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Abstract

In human-robot interaction, the robot controller must reactively adapt to
sudden changes in the environment (due to unpredictable human behaviour).
This often requires operating different modes, and managing sudden signal
changes from heterogeneous sensor data. In this paper, we present a multimodal
sensor-based controller, enabling a robot to adapt to changes in the sensor sig-
nals (here, changes in the human collaborator behaviour). Our controller is
based on a unified task formalism, and in contrast with classical hybrid vision-
force-position control, it enables smooth transitions and weighted combinations
of the sensor tasks. The approach is validated in a mock-up industrial scenario,
where pose, vision (from both traditional camera and Kinect), and force tasks
must be realized either exclusively or simultaneously, for human-robot collabo-
ration.

Keywords: Reactive and Sensor-based Control, Human-Robot Interaction,
Visual Servoing.

1. Introduction

Recently, the attention of robotics researchers worldwide has turned towards
the field of human-robot interaction (HRI [1, 2, 3, 4, 5]), to enable close col-
laboration between human and robot [6, 7]. In this context, the robot must
infer the user intention, to interact more naturally, from the human perspec-
tive [8, 9, 10]. To this end, both visual (e.g., based on Microsoft Kinect™ [11])
and force feedback, have been used [12, 13, 14, 15, 16]. Generally, we believe
that direct sensor-based methods, such as visual servoing [17], provide better
solutions, for intuitive HRI, than planning techniques, requiring a priori models
of the environment and agents [18]. Moreover, force and vision should be used
concurrently, since the information they provide is complementary. One pio-
neer work in this sense is [19], where force and visual control are used to avoid
collisions, while tracking human motion during interaction.

However, the authors do not provide a unified solution for integrating the
two sensing modalities. Instead, since the vision and force sensors often measure



different physical phenomena, it is preferable to directly combine their data at
the control level, rather than to apply multi-sensory fusion, or to design complex
state machines. This idea has been initially proposed in [20, 21], by adapting
the hybrid position-force control paradigm [22]: force constrains some motion
directions, while vision drives the remaining degrees of freedom. Later, the
authors of [23] have presented a list of hybrid control configurations, and divided
the degrees of freedom to be controlled by vision and force. An alternative is
impedance/admittance control [24], which has been integrated with visual [25]
and even tactile [26] control, to account for external forces. Although many
techniques for merging vision, force and position control have been designed,
the presence of the human in the robot control loop is rarely accounted for.

In our previous work [27], we have started the design of a multimodal frame-
work for human-robot cooperation. The approach is marker-less, and has been
validated in a mock-up industrial scenario. However, the following contributions
are brought here, with regards to that work:

e a unified formalism, inspired by inverse kinematics [28, 29] guarantees the
controller stability, independently from the sensor modality;

e the use of smooth transitions (homotopies) between the sensor-based tasks,
and of self-adapting gains, limits the robot accelerations, thus guarantee-
ing safer operation;

e in contrast with hybrid vision-force control, it is possible to control a
same task direction using weighted combinations of different sensors, and
sensor-based tasks can be expressed in different reference frames;

Other, minor improvements, with regards to [27], include the introduction of
force-based control, guaranteeing safety of HRI, and better accuracy, velocity,
and control smoothness. Moreover, our task-oriented approach, in contrast
with similar ones, such as the stack-of-tasks [29] and constraint-based pro-
gramming [30, 31], is directly usable in real HRI scenarios (to our knowledge,
the method presented in [31] has been used, for now, only for human collision
avoidance).

The article is organized as follows. In Section 2, we present our general
framework for multimodal control for HRI. In Section 3, relevant variables and
sensor-based tasks are defined. Based on these preliminaries, Section 4 shows
how the general framework can be instantiated for an industrial case study. Ex-
perimental results are reported in Section 5, and summarized in the Conclusion.

2. Control framework

To safely interact with the human, the designed controller must rely on the
various sensing modalities present on the robot. These may include cameras
(for vision), force/torque sensors, skin (for tact), or proprioception (e.g., for
positioning).



