Clément Requilé
email: requile@math.fu-berlin.de

Dimitrios M Thilikos

Petr A Golovach
email: petr.golovach@ii.uib.no

Variants of Plane Diameter Completion

Keywords: 1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory Planar graphs, graph modification problems, parameterized algorithms, dynamic programming, branchwidth Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.30

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In 1987, Chung [START_REF] Chung | Diameters of graphs: Old problems and new results[END_REF]Problem 5] introduced the following problem 1 : find the optimum way to add q edges to a given graph G so that the resulting graph has minimum diameter. This problem was proved to be NP-hard if the aim is to obtain a graph of diameter at most 3 [START_REF] Schoone | Diameter increase caused by edge deletion[END_REF], and later the NP-hardness was shown even for the Diameter-2 Completion problem [START_REF] Li | On the minimumcardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems[END_REF]. It is also know that Diameter-2 Completion is W [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF]-hard when parameterized by q [START_REF] Gao | The parametric complexity of graph diameter augmentation[END_REF].

For planar graphs, Dejter and Fellows introduced in [START_REF] Italo | Improving the diameter of a planar graph[END_REF] the Planar Diameter Completion problem that asks whether it is possible to obtain a planar graph of diameter at most d from a given planar graph by edge additions. It is not known whether Planar Diameter Completion admits a polynomial time algorithm, but Dejter and Fellows showed that, when parameterized by d, Planar Diameter Completion is fixed parameter tractable [START_REF] Italo | Improving the diameter of a planar graph[END_REF]. The proof is based on the fact that the yes-instances of the problem are closed under taking minors. Because of the Robertson and Seymour theorem [START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF] and the algorithm in [START_REF] Robertson | Graph minors XIII. The disjoint paths problem[END_REF], this implies that, for each d, the set of graphs G for which (G, d) is a yes-instance can be characterized by a finite set of forbidden minors. This fact, along with the minor-checking algorithm in [START_REF] Robertson | Graph Minors. XIII. The disjoint paths problem[END_REF] implies that there exists an O(f (d) • n 3)-step algorithm (i.e. an FPTalgorithm) deciding whether a plane graph G has a plane completion of diameter at most d. Using the parameterized complexity, this means that Planar Diameter Completion is FPT, when parameterized by d. To make this result constructive, one requires the set of forbidden minors for each d, which is unknown. To find a constructive FPT-algorithm for this parameterized problem remains a major open problem in parameterized algorithm design.

Our results. We denote by S 0 the 3-dimensional sphere. By a plane graph G we mean a simple planar graph G with the vertex set V (G) and the edge set E(G) drawn in S 0 such that no two edges of this embedding intersect. A plane graph H is a a plane completion (or, simply completion) of another plane graph G if H is a spanning subgraph of G. A q-edge completion of a plane graph G is a completion H of G where |E(H)| -|E(G)| ≤ q. A k-face completion of a plane graph G is a completion H of G where at most k edges are added in each face of G. We consider the following problem:

Plane Diameter Completion (PDC) Input: a plane graph G and d ∈ N ≥1 . Output: is there a completion of G with diameter at most d?

An important difference between PDC and the aforementioned problems is that we consider plane graphs, i.e., the aim is to reduce the diameter of a given embedding of a planar graph preserving the embedding. In particular, we are interested in the following variants:

Bounded Budget PDC (BPDC) Input: a plane graph G and q ∈ N, d ∈ N ≥1 Question: is there a completion H of G of diameter at most d that is also a q-edge completion?

Bounded Budget/Face PDC (BFPDC) Input: a plane graph G and k ∈ N, d ∈ N ≥1 . Question: is there a completion H of G of diameter at most d that is also a k-face completion?
We examine the complexity of the two above problems. Our hardness results are the following. Theorem 1. Both BPDC and BFPDC are NP-complete. Moreover, BPDC is NPcomplete even for 3-connected graphs of face-degree at most 4, and BFPDC is NP-complete even for k = 1 on 3-connected graphs of face-degree at most 5.

The hardness results are proved using a series of reductions departing from the Planar 3-Satisfiability problem that was shown to be NP-hard by Lichtenstein in [10].

The results of Theorem 1 prompt us to examine the parameterized complexity of the above problems (for more on parameterized complexity, we refer the reader to [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]). For this, we consider the following general problem:

I P E C ' 1 5

Bounded Budget and Budget/Face BDC (BBFPDC) Input: a plane graph G, q ∈ N ∪ {∞}, k ∈ N, and d ∈ N ≥1 . Question: is there a completion H of G of diameter at most d that is also a q-edge completion and a k-face completion?

Notice that when q = ∞ BBFPDC yields BFPDC and when q = k BBFPDC yields BPDC. Our main result is that BBFPDC is fixed parameter tractable (belongs in the parameterized class FPT) when parameterized by k and d.

