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Abstract: The Web currently stores two types of content. These contents include linked data from the semantic Web 

and user contributions from the social Web. Our aim is to represent simplified aspects of these contents 

within a unified topological model and to harvest the benefits of integrating both content types in order to 

prompt collective learning and knowledge discovery. In particular, we wish to capture the phenomenon of 

Serendipity (i.e., incidental learning) using a subjective knowledge representation formalism, in which 

several “viewpoints” are individually interpretable from a knowledge graph. We prove our own Viewpoints 

approach by evidencing the collective learning capacity enabled by our approach. To that effect, we build a 

simulation that disseminates knowledge with linked data and user contributions, similar to the way the Web 

is formed. Using a behavioral model configured to represent various Web navigation strategies, we seek to 

optimize the distribution of preference systems. Our results outline the most appropriate strategies for 

incidental learning, bringing us closer to understanding and modeling the processes involved in Serendipity. 

An implementation of the Viewpoints formalism kernel is available. The underlying Viewpoints model 

allows us to abstract and generalize our current proof of concept for the indexing of any type of data set.

1 INTRODUCTION 

Since Web 2.0 has democratized the sharing, 

recommendation and creation of content via social 

networks, blogs and fora, and since semantic Web 

technologies have begun to structure the knowledge 

deposited, generated and stored on the Web, two 

kinds of content have emerged. These types of 

content differ in the ways they are produced and 

structured. On one hand, contribution-based social 
Web platforms allow the production of a wealth of 

data with little or no structure; these data evolve 

rapidly (e.g., folksonomies (Mika, 2007)). On the 

other hand, highly structured knowledge is 

constituted consensually by circles of experts (e.g., 

ontologies (Karapiperis & Apostolou, 2006) or 

linked data (Bizer, Health, & Berners-Lee, 2009)). 

With the Viewpoints approach, our objective is to 

create a knowledge representation formalism that 

retains the best qualities of each type of content. Our 

objective is to support and give value to both (i) the 
structure which characterizes semantic Web datasets 

and (ii) the evolution and maintenance rates of 

shared knowledge on the social Web as proposed in 

Gruber (Gruber, 2008) or (Freddo & Tacla, 2009). 
We aim to contribute to knowledge representation 

approaches by designing a system involving Web 

agents (human or artificial) who share “viewpoints” 

linking system resources (identified by a URI). We 

ask ourselves the following questions: 

 Which Web browsing strategies allow the 

most optimal diffusion of user preference 

systems? 

 What should the conditions be to favor 

incidental learning, a.k.a., Serendipity, in the 

study of preference systems? 
We define the preference system of an agent by the 
expression of his tastes and attractions in terms of 
proximity or distance relationships between Web 
resources. In a previous contribution (Lemoisson, 
Surroca, & Cerri, 2013), we demonstrated the 
learning ability of a knowledge base built with an 
initial version of our formalism. However, this proof 
of concept was based on a poor behavioral model of 
agents who navigated and contributed to the 
knowledge base; we were only interested in the 



agents' satisfaction and did not take into account 
their preference systems. In another contribution, we 
showed how Viewpoints allow the search and 
discovery of knowledge through a search engine 
prototype for scientific publications (Surroca, 
Lemoisson, Jonquet, & Cerri, 2014). In the newest 
model, we include a “Serendipity acceptance” factor 
in the behavior of agents, defined as the tendency of 
an agent to turn to resources outside of his 
preference system. This allows us to assess the 
diffusion of preference systems, depending on 
whether an agent is open-minded or focused on what 
he knows and prefers. Using this model, we build a 
simulation based on individual behavior rules 
(microscopic level) in order to observe the effect on 
collective learning and on the diffusion of preference 
systems (macroscopic level). This simulation 
illustrates the advantages of using Viewpoints to 
“merge” the essence of data semantics and the social 
Web.  
The rest of this article is organized as follows: 
section 2 presents the background and inspiration for 
our approach by introducing the notion of 
Serendipity in computer systems. In our review of 
the state of the art, we also briefly compare 
Viewpoints to several other knowledge 
representation approaches. Then, we briefly present 
the Viewpoints formalism in Section 3. Section 4 
explains our behavioral model of Web users and our 
representation of their preference systems: we show 
how we simulate the evolution of the Web as a 
knowledge graph and discuss a set of hypotheses on 
the impact of individual browsing strategies. Section 
5 presents a simulation in which three agents (the 
Princes of Serendip) contribute to building a 'toy' 
knowledge graph with resources of different shapes, 
sizes and colors; then we discuss our current results 
relative to our assumptions and our research 
objectives. Section 6 concludes and presents 
potential perspectives for this work. 