A commonly used approach to merge the various sensing modalities directly
at the control level is hybrid sensors control, e.g. hybrid force/position [22]
or hybrid force/vision [20] control. This approach was recently extended in
a framework integrating vision, force and tact to realize physical interaction
tasks [32]. We hereby recall the formulation of that approach, and propose a
more generic one, based on classic inverse kinematics control [28].

Let k be the dimension of the operational space associated with the end
effector (e.g., k = 3 in the case of a planar manipulator). Consider n senses
and, for each sense, the task vector s,,, € R*, with m = 1,...,n. For example, a
task associated with the sense of vision could consist in controlling an on-board
camera to make it look at a target point, and a task associated with the sense
of force could consist in applying a desired wrench with the end effector (e.g.,
s; = [fz, fy, m] for a planar manipulator). In this work, since position, vision
and force are used, n = 3. All n tasks have the same size k, and, if the sensor
provides less than k measures, it will be sufficient to select the task components
corresponding to the actual measures, as will be explained later.

Each task is related to the Cartesian velocity of the end effector, v € R* by
the k x k matrix L,, (called interaction matriz in the case of visual servoing):

Sm = Lnv. (1)
Stacking the n tasks yields:

S1 Ll
$=Lv, with s=| : |eR" and L=| : | eRFMxR: (2

Sn L,

As aforementioned, a combination of tasks defined by different senses (i.e.,
by components of the different s,,) is realizable, as long as its size is also k. The
tasks are selected thanks to n positive definite square diagonal selection matrices
of size k, denoted S,,,, that activate or deactivate a given task component. Then,
the k-dimensional hybrid task to be realized, is a linear mapping of the complete
s:

§=8s,  with S=[S;...S,] R} xR", (3)

Note that, as outlined above, if the m-th sensor provides less than k& measures,
the missing components can be deselected by simply setting to zero the corre-
sponding row in S,,. The selection matrices can also be used, as will be shown
later, to weigh outputs from different sensors and combine them into a single
task.
Merging (3) and (2) gives the open-loop behaviour of the task in function of
the end effector velocity:
$ = SLv. (4)

Inverse kinematics control relies on the assumption that matrix SL is in-



vertible!. Then, the optimal? solution of (4) ensuring exponential convergence
of s to the desired constant task s* is:

v=(SL) ' (s* —s). (5)
Indeed, replacing this into (4) yields:
§=s"—s, (6)

guaranteeing that s = s* is a stable equilibrium for the closed-loop system.

Let us now compare (5) with the hybrid sensors control used in numerous
works [20, 22, 23, 32]. This approach consists in assigning each sensing modal-
ity to a Cartesian direction in the operational space, and then summing the
velocities associated with the selected sensors:

v = Z SV, (7)

with some assumption on the selection matrices, e.g., that they are orthogonal,
as in [32].

Assuming each L,, is invertible, exponential convergence of s,, to s}, ac-
cording to (1), is guaranteed by applying:
Vin = L1 (sh, —sm) . (8)
Plugging (8) into (7), we obtain the hybrid sensors control expression:
L' ... 0
v=SL(* -5 with L=| o .. o |€R"xR" (9
0o ... L'
This controller is optimal for (4), if and only if (9) coincides with (5):
SL(s*—5)=(SL) ' (s* —s) V(5",5") e R%. (10)
This is equivalent, considering (3), to:
SL=(SL)"'S. (11)

In general, this is not the case, but we hereby provide two necessary conditions
for it to be true.

Property. Hybrid sensors control (9) is optimal if the diagonal selection ma-
trices S,, are all binary and orthogonal, and if the sensor matrices Ly, are all
diagonal.

LOtherwise, specific strategies for avoiding singularities, which are out of the scope of this
paper, are to be devised.

2Throughout the paper, we refer to controllers as optimal when they provide the least
squares solution to the task, i.e., they minimize the control effort.



