the strategy proposed hereafter the platform of the CDPR
should not or only slightly change its pose during the
reconfiguration:
a. The robot is located at the desired reconfiguration pose.

The current pose of the robot is denoted hereafter as Ca.
The cables balance the weight of the platform and the
external wrenches applied on the platform, according to
the static equilibrium equation Waτ a + we = 0.

b. A new set of cables are connected to the proper exit point
locations, according to the new desired configuration,
defined hereafter as Ca′ . The other extremities of these

Fig. 3. Example of reconfiguration procedure for a 4-cable suspended
planar robot. The continuous lines represent the cable associated to
configuration Ca; the dashed lines represent the cables associated exclusively
to configuration Ca′ . In this example only 2 cables are reconfigured.

cables are connected to the corresponding attachment
points on the platform. These cables are initially slack
and they are coiled in such a way to be "just tensed",
their lengths being adjusted to the platform pose.

c. In order to be detached from the platform, the cables
belonging to Ca, but not to Ca′ , should be slack. These
cables are gradually uncoiled in such a way that the
external wrenches are transferred to the cables belonging
to Ca′ .

d. When the cables belonging exclusively to configuration
Ca are slack, they can be detached. The RCDPR is now
ready to proceed with the task execution.

A simple example of this procedure is given in Fig. 3.

IV. THE RECONFIGURATION ALGORITHM
In general, given a specific RCDPR, it is possible to select

a combination of configurations to complete a given task.
The selection can be performed with respect to one or more
criteria, according to the algorithm presented hereafter and
illustrated in Fig. 4.

1) The user defines the geometry of the RCDPR and
provides the list of all the nC possible reconfigurations.

2) The user defines the task characteristics, including:
the desired path of the platform CoM, P , discretized
into np points according to the user specifications,
P = {Pi, i = 1, . . . , np}; the bounds on the external
wrenches applied to the platform, fmin, fmax, mmin,
mmax.



Fig. 4. Scheme of the reconfiguration algorithm.

3) The algorithm computes a feasibility map. For each
point Pi ⊂ P , all the nC configurations should be
tested, in order to verify their feasibility. For a given
configuration Cj , the pose associated to the i-th point
of the desired path, Pi,j , will be feasible, Pi,j = 1, if it
satisfies a list of nφ constraints, φi,j,k, k = 1, . . . , nφ,
specified by the user:

Pi,j = 1 ⇐⇒
nφ∑
k=1

φi,j,k = 0 (11)

where:{
φi,j,k = 0 ⇐⇒ the constraint is satisfied
φi,j,k = 1 ⇐⇒ the constraint is not satisfied

The following constraints have been taken into account
in this paper:
• The moving-platform pose is wrench feasible. The

cables should be able to balance any possible
external wrench we, according to the ranges
specified in (7) and (8). This set of required
external wrenches consists of an hyperectangle
[we]r. Hence, the configuration is wrench feasible if
the required external wrenches are included inside
the zonotope of the available wrenches, [we]a, as
follows:

∀ we ∈ [w]r, ∃ τ ∈ [τ ] s.t.

{
we ∈ [w]a

Wτ + we = 0
(12)

This condition can be translated into a set of
inequalities, according to [23]:

Cwe ≤ d, ∀ we ∈ [w]r (13)

• No cable interference occurs. This condition is
verified by measuring the distance between each
pair of cables, e.g. with the procedure explained
in [24]. The interference between the i-th cable and

Fig. 5. Example of a feasibility map and the related graph.

the j-th cable does not occur when the distance dcci,j
is greater than the diameter of the cables, φc, i.e.,

dcci,j ≥ φc ∀ i, j = 1, . . . ,m, i 6= j (14)

• No cable-environment collision occurs. The
verification is performed using the same principle
as the cable interference, being given that the
obstacles are discretized into several facets.

• The components of the positioning error due to
the RCDPR cable elasticity, δt = [δtx, δty, δtz],
are lower than then corresponding components of
a threshold vector δtc = [δtx,c, δty,c, δtz,c] defined
by the user.

4) The algorithm builds a graph from the feasibility map.
5) The Dijkstra’s algorithm solves the optimization

problem according to the criteria specified by the user.
The details of Step 4. and Step 5. are given in the following
subsections.