2 STATE OF THE ART 

2.1 Knowledge Representation 

Several studies have focused on the merging of the 

Semantic Web and the Social Web (Gruber, 2008). 
We synthetically compare our approach to these 

studies as follows: in addition to incorporating the 

(human or artificial) Agent as presented in (Mika, 

2007), our representation of knowledge considers it 

a central constituent. We explain how in the 

formalism section. Moreover, our knowledge 

representation considers Viewpoints micro-

expressions of individual semantics. However, our 

mechanism for evaluating and confronting 

Viewpoints does not use any additional contribution 

as is the case in (Limpens & Gandon, 2011). Thus, 
the emphasis is placed on what emerges from the 

knowledge graph, as reported in (Aberer et al., 2004; 

Noh, Park, Park, & Lee, 2010); indeed, these authors 

studied the possibility of the emergence of a 

collective representation of knowledge with a 

"bottom-up" vision of system interactions.  

Finally, we define a metric distance over the set of 

resources formed by the knowledge providers 

(Agents), supports (Documents) and descriptors 

(Topics) while semantic distances found in the 

literature apply to homogeneous subclasses such as 
distances between tags or ontology concepts (Lee, 

Shah, Sundlass, & Musen, 2008). The resulting 

Viewpoints Knowledge Graph (KG) is constituted 

by resources connected by viewpoints, and can be 

seen as a wide, evolving, associative memory 

enabling collective intelligence, metaphorically 

replicating a brain, where all learning processes are 

supported by the evolving strength of synapses 

(Edelman, 1987). Instead, we adopt a topological 

approach and compute semantic distances on top of 

the Viewpoints in a manner similar to (Pedersen, 

Pakhomov, Patwardhan, & Chute, 2007). 

2.2 Serendipity, the Incidental 
Learning 

The term ‘Serendipity’ is derived from an ancient 

Persian tale entitled ‘The Three Princes of 

Serendip’ (Merton & Barber, 2006). Recently, 

Perriault said that "the Serendipity effect (...) 

consists in nimbly and randomly happening upon 

something we did not search for ". We are then led 

to make abductive inferences in order to build a 

theoretical framework which encompasses, via 

appropriate aggregation, information which used to 

be disparate (Perriault, 2000). We note that the 

notion of luck or chance is important in the 
Serendipity phenomenon. However, "it does not 

only depend on a divine dice roll" as explained in 

(Fine & Deegan, 1996) and takes place only at the 

border of what is already known. Thus, incidental 

learning is greatly facilitated when new knowledge 

is in the vicinity of existing knowledge and may be 

interpreted by someone who knows this 

neighborhood. We share the vision that knowledge 

does not guarantee serendipitous discovery, but that 

it makes it more likely. We therefore introduce the 

notion of Serendipity proximal zone, which is 

similar to the concept of proximal development zone 



(Vygotsky, 1978) in learning and education 

sciences. We will show below how the Serendipity 

acceptance factor helps us to capture Serendipity in 

our model.  
When considering the huge amount of information 

available on the Web and the ways in which one 

may get lost while browsing, Serendipity seems to 

be a realistic phenomenon. One may talk about 

serendipitous Web-based learning, as explained 

hereafter. The search for knowledge through 

serendipitous learning can succeed by chance or as 

an offside activity of a main task (Bowles, 2004). 