Proof. Since all S,,, are binary (hence, idempotent) and orthogonal:

Zn: S, =1 (12)

Moreover, binary S,,, imply that S has full rank, so its right pseudoinverse can
be derived to show, using (12), that it coincides with its transpose:

-1
st=sT(ssT) " =sT <Z s?n> =s"y"s,, =s". (13)

Then, post-multiplying condition (11) by ST = ST, we obtain:
SLS' = (SL) "' ss', (14)

which leads to: _
SLS™ = (SL)™". (15)

e The first member of (15) becomes:

SLS' = Z S,L; S (16)

By commuting the matrix product (since all L,,, and S,,, are diagonal, and
have the same size), and taking advantage of the idempotency of the S,,,,

we obtain: _
SLST =Y SIL.'=> S,L," (17)

m

e The second member of (15) becomes:

(SL) ™' = (Z SmLm>_ : (18)

Noting s;,, and [;;, the i-th elements of S,, and L,,, respectively:

—1
(SL)_l = |:dlag (Z Stmlims s Z Skmlkm>:| =

m

(19)
e 1 1
= diag (ZSMZM e zz) :

Since for each 4, exactly one s; is non-null and equal to 1, this equation

can be rewritten:
(SL)™' =) "8, L. (20)

Equations (17) and (20) demonstrate that the first and second members
of (15) coincide, and that the property is therefore valid. O



To summarize, hybrid sensors control provides an optimal solution for (4)
under two strong assumptions.

1. All the sensor tasks s,, must be expressed in the same reference frame.
This can be stated from in (1), subject to the condition that the L,,
matrices are diagonal.

2. Only one sensor can be used to control each end effector direction. This
can be stated from (7), subject to the condition that the S,, are binary
and orthogonal.

These assumptions are mentioned in all works that apply hybrid sensors control.
However, they limit its use in practical applications. For instance, merging
image-based visual servoing [17], which defines the visual task in the image
frame, with force control, usually implemented in the force sensor frame, would
infringe the first assumption.

On the other hand, to guarantee stability of the closed-loop system, the
classical inverse control scheme (5) only requires that SL is invertible (a weaker
assumption, that is always true if the S,, are binary, and the L,, diagonal).
Controller (5) can be applied even if the task frames associated with each sensor
are different, and even if a task is defined for multiple robots [33], or as a
combination of heterogeneous sensor data (as shown in many recent works by
Mansard et al. [29], [34], [35]).

Let us now apply the previous result, by expressing the problem in the joint
space, rather than in the operational space. The robot joint velocity is denoted
q € RJ, with j the number of degrees of freedom. We assume that j > k, so
that s can be realized. If j > k, redundancy exists, and one can also minimize
a scalar cost function h (q) € R, while realizing the task s.

Each task is related to the joint velocity by:

where 5
Sm
Jm yS m) = 5 22
(@,8m) = — a (22)

is the corresponding task Jacobian, of dimension k x j, that depends on both
the robot configuration and on the task. By stacking the n tasks, and using (3),
we obtain:

$ =85 =8SJ(q,s)4q, (23)
where:
J1
J=| : | eRF" xRI. (24)
Jn

The multimodal controller that we propose, for driving s to s* is given by:
a=(SHA(* —s)+ [I— (SN (SI)| vh (25)

In the above equation:



) (SJ)Jr is the j x k right pseudoinverse of SJ. We assume that SJ is full
rank during operation, so that the pseudoinverse can be calculated. This
was the case throughout the experiments and is a common assumption in
inverse kinematics control [34].

e A is a positive definite square diagonal matrix of dimension k that deter-
mines the convergence rate of s to s*;

e the term vh = %

minimize cost function A in case of redundancy.

(i.e., vh = 0 when j = k) is introduced in order to

System (23), controlled by (25), is globally asymptotically stable with respect
to the k selected tasks. Indeed, plugging (25) into (23) yields:

s=A(s"—s). (26)

Thus, since A is a positive definite diagonal matrix, s = s* is a stable equilibrium
for the closed-loop system. Also, note that minimization of h has no effect on
the convergence rate of the task.