An example of a simple feasibility map is provided in
Fig. 5a. The feasibility map illustrated in Fig. 5a. represents
the feasible poses associated to each configuration. In this
example, two configurations are taken into account, C1 and
C2. The poses, defined as Pi,j , i = 1, . . . , 7, j = 1, 2, are
equal to 1 when they are feasible and equal to 0 when they
are not. We can notice that pose P3,2 is feasible while P4,2 is
infeasible, i.e., the configuration C2 changes from a feasible
to an infeasible condition. On the contrary, between the poses
P4,2 and P5,2, configuration C2 is subjected to a transition
from an infeasible to a feasible condition. In both cases we
will talk about Feasibility Transitions (FT). The FTs in the
feasibility map of Fig. 5a are represented by three green
arrows. When a FT occurs between the poses Pi−1,j and
Pi,j , in such a way that Pi−1,j is infeasible and Pi,j is
feasible, we will refer to the pose Pi,j as a Positive Feasibility
Transition (PFT). Thus:

Pi,j is a PFT if

{
Pi,j = 1

Pi−1,j = 0
(15)



On the contrary, when a FT occurs between the points Pi,j
and Pi+1,j , in such a way that Pi,j is feasible and Pi+1,j

is infeasible, we will refer to the point Pi,j as a Negative
Feasibility Transition (NFT). Thus:

Pi,j is a NFT if

{
Pi,j = 1

Pi+1,j = 0
(16)

A. GRAPH NODES

In order to find the best reconfiguration strategy, using
Dijkstra’s algorithm, it is necessary to build a proper graph.
A graph is a set of nodes connected to each others through
arcs. The nodes of the graph represent the reconfigurations
that the RCDPR can perform. Hereafter, the nodes will be
denoted as Ni,j,k, where the indices i, j and k are defined
as follows:
• The index i represents the point Pi to which the node

is associated.
• The index j represents the starting configuration Cj .
• The index k represents the final configuration Ck to

which the RCDPR is reconfigured, starting from the
configuration Cj .

The nodes connected by arcs will be defined hereafter as
adjacent nodes. Two nodes Ni,j,k and Ni′,j′,k′ , with i′ > i
and k = j′, are adjacent when all the poses between Pi,k
and Pi′,k are feasible: Pi′′,k = 1, ∀ i′′ s.t. i ≤ i′′ ≤ i′.

B. GRAPH BUILDING

The graph to be searched with the Dijkstra’s algorithm is
generated by analyzing the feasibility map. The procedure,
illustrated in Fig. 6, consists of the following steps:

1) The first node, N0, is an empty virtual node. Its position
along the desired path is 0 and it is not associated to any
configuration. Its adjacent nodes, N1,0,j , are the ones
associated to the first point, P1, of the desired path. A
node N1,0,j is created if and only if the pose P1,j is
feasible.

2) The intermediate nodes are obtained by analyzing each
point of the desired path. For a given configuration,
Cj , the algorithm verifies the presence of a FT at
pose Pi,j . When a NFT is encountered at Pi,j , the
RCDPR can (and should) be reconfigured in such a
way to reach any configuration Ck that is feasible at
Pi,k and Pi+1,k. Thus, a node Ni,j,k is created if Pi,j
is a NFT, Pi,k = 1 and Pi+1,k = 1. When Pi,j is a
PFT, provided that Pi+1,j = 1, the RCDPR can be
reconfigured in such a way to reach the configuration
Cj starting from any configuration Ck that is feasible at
Pi,k. Thus, a node Ni,k,j is created if Pi,j is a PFT,
Pi,k = 1 and Pi+1,j = 1. It is worth noting that, in all
the cases, a node is created when the initial and the final
configurations are both feasible.

3) The final node, Nf , is an empty virtual node. Its position
is at the end of the desired path and it is not associated
to any configuration. Its adjacent nodes, NnP ,j,f , are
associated to the last point, PnP , of the desired path.

Fig. 6. Scheme of the algorithm used to build the graph for the Dijkstra’s
algorithm.

They are created if and only if the poses PnP ,j are
feasible.

The arcs are then created between the couples of adjacent
nodes, the latter being defined in Section IV-A. Once the
graph is built, the Dijkstra’s algorithm searches the graph
looking for the minimum cost path connecting nodes N0 and
Nf . The cost associated to each arc of the graph is defined
according to the procedure described in Section IV-C.