For instance, a user who makes an initial query may 

be progressively led into an unexpected path that 

ultimately proves more productive than the initial 
search. In such cases, Bowles writes that 

serendipitous learning occurs (Bowles, 2004). This 

is exactly the phenomenon we model and observe in 

our section 4 with multiple navigation strategies. In 

addition, according to Allen Tough, almost 80% of 

learning is informal and unplanned (Tough, 1999). 

Serendipitous navigation is an "intellectual lottery 

(...) with small chances but with big potential 

payoff" (Marchionini, 1997). In the latter work, the 

parallel with our Viewpoints approach is made 

explicit: "We also gain new viewpoints and 

associations for our problem by browsing alternative 
sources using different tools, techniques and data 

structures." 

Recommender systems (Adomavicius & Tuzhilin, 

2005) are increasingly interested in Serendipity, 

because the variety of recommendations is as 

important as their accuracy. Serendipity goes beyond 

what recommendation systems offer, thanks to the 

surprise, variety and novelty of the proposed results. 

Additionally, many recommender systems have 

begun to implement Serendipity principles. The 

folksonomy-based recommendation in (Yamaba, 
Tanoue, & Takatsuka, 2013) allows users to tag 

books and go beyond the traditional classification, 

and therefore add new books to the Serendipity 

proximal zone of other users. However, to our 

knowledge, except from work proposed in (Corneli, 

Pease, & Colton, 2014) on the theoretical framework 

for the phenomenon of Serendipity, the literature on 

the formalization and the measurement of this 

phenomenon is lacking. Based on our review, there 

is currently no exploitable model of Serendipity. 

3 VIEWPOINTS FORMALISM 

Viewpoints is a formalism for subjective knowledge; 
it holds that any proximity or distance relationship 

between two resources is expressed by an agent as a 
viewpoint. A typed viewpoint connects these two 
resources. These viewpoints are individually 
interpreted by a perspective chosen by the user / 
contributor. This perspective allows assigning a 
weight to each viewpoint, depending on who issued 
it, on when it was created, and on its semantic type 
or other more complex criteria. Therefore, 
Viewpoints is a knowledge representation formalism 
centered on equally considered human (e.g., Web 
users) or artificial (e.g., data mining tools, 
knowledge extractors, ontologies) agents. Resources 
(providers, descriptors and knowledge supports) are 
bound by the viewpoints on the knowledge graph. 
The KG is a bipartite graph consisting of a set of 
resources R and a set of viewpoints V connecting 
these resources. The resources in R are either agents 
(knowledge providers, i.e., viewpoint creators), 
knowledge descriptors (topics, tags) or knowledge 
supports (documents, videos, Web pages, messages, 
posts, etc.). A viewpoint is a tuple 
(a → {r1, r2}, θ, t) containing the following 
information: 
 a, the agent who issued the viewpoint; 

 {r1, r2}, the couple of resources semantically 

connected by a; 

 θ, the viewpoint's type, used to interpret (i.e., 

assign a weight to) it; 

 t, the viewpoint's creation date. 
For instance, (Guillaume → {Diffusion systems [...] 
views, acm:Knowledge representation and 
reasoning}, dc:subject, 27/02/15) means that the 
agent Guillaume associates this article to the 
Knowledge representation and the reasoning concept 
of ACM’s taxonomy with the relation DublinCore 
subject. (Mario → {Mario, Luigi}, foaf:knows, 
1985) means that Mario elicited that he has known 
(as in FOAF) Luigi since 1985. To identify the 
meaning of the data represented in the form of 
Viewpoints, we adopt, when possible, existing 
Semantic Web types. 