For constant gain matrix A, convergence of the task will be exponential
according to (26). Thus, since (25) is a proportional feedback controller, the
joint velocities will also follow an exponential trend, an unwanted behaviour
which may lead to abrupt velocity changes at task transitions (i.e., when the
error suddenly increases). A simple solution to this, is the use, for each task, of
an adaptive gain matrix, function of the task error s* — s, inspired by [36]:

A(s) = A" [eells sy g (1 - emelism=sl)] (27)

In (27), A* is the diagonal gain matrix applied when s is close to s*, and
a > 0and f €]0,1] are two scalar parameters such that, as the task error norm
[|s* — s|| increases, A exponentially decreases (with slope dependent on «) to
BA*, for very large task error. This exponential trend compensates that of the
error signal, thus generating a less variable control input q, as will be shown by
the experiments. The values of «, 3, and A* are tuned empirically, so that the
robot joint velocities stay roughly constant during operation.

In the next Section, we we first define the reference frames and the main
variables of the framework and then, for each of three sensor-based tasks (posi-
tion, vision and force), we give the expression of s and that of the corresponding
Jacobian J.

3. Sensor-based tasks

3.1. Definitions

The reference frames used in our work are (see Fig. 1): the robot base (B),
camera (C), end effector (E), and image (I) frames. Reference frame B is fixed
in the world, whereas C, E and I move with the robot. The pose of A in frame



Figure 1: Reference frames used in our multimodal framework for human-robot interaction.

B is defined as: Ppy = [BtA,B HuA]T € SE(3), with Pu, the angle/axis
vector [37].

For the camera, we use the normalized perspective model. A 3D point with
coordinates (CX Cycz ) in the camera frame, projects in the image as a 2D
point with coordinates:

cXx Cy

Ty Y= Ty (28)

€r =
We assume that the pose of the camera in the end effector, Fp¢, is constant
and known through a preliminary calibration step.
For human-robot collaboration, we use n = 3 tasks: positioning, visual, and
force task. Each one has dimension & = 6, in order to control all 6 degrees of
freedom of the end effector. We will hereby detail each task.

3.2. Positioning task

The objective of positioning is to control the end effector pose in the base
frame. Hence, the positioning task is:

sp="Pp- (29)

This can be estimated at each iteration, by applying the robot forward kine-
matics to the measured articular variables, q.
For this task, the Jacobian in (21) is simply:

8BPE
dq

Jp = . (30)
This Jacobian can be computed, at run time, by applying the technique pre-
sented in [28].

3.3. Visual task

The objective of the visual task, is to drive the end effector to a desired
pose with respect to a visible target. To this end, we apply the two and one-
half-dimensional (2 1/2 D) visual servo paradigm originally introduced in [38].



This method combines the advantages of image-based and position-based visual
servoing schemes, while trying to avoid their shortcomings [17]. In fact, the task
is defined by a combination of image features and 3D characteristics:

Sy = [ z y log®Z “Huc ]T. (31)

In this equation, x and y are the image coordinates of the target characterized
by (28), ©Z is the target depth in the camera frame, and Cuc gives the relative
rotation between the current and desired poses of the camera.
The Jacobian corresponding to the 2 1/2 D task is [38]:
0Bp

J, =L, CVBTqC' (32)
In this expression, Ly is the interaction matrix relating the task evolution to
the camera velocity in frame C":

- Ly (50, y7CZ) L (xvy)
L, = [ 0 Loy (C*Quc) , (33)
while ©V 3 is the spatial motion transform matrix from frame B to frame C:
CR [Ct ] CR
c B B B
Vg = x . 4
e (39

The complete expressions of Ly, Ly2, and Lay are given in [17], and [t],, is the
skew-symmetric matrix associated with vector t. Jacobian J, can be calculated
at each iteration, since L, depends on s, Vg on the pose of B in C' (determined
via forward kinematics Ppy, plus constant known £T¢), and 9Pp/dq can be
calculated again using the technique presented in [28].

3.4. Force task

The objective of force control is to regulate the external wrench h (force
and torque vectors f and m), at the contact point between robot and human,
to a desired value. This is essential to guarantee safe interaction with the
environment and with the human operator. Without loss of generality, in this
work, such external wrench is expressed in the end effector frame E.

To realize the force task, we apply an admittance controller [24], where the
deviation of the end effector motion due to the interaction with the environment
is related to the contact wrench, through an equivalent mass-spring-damper
system with adjustable parameters.