C. THE ARC COST FUNCTION

Let the q-th arc connect the nodes Ni,j,k and Ni′,j′,k′ .
Its cost function Φq is defined according to nλ criteria,
λt,q, t = 1, . . . , nλ, and is formulated as follows:

Φq =

nλ∑
t=1

λt,qµt, µt ∈ [0, 1] ,

nλ∑
t=1

µt = 1 (17)

The weighting factors µt, t = 1, . . . , nλ, are defined
according to the priority assigned to each criterion. The
criteria λt,q are bounded between 0 and 1. Hereafter, three
criteria are considered:

λ1,q = 1 (18)

λ2,q =
nc,q
m

(19)

λ3,q =
||δtq||2
||δtc||2

(20)

λ1,q is a constant cost function equal to 1 used in order to
count the number of reconfigurations performed during the
task execution. λ2,q is proportional to the number of cables,
nc,q , to be reconfigured when the RCDPR passes from
configuration C′j to configuration C′k; λ3,q is proportional to



the mean of the norm of the positioning error:

||δtq||2 =

∑i′

i′′=i ‖δti′′,k‖2
i′ − i

(21)

where ‖δti′′,k‖2 is the norm of the cable tension vector
measured at the pose Pi′′ with respect to the configuration
Ck. In (20), ||δtq||2 is normalized with respect to the norm
of the critical precision threshold vector ‖δtc‖2.

The proposed cost functions aim at improving the
efficiency of the RCDPR. By minimizing the arc cost
associated to λ1,q , the algorithm aims at reducing the total
number of reconfigurations nr required to complete the
task. The minimization of the arc cost associated to λ2,q
corresponds to the minimization of the total number nc of
cable detaching-attaching operations required to complete
the task, and consequently to the minimization of the
reconfiguration set-up time. By minimizing the arc cost
associated to λ3,q , the average of the RCDPR stiffness is
increased and the positioning error is reduced.

V. CASE STUDIES

A. First Case Study

A first case study is considered in order to illustrate
the algorithm presented in Section. IV. A closed path P ,
discretized in 164 points, Pi, i = 1, . . . , 164, has to be
followed by the platform CoM. The path, lying in the plane
(O,xb,yb), is illustrated in Fig. 7. The orientation of the
platform is constant, with zero roll, pitch and yaw angles.

An obstacle is included in the environment. It consists of
a square of side length equal to 1 m. The obstacle is centered
at the origin of the reference frame Fb as shown in Fig. 7.

The RCDPR under study is composed of four cables.
The cable exit points, Ai, i = 1, . . . , 4 can be reconfigured,
according to the following parametrization:

ab1 = [u1 + u3, u2]
T (22)

ab2 = [−u1 + u3, u2]
T (23)

ab3 = [−u1 + u3, −u2]
T (24)

ab4 = [u1 + u3, −u2]
T (25)

The parameters u1 and u2 represent half of the distance
between the exit points along xb and yb, respectively. u3
is the offset of the cables connection point positions along
xb. The robot is symmetric with respect to xb, as shown in
Fig. 7. Four configurations have been considered in this case
study. Their parameters are represented in Tab. I.

The dimensions of the platform have been set to 0.2 m for
the width, wp, and 0.3 m for the height, hp. The Cartesian
coordinates of points Bi, i = 1, . . . , 4, expressed in the
moving-platform frame Fp are the following:

bp1 = [wp/2, hp/2]
T (26)

bp2 = [−wp/2, hp/2]
T (27)

bp3 = [−wp/2, −hp/2]
T (28)

bp4 = [wp/2, −hp/2]
T (29)

Fig. 7. First case study and description of the exit point parametrization
for the RCDPR.

TABLE I
POSSIBLE CONFIGURATIONS OF THE FIRST CASE STUDY.

Configuration u1 u2 u3
C1 2.25 6.25 2.50
C2 4.00 7.75 -1.00
C3 4.00 7.00 -0.25
C4 2.25 6.25 -2.50

The properties of the cables have been selected as follows:
the Young Modulus, E, is equal to 100 GPa; their diameter
φc is equal to 4 mm; their stiffness coefficient, ki, is equal
to 252 KN/m; the maximum allowed tension in the cables,
τmax, is equal to 34 950 N. A safety coefficient η = 5 has
been taken into account such that:

0 < τi ≤
τmax
η

, ∀i = 1, . . . , 4 (30)

The platform can be subjected to an external wrench, we.
We assume that the components of we are bounded as
follows:

−500 N ≤ fx, fy ≤ 500 N (31)
−7.5 N ≤ mz ≤ 7.5 N (32)

where fx and fy stand for the external force components
along xb and yb axes, respectively. mz is the external
moment about the zb axis.