4 VIEWPOINTS EXPLOITATION 

The aggregation of all connections between two 
resources created by the different agents form a 
semantic proximity link named synapse. The 
strength of the synapse is based on the aggregation 
of the weights of each viewpoint in the synapse. The 
two functions of evaluation (Map) and aggregation 
(Reduce) of viewpoints form a perspective which 
allows the exploitation of subjective knowledge. For 
the same KG, several interpretations, defined as 
Knowledge Maps (KM), can be made dependent on 
how agents evaluate and aggregate viewpoints. The 



Knowledge Map is a graph made of resources (R) 
and synapses (S) to which common graph algorithms 
can be easily applied. The perspective is unique to 
each user, who decides to interpret the KG any way 
he wants. The two functions of evaluation and 
aggregation of viewpoints can be extended at will to 
suitably match one’s needs. Figure 1 illustrates the 
interpretation process of KG. In the following 
simulation we use: (i) a direct neighborhood 
function that returns all the resources directly 
connected by viewpoints to a specified resource, and 
the weight of the synapses binding this resource to 
its direct neighbors; (ii) an indirect neighborhood 
function based on the Dijkstra algorithm and which, 
for a resource ri, returns all resources rj on all the 
paths starting from ri with a length less than a 
specified threshold, m (simulation-specific 
parameter).  
 

 

Figure 1: Interpretation of Knowledge Graph (KG) into 
Knowledge map (KM). 

An important aspect, directly inspired from the Web 

2.0, lies in the built-in feature for integrating agent 

feedback. Within their perspective, agents use any 

Viewpoint for browsing KM and reversely update 

the KG through viewpoints expressing their 

feedback. Along these exploitation/feedback cycles, 

shared knowledge is continuously elicited against 

the beliefs of the agents in a selection process. The 
knowledge map is defined as a graph in which 

semantic similarities within the knowledge resources 

are computed according to a given perspective. 

5 SERENDIP SIMULATION 

Our goal is to simulate the evolution of a knowledge 
base – such as the Web – from individual behavior 
rules that describe agents browsing the Web and 

disseminating their preference systems. First, we 
explain how we represent the preference systems in 
a Viewpoints KG; then, we propose a behavioral 
model simulating different configurable navigation 
strategies. This model is based on calculations of 
direct and indirect neighborhoods. Finally, we 
observe the effect of this set of individual rules on 
the macroscopic level of knowledge represented in 
the resulting KG. 

5.1 Preference Systems Representation 

In this simulation, each resource is characterized by 

a shape, a size and a color. Shape and size 

information will already be included in the KG at the 

beginning of the simulation; this information 

simulates the Semantic Web data. Color information 

is introduced step-by-step during the simulation by 

three agents, the princes of Serendip, who know and 

like a different color each (red, green, blue); this 
information simulates social Web contributions. The 

preference system of a prince is the set of all the 

viewpoints he has issued to make same-color 

resources get closer to him or closer to one another. 

We consider two kinds of viewpoints: (i) the first 

kind links two same-color resources (vps:knows ; 

(ii) the second associates a prince of a specific color 

with a resource of the same color (vps:likes). The 

dissemination of a preference system is therefore 

equivalent to the distribution of the color 

information in the graph, i.e., the more colored the 
graph becomes, the more a preference system has 

been shared. Thus, when the graph “learns” a color, 

it illustrates the collective intelligence of the 

community.  

For example, if the red prince searches a red 

resource r and retrieves a red-color resource r', he 

issues the two following viewpoints (RedPrince → 

{Redprince, r},vps:likes,τ) and (RedPrince → {r,r'}, 

vps:knows, τ). In the next section we will present the 

different navigation strategies which allow princes 

to disseminate knowledge about their color. 

5.2 Behavioral Model of the Serendip 
Princes 

 

The state automaton in Figure 2 describes the 
behavior of the princes when they are navigating in 

the KG and disseminating their preference systems 

(viewpoints emission). More generally, this 

automaton simulates the behavior of a user when he 
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is exploring the contents of a knowledge base such 

as the Web.  