Here, we consider a simple spring system, with null mass and damping, and
positive definite diagonal square stiffness matrix K, such that:

Fhp —Fhy = -K (®pp —Fp}) = K Ppp. (35)

Then, the force task is defined as: sy =Fhy. Deriving the above equation yields
the Jacobian corresponding to this task:

" pg
dq
Having defined K, J; can again be calculated with the technique from [28].

J=-K (36)



Figure 2: Collaborative screwing case study. Top: experimental setup. Bottom left: view of
the camera and end effector. Bottom center: Kinect image. Bottom right: camera image.

4. A case study: collaborative screwing

4.1. Experimental setup and assumptions

To validate our controller, we focus on a case study, where a robot aids a
human operator in a screwing operation. In Fig. 2, we show the setup, along
with the frames defined in Sect. 3.1; the screw is denoted S.

Human and robot operate on the opposite sides of a flank, where a series of
screws must be inserted. The required operations are respectively:

e for the human: to insert the screws in the holes,

e for the robot: to tighten a bolt on each of the inserted screws, while the
human maintains it on the flank.

Since the focus here is mainly on our multimodal control framework, we do
not implement the physical screwing action; instead, we consider a screw to be
tightened, when the end effector touches it with proper alignment. To realize
the collaborative screwing operation, we utilize a Kinect, that outputs an RGB-
D image of the work scene from a fixed pose, and a black and white camera
mounted on the robot. These sensors are respectively dedicated to detecting
and tracking the human hand motion, and to tracking newly inserted screws on
the flank. Finally, to properly align end effector and screw, an estimation of the
external forces is necessary. This force estimation will be explained in Sect. 5.

Our work assumptions are that the flank is perpendicular to the Y axis of
the base frame, at known distance from B, and that the Kinect pose in the base
frame has been coarsely calibrated.
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Figure 3: Collaborative screwing state machine, selecting the appropriate control mode, ac-
cording to the sensed data.

To avoid luminosity variations in the image, we maintain the camera orien-
tation with respect to the flank constant throughout operation. Since Fp¢ is
constant, we have decided to do this by keeping the end effector perpendicular
to the flank, with the axes of frame E placed as in Fig. 2. Hence, we impose the
desired rotation matrix from end effector to base to be:

BR, = 0 0 -—1]. (37)

In the rest of this Section, we will detail the strategy that has been used to
realize collaborative screwing, with controller (25).

4.2. Multimodal control strategy

To realize the collaborative screwing task, we utilize four modes, and halting,
which simply consists in setting @ = 0. The Jacobian used in (25) is:

JP
J=117, |, (38)
J

f

with J,, J,,, and J; defined respectively in (30), (32), and (36).

The modes are operated by the state machine in Fig. 3. As the figure shows,
the transitions can be activated either by detection (red) or loss (black) of sensed
information, or by success of the mode (blue). The detection/loss of information
is determined by sensors processing. Instead, a mode is successful when:

6
> willsi —sill <o, (39)
i=1
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Figure 4: Multimodal framework block diagram.

with w = [wy ... wg] € RS a vector of positive weights, and o a scalar threshold.

Our complete framework is summarized in Fig. 4. In the rest of this section,
we will focus on each of the four modes, by specifying the selection matrices S,
S, and Sy, the desired task vector s*, and the activation condition (39).

4.3. Hand approaching mode

If the human operating hand is detected by the Kinect, its position is fed to
a controller that moves the robot so that the camera has a good view of the area
where the human is operating. Since only the positioning task (29) is necessary,
the selection matrices are:

S, =1 S, =8;=0. (40)
From (3) and (29), we can infer the desired task vector:
s* = 8,s; =" pj; € SE(3). (41)

To derive sy, we introduce the Kinect (K), and operating hand (H) frames (see

Fig. 2). The origin of H is the orthogonal projection of the operator hand on the

flank, while its orientation is that of B. The hand position in the kinect frame

is estimated using OpenNI3, and then orthogonally projected on the flank* to

obtain ¥ X, which can then be transformed to ZX g in the base frame. Then,
our aim is to place H at a fixed desired position in the camera frame:

T

Xy =Xy O Czy 1) (42)

to increase the chances of visualizing in the image the future inserted screw.