The first analysis has been performed by optimizing
the total number of reconfigurations, nr, according to the
weighting factors µ1 = 1, µ2 = µ3 = 0. The solution proves
that four reconfigurations are sufficient to complete the
proposed task. The optimal result is shown in Fig. 8. The
feasibility map has been built by analyzing the constraints
applied on each point of the trajectory namely, wrench
feasibility, cable interferences and obstacle collisions.

For instance, configuration C4 is the unique feasible
configuration at point P1 of the desired path. The NFT at
point P16 requires a change of configuration, from C4 to
C3. When a new NFT appears at point P28, the RCDPR
adopts the configuration C1. A PFT appears at point P97.



Fig. 8. First case study feasibility map and optimal solution with respect
the minimization of nr .

Fig. 9. First case study optimal RCDPR configurations, selected by the
algorithm in order to complete the task with respect to the minimum number
of configurations nr .

The RCDPR returns to the configuration C3 and, later on, to
the configuration C4, following the desired path till its end.

The optimal configurations required to complete the task
are shown in Fig. 9.

A second optimization has been tested, aiming at
minimizing the positioning error of the platform due to
the cable elasticity, according to the weighting factors
µ1 = µ2 = 0, µ3 = 1. The result is similar to the one
obtained by minimizing nr. In this specific case, the first
reconfiguration is performed at P18. The RCDPR passes
from the configuration C4 to the configuration C2 as shown
in Fig. 10.

Both the optimal solutions analyzed in this case study
are represented in the graph shown in Fig. 11. The red
arrows indicate the path obtained by minimizing nr. The
blue arrows describe the path generated by minimizing the
platform positioning error. The blue optimal path leads to
a reduction of the positioning error, with respect to the red
optimal path, of almost 18%: the total cost of the red path,
in terms of positioning error, is equal to 1.7663 while the
cost associated to the blue path is equal to 1.4545.

B. Second Case Study

A second case study is now considered. The requirements
in terms of desired path and external wrenches are similar
to the previous case, as well as the desired orientation of the
platform. The platform geometry and the cable properties are
also identical. However, the number of obstacles has been
increased to three, as illustrated in Fig. 12.

The robot parametrization is defined by (22-25)
and (26-29). The RCDPR under study can take nine
configurations. Their parameters are given in Tab. II.

The computation has been performed by assigning the
same weighting factor to all the criteria composing the cost

Fig. 10. First case study optimal solution with respect the minimization
of the positioning error δt.

Fig. 11. Graph of the two optimization problems of the first case study.

functions: µi =
1

3
, i = 1, . . . , 3. It turns out that the number

of required configurations is equal to eight, as shown in
Fig. 13.

VI. CONCLUSIONS AND FUTURE WORK

The research work presented in this paper deals with
the selection of an optimal reconfiguration strategy for
RCDPRs. The proposed strategy is based on the Dijkstra’s
algorithm and aims notably at minimizing the number of
reconfigurations, as well as the reconfiguration set-up time.
The proposed algorithm permits the optimization of other
characteristics of the RCDPR by means of a cost function
depending on multiple criteria.

Two planar case studies have been used in order to validate
the proposed reconfiguration strategy. The results show that
the algorithm is able to compute the optimal solutions with
respect to a set of configurations proposed by the user. The
results can be extended to three-dimensional problems.

The algorithm computation time is quite satisfactory when
the RCDPR has a limited number of possible configurations.
Each of the previous simulations required a graph resolution



Fig. 12. Second case study.

TABLE II
POSSIBLE CONFIGURATIONS OF THE SECOND CASE STUDY.

Configuration u1 u2 u3
C1 1.25 4.75 3.50
C2 2.75 6.25 2.00
C3 3.25 7.50 2.75
C4 3.25 7.75 3.25
C5 2.50 5.50 0
C6 3.25 7.75 -3.25
C7 3.25 7.50 -2.75
C8 2.75 6.25 -2.00
C9 1.25 4.75 -3.50

time lower than 0.01 s. However, the main limitation is
related to the time needed to construct the feasibility map,
especially when the algorithm has to deal with three-
dimensional RCDPRs which have a large number of possible
configurations. Hence, further studies should be dedicated to
the improvement of Step. 3) of the algorithm presented in
Section IV.
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