 

Figure 2: Behavioral automaton of the Princes of 
Serendip 

We capture behaviors such as: querying a search 
engine, exploring the results, following links 

included in these results and querying the search 

engine again. In our simulation the behavior of a 

Prince corresponds to a specific configuration of the 

β, μ and σ parameters; we call this a navigation 

strategy. Our simulation is divided into cycles that 

correspond to successive explorations of the KG. At 
the beginning of a cycle, a prince begins interacting 

with the KG; we simulate the use of a search engine: 

A resource of the KG is randomly selected and the 

indirect neighborhood function is used to retrieve a 

list of results (other resources) sorted by semantic 

proximity. From the proposed results, the prince 

continues (low β) or abandons this search and 

undertakes a new one (high β). If he continues, he 

must evaluate these results one by one (comparing 

them to the color corresponding to his preference 

system) and select the first non-visited result based 
on the σ parameter. If the prince accepts Serendipity 

(high σ), he does not systematically select resources 

of his own color; if he does not accept Serendipity 

(low σ), he will instead focus on resources of his 

color only. Once a resource is chosen, the prince 

moves to the next stage of his journey: Depending 

on μ, he will either perform a direct search on this 

resource (high μ) or explore locally around this 

resource (low μ). The first interaction simulates the 

act of opening a Web page as the result of a previous 

search; the second interaction simulates either a new 

search, e.g., with the title or content of the current 
page, or clicking on a Web link within a page. In the 

simulation, princes start with an initial budget of 

interactions; this budget is decreased with each 

interaction (research and exploration). It represents 

the amount of effort princes are willing to make 

when navigating. When princes wish to go 

backwards, three scenarios will lead to the end of the 
cycle:  There are no previous steps; or, all resources 

have been visited; or, the initial interaction budget 

has been spent.  

These strategies simulate Web browsing. In terms of 

graph traversal, a high β corresponds to a breadth-

first approach, whereas lower β corresponds to a 

depth-first approach. In an information search 

process, the breadth-first approach would 

superficially assess all the results and get an overall 

idea of all the results ; instead, the depth-first 

approach would rather focus on what would seem to 

be the best result and dig deeper. μ determines the 

navigation style. A high μ value means princes 
mainly use SEARCH engines that sort results 

according to a global approach; a low μ means 

princes will carry out a step-by-step exploration by 

collecting unsorted local results (EXPLORATION). 

For example, navigating from one suggested 

YouTube video to another is a good illustration of a 

step-by-step exploration, in which as a succession of 

Google searches illustrate a BREADTH traversal. 

We represent the Serendipity acceptance factor (σ) 

as a third dimension. High σ means princes are 

mainly OPEN and are willing to visit both the 

resources that match their preferences and the 
resources that do not but could lead to chance 

discoveries. Low σ means princes are mainly 

CLOSED to the latter prospect and are entirely 

guided by their preferences when browsing. 

6 SIMULATION DYNAMICS 

6.1 Initial Conditions 

A fixed-size KG is generated. In addition to their 
specific color (red, green, blue), the resources of the 

KG are characterized by their size (small, medium, 

large) and their shape (square, circle, triangle). For 

each possible size, shape and color combination, N 

resources are created. Therefore, there are initially 

27N resources. Two artificial agents, called peons 

are added to the KG. One of them shares his 

appreciation of shapes in the knowledge graph, 

connecting all the same shapes of resource pairs by 

viewpoint types vps:initial. The other peon does the 

same for size. Thus, after the peons have shared their 

appreciations, the KG does not “know” colors 
because resources are only tied by size and shape 



characteristics. Finally, the 3 princes are added to 

the KG. Each of them is characterized by a unique 

color, and has the ability to appreciate colors and 

share this assessment by issuing new viewpoints 
such as vps:like and vps:knows in the KG. Thus, 

there is an implicit understanding that the princes are 

only able to share by issuing viewpoints as feedback. 