Also, since we set “TRp = I, PR}, according to (37), and since “Rp is constant

Shttp://www.openni.org
41t is trivial to derive the flank plane equation in K from BTy and BYy.



and known, the desired orientation of the camera with respect to the hand, YR,
can be derived. Combining X}, and #R},, we can obtain the desired camera
to hand transformation, #T¢,. This can now be used to determine ZTF,, and
therefore sy, to be used in (25), along with:

S=[I 0 0]. (43)

Since the hand approaching mode should be activated and deactivated only
by perceived data, the task convergence need not be monitored, and we can set
o =0 and w # 0, so that (39) is never true in this mode.

4.4. Pose-based screw approaching mode

If a screw is detected in the image (see Fig. 2, bottom right), its position
determines s, according to (31), so that the end effector is driven in front of it.
To this end, we exploit the screw position as viewed from the on-board camera
(to infer x and y), along with the measures of the robot articular positions
for forward kinematics (to infer ©Z and “@uc). The details on the image
processing algorithms used to detect and track the screws are given in [27].

The shift from hand to screw approaching can lead to abrupt joint acceler-
ations. This problem, which is common when switching between manipulation
primitives, has been recently tackled using on-line trajectory generation [39)].
Here, we exploit homotopy to better manage the transition. We define ¢ > 0
the screw age (i.e., the time since it has been detected). The visual task selec-
tion matrix is then designed to smoothly vary from O to I, as ¢ tends to a tuned
scalar T"

1—cos(nt/T) .
so={y 7 st ()
The other task selection matrices are set to:
S, =1-S,, Sy =0, (45)
so that, in controller (25):
S=[I-S, S, 0]. (46)

In practice, the visual task is gradually activated by S,,, while concurrently
the hand position task is deactivated by S,.

As proved in Sect. 2, the advantage of our framework is that such a smooth
transition can be easily implemented without compromising the controller sta-
bility, since, in contrast with hybrid sensors control, the selection matrices do
not have to be binary. This is also a fundamental advantage with respect to the
method proposed in [39].

From (3), we can infer the desired task vector:

s*{ (I—-S,)s;+Sys; if t<T,

sy otherwise.



As mentioned, s* varies from a task dependent on both hand and screw, to

purely vision-based screw approaching task s}, that we define as:

st=[ a5 yh logZz 0] (48)

This s}, corresponds to driving the screw to image position (2%,y%) at desired
depth CZ;7 while zeroing the orientation error between C' and C*.

Let us now explain how s} is derived. The image position (z%,y%) (circle
in Fig. 2, bottom right) is set so that end effector and screw are aligned at the
end of this mode. We set the end effector Cartesian position to have a desired
translation with respect to the screw:

Bgg=[0 0 Pzz ], (49)
so that PZ% > 0 is as small as possible, without end effector occlusion. Then,
from the known T, and from FX, we can derive X, and, from that: ©Z%,
zt =C X%/9Z%, and yi =¢ Y /9Z%. For rotations, as usual we servo PR
according to (37). Then, “"fuc can be calculated from known “Ry and PR.

The following mode (force-based screw approaching), is triggered when the
visual error with respect to the screw is small enough. Hence, we set:

w#0 Vt>0,

c=01if t< T, (50)
o > 0 otherwise,

so that (39) is verified only after time 7', when the hand task is deactivated.

4.5. Force-based screw approaching mode

Once the screw is near enough, force control is activated, to make the end
effector compliant in case of contact, while advancing. We activate this mode
just before contact, because, in the absence of external contacts, the force signal
to noise ratio can lead to inaccurate positioning.

The desired wrench on the end effector, in the end effector frame, is:

Phy=[0 0 Pfp, 0 0 0]". (51)

Through force control (35), ¥ f5.z < 0 makes the end effector progress forward.
All other components are zeroed to make the end effector compliant.

As long as the screw is visible, the end effector can be driven towards it by
using visual control. Then, the task selection matrices are:

12 02><4 02 O2><4
S, =0 S, = S = . 52
P { O4x2 04 } ! { O4x2 14 ] (52)

Therefore, in controller (25):

O2x6 Iz Ooxe O2xs
S — , 53
[ 04x6 Oaxz Osxe 14 (53)



and the desired task is:
s =S,st+Sysh=[ar yr Efy 0 0 0], (54)

The transition from this mode to the following is triggered by the loss of the
screw, when it is too near to be visible in the image. Then, we set ¢ = 0 and
w # 0, so that (39) is never true.

4.6. Screw tightening mode

When the screw is so near that it is not visible any more, the last mode is
activated. This relies solely on force control:

S,=0 S, =0 Sy=L (55)

Therefore, in controller (25):
S=[0 0 I], (56)

and the desired force task is:
s =s3=[0 0 Pf5, 00 0], (57)

Clearly, if tightening was also to be realized (although this is not the case
here, as mentioned in Sect. 4.1), the desired moment around Z, Em*E 5 should
also be non-null. To verify that the screw is tightened, we check the force error
according to (39), with tuned weights w # 0 and threshold o > 0.

5. Experiments

To validate our framework, we have run a series of experiments with a
lightweight KUKA LWR IV robot in the scenario illustrated in Fig. 2. Since a
tightening tool is not mounted on the end effector, we have used a cylindrical
tool of external diameter 14 mm to verify the precision of our method. The
LWR is redundant with respect to the end effector operational space dimension
(it has 7 = 7 degrees of freedom, whereas k = 6). Thus, we use the extra degree
of freedom to guarantee joint limit avoidance. To this end, in (25), we use a
scalar, configuration dependent, cost function [40]:

) = 437 (i ) (58)

=1 qi,M — 9i,m

with [¢; m, i, m| the available range for joint ¢ and g; mia = (gi,m + Gim) /2
its midpoint. The values of q computed via (25) are fed to the Reflexxes online
trajectory generation library® for smoothing. To get the interaction wrench

5www.reflexxes.com



Figure 5: Six consecutive snapshots of the first experiment of collaborative screwing.

Fhp, instead of mounting a force sensor on the end effector, we have decided
to use the estimated external wrench signal provided by the robot controller
through the FRI Interface®. The camera mounted on the end effector is a
Stingray F201B from Allied Vision Technologies, with resolution 1024 x 768
pixels, and we used the ViSP library [41] for visualization purposes. The image
processing pipeline takes approximately 60 ms. Thus, although the skeleton
processing on the Kinect is slightly faster, we fix the control loop rate at 15 Hz.

To highlight the novel contributions of our framework, i.e., force control, and
the use of homotopy and adaptive gains, various experiments were run. These
are shown in the video attached to this paper.

In a preliminary experiment, (see Fig. 5), three screws are touched with the
tip of the tool, using only the hand approaching (HA) and pose-based screw
approaching (SA) modes. In this experiment, the homotopy between these two
modes is deactivated, and the gain matrix A is independent from s. In Fig. 6,
we have plotted the components of the error e = s* — s (top) and of the joint
velocities ¢ (bottom). The numbers correspond to the inserted screws (1 to 3).
It is clear from the curves that the transitions between modes are abrupt in
terms of . This is because homotopy and adaptive gains are not used.

Let us now focus on the second, complete experiment (see Fig. 7), where all
modes, as well as homotopy and adaptive gains, were applied. This time, we

Shttp://cs.stanford.edu/people/tkr/fri/html/
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Figure 6: The six components of the error e = s* — s (top) and the seven components of the
joint velocities q (bottom) during the first experiment.
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Figure 7: Left: the tightening task. Right: consecutive snapshots of the second experiment.

verify that the cylindrical tool successfully encircles new, non-tightened screws
(see photo on the left of Fig. 7). A high accuracy is required, since the screw
external diameter and tool internal diameters are respectively 5 and 9 mm.
Although, the specifications are more strict than in the previous experiment,
force control facilitates the insertion, by correcting slight orientation errors.
Hence, we are confident that, with a tightening tool, the approach should also
work. Convergence of the hand approaching and screw approaching modes has
been discussed just above. Let us now focus on the final mode, when force
control intervenes. In Fig. 8, we have ¥ fr » and BYy during this final mode.
The plots start at time t = 60 seconds, when the tool comes into contact with the
flank. Correspondingly, ¥ fr 7 decreases from the null value, until the desired
value is reached (in (51), we set Efgyz = —25 N). Then, at t =~ 65 s, the end
effector stops (see bottom graph). After a few seconds, a user (see snapshots in
Fig. 7 and video) moves by hand the robot last joint. The forces are detected (see
E fe,z in Fig. 8), and admittance control induces the small variations of Byg.
This experiment shows that the framework is capable of force stabilization, for
safe human-robot interaction.