6.2 Dissemination of Preference 
Systems 

The simulation parameters are summarized in Table 

1. The princes follow the behavioral model 

previously described and disseminate their 

preferences (knowledge of their own color) by 

issuing vps:like and vps:knows viewpoints. The 
weight assigned to each type of viewpoint is shown 

in Table 1. The aggregation capability of viewpoints 

for the calculation of the value is the sum of the 

synapses. At the end of each cycle, the following 

measures are calculated to evaluate the 

dissemination of color (preference) knowledge in the 
KG: 

 M1 Color X: This is the ratio of the average 

distance between any resources over the average 

distance between X-colored resources. 

 M2 Color X: This is the probability of getting a 

resource of the same color in the neighborhood of 

X-colored resource. 

Table 1: Simulation parameters. 

 

Given the large number of parameters (Table 1), we 

present the results (curves) of several simulations 

with the parameter configurations which we 

consider the most significant for navigation 

strategies. However, we explain the effects of 

specific parameters in the discussion section. Other 

fixed parameter values are given in Table 1. 

 

6.3 Hypotheses 

Princes progressively share their color assessments 

with other users through the feedback mechanism. 

We aim to observe how the KG "learns" (at the 

global level) the notion of color that was not 

originally in the knowledge represented by the 

vps:initial viewpoints. Thanks to viewpoints, each 

individual preference system becomes part of the 

collective knowledge represented in the KG, where 

it coexists with the preference systems of other 

princes. Our goal is to experiment with different 
navigation strategies and demonstrate that 

preference systems do not neutralize each other 

when concurrently broadcast. We also want to 

measure the effect of Serendipity. Thus, we expect 

M1 to increase; in other words, the average distance 

between same-color resources will decrease more 

quickly than the average distance between any 

resource. M2 should also increase as it reflects the 

probability of finding the same-color resource in the 

m-neighborhood of a resource. 

7 RESULTS AND DISCUSSIONS 

7.1 Impact of the Serendipity 
Acceptance Factor 

We start by assessing the impact of σ on the 

dissemination of the color red thanks to measures 

M1 and M2 Red. One can notice (Figure 3) that 

when search engines are mainly used, M1 and M2 

increase at a faster rate when Serendipity acceptance 

is low; conversely, when Serendipity acceptance is 

high, they reach higher final values. Therefore, 

Serendipity acceptance allows a wider dissemination 

of color knowledge. Indeed, while the search 
indirectly returns results and allows the creation of 

viewpoints that have not already been issued, 

Serendipity acceptance increases the potential for 

creating new original viewpoints. 

 

Categories Parameters 
Values (if 
fixed) 

Scale parameters 

Scale factor (N) 3 

Number of cycles 100 

Number of iterations per 

cycle 
50 

Perspective 

parameters 

Weight of viewpoints 
with type 
vps:initial  

1 

… type vps:knows 2 

… type vps:like 1 

Navigation 
strategy 
parameters 

ẞ   

µ   

σ   

Activity 
distribution 

Red prince 33% 80% 

Green prince 33% 10% 



 
Figure 3: M1 Red and M2 Red evolution when 

princes mainly use search engines (µ=70%, ẞ=10%) 

 

These new associations are expressions of 

preference systems that would likely not have been 

generated if the princes had been guided only by 

their preferences to navigate. In contrast, we observe 

(Figure 4) that when mainly local exploration results 

are used to navigate from, Serendipity acceptance 

does not affect either M1 and M2 value increases or 

final values. This strategy’s idea is to explore local 

and in-depth results; moreover, going through less 
interesting results along the road tends to slow the 

spread of preference systems. The μ effect 

(navigation device) is very important for 

Serendipity. However, we realize that the relative 

homogeneity of our graph does not realistically 

represent the Web’s structure. We believe that, 

under more realistic conditions, Serendipity can 

produce more substantial gains than it does in our 

"toy" knowledge graph. In this simulation, the three 

princes are active (33%) and ẞ = 10%. 

 

Figure 4: M1 Red and M2 Red evolution when princes 
mainly use link-by-link exploration (µ=30%, ẞ=10%). 

7.2 Adaptation to Real Web Data 

We also conducted a similar experiment with real 

data on movies and user ratings. We studied a Web 

dataset (MovieLens), in which explicit semantics 

were mixed with social contributions. This dataset 
consisted in two sets of 100,000 and 1,000,000 

ratings which had been collected by the GroupLens 

Research Project at the University of Minnesota. In 

our MovieLens experiment, users elicited 

preferences when they associated movies with 

ratings. Initially, each movie was linked to other 

movies by metadata such as actors, directors or 

genres. For instance, the genre characteristic 

corresponded to the shape characteristic in our 

Serendip simulation. All films, as well as other 

resources such as genres, were initially added to the 
KG. During each cycle, a portion of the ratings was 

added to the KG as viewpoints, once again 

simulating the contributions of the social Web. We 

observed knowledge crystallizing progressively 

around the reviewers. This experiment showed us 

that when working with such a recommendation 

system, we may observe that structured data (genres, 

actors, director) do bootstrap the creation of 

subjective (social) knowledge. Integrating user data 

such as gender, age group, job and movie metadata 

(genre, release year) showed us new relations. User 

was closing movies and movies were semantically 
reproaching users. One of the goal we gave to us 

with ViewpointS was also to observe dynamics in an 

evolving represented knowledge. 

8 CONCLUSIONS AND 

PERSPECTIVES 

After presenting and positioning our approach of 

subjective knowledge representation, we studied the 

phenomenon of Serendipity and its current influence 

on the Web. With the Princes of Serendip 

simulation, we presented an experiment for 

modeling Serendipity on the Web. We recognize 

that this behavioral model of Web users may not 

fully represent the reality and diversity of Web 
exploration methods. Nonetheless, we hope that we 

have demonstrated the ability of the Viewpoints 

knowledge graph to learn. Our simulation results 

allowed us to assess the contribution of the 

Serendipity acceptance factor to various navigation 

strategies and its impact on the dissemination of 

preference systems; we consolidated the Viewpoints 

proof of concept by confronting it with a more 



realistic use of modeling and simulation. We are 

planning for several applications which may help us 

evaluate the Viewpoints approach: Amongst them, 

(i) one will consist in cross scientific discovery of 
agronomic knowledge (CIRAD) and (ii) another will 

deal with biomedical data within the SIFR project 

(http://www.lirmm.fr/sifr). We are finishing also 

several IR benchmarks (recall, precision and f-

mesure) on a film recommendation scenario 

comparing our semantic neighborhood methods to 

classic indexation and research methods such as 

Vector Space Model. We will soon publish 

benchmarks results in one the scenarios we 

previously mentioned. 

AKNOWLEDGEMENTS 

This work was supported in part by the French 

National Research Agency under JCJC program, 

grant ANR-12-JS02-01001, as well as by University 

of Montpellier, CNRS and the CIRAD. 

REFERENCES 

Aberer, K., Cudr, P., Catarci, T., Hacid, M., Illarramendi, 
A., Mecella, M., … Scannapieco, M. (2004). 
Emergent Semantics Principles and Issues. In D. Lee, 

YoonJoon and Li, Jianzhong and Whang, Kyu-Young 
and Lee (Ed.), Database Systems for Advanced 
Applications (Vol. 2, pp. 25–38). Springer Berlin 
Heidelber. 

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next 
generation of recommender systems: a survey of the 
state-of-the-art and possible extensions. IEEE 
Transactions on Knowledge and Data Engineering, 

17(6), 734–749.  
Bizer, C., Health, T., & Berners-Lee, T. (2009). Linked 

Data - The Story So Far. In Semantic Services, 
Interoperability and Web Applications: Emerging 
Concepts (Vol. 5, pp. 1–22). 