Finally, we ran experiments with and without the adaptive gains for A (ex-
periments noted AG and FG), and with and without the smooth homotopy from
hand to screw approaching (noted H and NH). To compare the experiments, in
Fig. 9, we have plotted the norm of the joint velocity |q|, for three experiments:
NH+FG, NH+AG, and H4+AG. Since the change mainly concerns the hand and
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Figure 8: Evolution of £ fg 7 (top) and BYx (bottom) over time, during force-based screw
approach and tightening.

the beginning of screw approaching, we have only plotted the curves for these
phases. The mode change is visible in the plots, and occurs after approximately
5 seconds. The joint velocity norm has been chosen, since it is a good indicator
of the movement smoothness. In the first experiment (NH+FG, green curve),
which reproduces the approach used in [27], strong variations appear during
the HA mode; these come from the variability of the positioning error s; — s,
due to hand motion. Replacing the fixed gain with an adaptive one yields the
cyan curve. As the curves show, the use of an adaptive gain, reduces the shaky
motion. Another improvement is obtained by adding an homotopy of duration

lal (rad/s)
1.0

0.5 |

0 time (s) 20

Figure 9: Evolution of |q| over time, during hand and screw approaching, using NH+FG
(green), NH+AG (cyan), and H+AG (red).
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Figure 10: Evolution of q components over time, during hand and screw approaching, using
NH+FG (left), and H+AG (right).

Table 1: Comparison between |q| and |g| in the four configurations.

configuration | FG AG NH H
|| (rad s=1) | 0.091 | 0.067 | 0.079 | 0.079
lg| (rad s72) | 0.132 | 0.082 | 0.145 | 0.068

T = 1 second when the screw is seen. In this case (red curve), the transition from
hand to screw tracking is much smoother. To further demonstrate the smooth
transitions obtained thanks to the adaptive gains and homotopies, in Fig. 10, we
have compared the joint velocity components obtained with NH+FG (left), and
with H+AG (right). As the figure shows, the curves are much smoother, and
less control effort is required, with the new approach. We have also compared
the average values of |q| and |q| over each experiment. These, shown in Table 1,
confirm the cited properties. For both metrics, AG outscores FG, by realizing
the same operation in the same time with less velocity and acceleration. Also,
as expected, homotopy reduces || (from 0.145 to 0.068 rad s~1) since it realizes
a smoothing effect on the joint velocities, but has no influence on |q|. Reducing
|d] is crucial for safe human-robot interaction, since most robot safety metrics
(see [42]), depend on accelerations measured at impacts.

In summary, the approach with both homotopy and adaptive gains (H+AG)
should be selected. The advantages are numerous: less energy is required,
the motion is smoother (facilitating image processing), and faster operation
can be obtained. In fact, although, for the purpose of these comparisons, the
gains were all tuned so that the duration of the experiments be the same, in
other experiments we have fine tuned the gains of H+AG, to achieve screw
approaching in 40 seconds, i.e., approximately 80% faster than in [27].

6. Conclusions

In this paper, we have generalized the multimodal framework for human-
robot interaction originally introduced in [27]. The generalized framework can
operate by activating or deactivating various tasks, according to the sensed data
and to the needs of the application. This is of particular interest when numerous
sensing devices are to be used for control, as is often the case in HRI. Typically,



in this work, we have applied the framework to a collaborative screw tightening
experiment, where vision, kinect, position and force data must be alternatively
controlled. To avoid abrupt accelerations, important features such as adaptive
gains and homotopy are included in the framework.

This preliminary work opens numerous avenues for future research. In the
future, we plan to use our framework for full human-robot cooperation, with
direct physical interaction. It would then be possible to verify its robustness to
unknown dynamic parameters, resulting from the interaction with the human
body (e.g., arm and hand).
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