Bowles, M. (2004). Relearning to E-learn: Strategies for 
Electronic Learning and Knowledge. Educational 
Technology & Society, 7(4), 212–220. 

Corneli, J., Pease, A., & Colton, S. (2014). Modelling 
serendipity in a computational context. arXiv Preprint 
arXiv:1411.0440.  

Edelman, G. (1987). Neural Darwinism: The theory of 
neuronal group selection.  

Fine, G. A., & Deegan, J. G. (1996). Three principles of 
Serendip: insight, chance, and discovery in qualitative 
research. International Journal of Qualitative Studies 
in Education, 9(4), 434–447.  

Freddo, A. R., & Tacla, C. A. (2009). Integrating social 
web with semantic web : ontology learning and 

ontology evolution from folksonomies. KEOD 2009 
Proceedings, 247–253. 

Gruber, T. (2008). Collective knowledge systems: Where 
the Social Web meets the Semantic Web. Web 
Semantics: Science, Services and Agents on the World 
Wide Web, 6(1), 4–13.  

Karapiperis, S., & Apostolou, D. (2006). Consensus 
building in collaborative ontology engineering 
processes. Journal of Universal Knowledge 
Management, 199–216.  

Lee, W.-N., Shah, N., Sundlass, K., & Musen, M. (2008). 
Comparison of ontology-based semantic-similarity 
measures. AMIA, Annual Symposium 2008, 384–8.  

Lemoisson, P., Surroca, G., & Cerri, S. (2013). 
Viewpoints : an alternative approach toward Business 

Intelligence. In eChallenges e-2013 (p. 8). 
Limpens, F., & Gandon, F. (2011). Un cycle de vie 

complet pour l ’ enrichissement sémantique des 
folksonomies. In Extraction Gestion de Connaissance 
EGC 2011 (pp. 389–400). 

Marchionini, G. (1997). Information Seeking in Electronic 
Environments (Cambridge., p. 224). Cambridge 
university press.  

Merton, R. K., & Barber, E. (2006). The Travels and 
Adventures of Serendipity: A Study in Sociological 
Semantics and the Sociology of Science (Princeton., 
Vol. 2006, p. 313).  

Mika, P. (2007). Ontologies are us: A unified model of 
social networks and semantics. Web Semantics: 
Science, Services and Agents on the World Wide 
Web, 5(1), 5–15. doi:10.1016/j.websem.2006.11.002 

Noh, T., Park, S., Park, S., & Lee, S. (2010). Learning the 
emergent knowledge from annotated blog postings. 
Web Semantics: Science, Services and Agents on the 
World Wide Web, 8(4), 329–339.  

Pedersen, T., Pakhomov, S. V. S., Patwardhan, S., & 
Chute, C. G. (2007). Measures of semantic similarity 
and relatedness in the biomedical domain. Journal of 
Biomedical Informatics, 40(3), 288–99.  

Perriault, J. (2000). Effet diligence, effet serendip et autres 
défis pour les sciences de l’information. In Pratiques 
collectives distribuées sur Internet. 

Surroca, G., Lemoisson, P., Jonquet, C., & Cerri, S. A. 
(2014, May 13). Construction et évolution de 
connaissances par confrontation de points de vue : 
prototype pour la recherche d’information scientifique. 
IC - 25èmes Journées Francophones d’Ingénierie Des 
Connaissances.  

Tough, A. (1999). Reflections on the Study of Adult 
Learning. WALL Working Paper. 

Vygotsky, L. S. (1978). Mind in Society: The 
Development of Higher Psychological Processes (Vol. 
1978, p. 159).  

Yamaba, H., Tanoue, M., & Takatsuka, K. (2013). On a 
serendipity-oriented recommender system based on 
folksonomy. Procedia Computer Science, 22, 276–

284.  
  