Theorem 2. It is possible to construct an O(n 3) + 2 2 O((kd) log d) • (α(q)) 2 • n-step algorithm for BBFPDC.
In the above statement and in the rest of this paper we use the function α :

N ∪ {∞} → N such that if q = ∞, then α(q) = 1, otherwise α(q) = q.
The main ideas of the algorithm of Theorem 2 are the following. We first observe that yes-instances of PDC and all its variants have bounded branchwidth (for the definition of branchwidth, see Section 2). The typical approach in this case is to derive an FPT-algorithm by either expressing the problem in Monadic Second Order Logic -MSOL (using Courcelle's theorem [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF]) or to design a dynamic programming algorithm for this problem. However, for completion problems, this is not really plausible as this logic can quantify on existing edges or vertices of the graph and not on the "non-existing" completion edges. This also indicates that to design a dynamic programming algorithm for such problems is, in general, not an easy task. In this paper we show how to tackle this problem for BBFPDC (and its special cases BPDC and BFPDC). Our approach is to deal with the input G as a part of a more complicated graph with O(k 2 • n) additional edges, namely its cylindrical enhancement G (see Section 3 for the definition). Informally, sufficiently large cylindrical grids are placed inside the faces of G and then internally vertex disjoint paths in these grids can be used to emulate the edges of a solution of the original problem placed inside the corresponding faces. Thus, by the enhancement we reduce BBFPDC to a new problem on G certified by a suitable 3-partition of the additional edges. Roughly, this partition consists of the 1-weighted edges that should be added in the completion, the 0-weighted edges that should link these edges to the boundary of the face of G where they will be inserted, and the ∞-weighted edges that will be the (useless) rest of the additional edges. The new problem asks for such a partition that simulates a bounded diameter completion. The good news is that, as long as the number of edges per face to be added is bounded, which is the case for BBFPDC, the new graph G has still bounded branchwidth and it is possible, in the new instance, to quantify this 3-partition of the graph G . However, even under these circumstances, to express the new problem in Monadic Second Order Logic is not easy. For these reasons we decided to follow the more technical approach of designing a dynamic programming algorithm that leads to the (better) complexity bounds of Theorem 2. This algorithm is quite involved due to the technicalities of the translation of the BBFPDC to the new problem. It runs on a sphere-cut decomposition of the plane embedding of G and its tables encode how a partial solution is behaving inside a closed disk whose boundary meets only (a few of) the edges of G . We stress that this encoding takes into account the topological embedding and not just the combinatorial structure of G . Sphere-cut decompositions as well as some necessary combinatorial structures for this encoding are presented in Section 4. The dynamic programming algorithms is presented in Section 5 and is the most technical part of this paper.

Due to space restrictions, various proofs are omitted in this extended abstract and are available in [START_REF] Golovach | Variants of plane diameter completion[END_REF].

Definitions and preliminaries

Given a graph G, we denote by V (G) (respectively E(G)) the set of vertices (respectively

edges) of G. A graph G is a subgraph of a graph G if V (G) ⊆ V (G) and E(G) ⊆ E(G),
and we denote this by G ⊆ G. Also, in case V (G) = V (G), we say that H is a spanning subgraph of G. If S is a set of vertices or a set of edges of a graph G, the graph G \ S is the graph obtained from G after the removal of the elements of S. If S is a set of edges, we define G[E] as the graph whose vertex set consists of the endpoints of the edges of E and whose edge set of E.

Distance and diameter.

Let G be a graph and let w : E(G) → N∪{∞} (w is a weighting of the edges of G). Given two vertices x, x ∈ V (G) we call (x, x)-path every path of G with x and x as endpoints. We also define w-dist G (x, x) = min{w(E(P)) | P is an (x, x)-path in G}.

Plane graphs. To simplify notations on plane graphs, we consider a plane graph G as the union of the points of S 0 in its embedding corresponding to its vertices and edges. That way, a subgraph H of G can be seen as a graph H where H ⊆ G. The faces of a plane graph G, are the connected components of the set S 0 \ G. A vertex v (an edge e resp.) of a plane graph G is incident to a face f and, vice-versa, f is incident to v (resp. e) if v (resp., e) lies on the boundary of f . The degree of a face f of G is the number of edges incident to f where bridges of G count double in this number. The face-degree of G is the maximum degree of a face in

F (G). A set ∆ ⊆ S 0 is an open disc if it is homeomorphic to {(x, y) : x 2 + y 2 < 1}. Also, ∆ is a closed disk of S 0 if it is the closure of some open disk of S 0 .
Branch decomposition. Given a graph H with n vertices, a branch decomposition of H is a pair (T, µ), where T is a tree with all internal vertices of degree three and µ : L → E(H) is a bijection from the set of leaves of T to the edges of H. For every edge e of T , we define the middle set mid(e) ⊆ V (H) as follows: if T \ {e} has two connected components T 1 and T 2 , and for i ∈ {1, 2}, let

H e i = H[{µ(f) : f ∈ L ∩ V (T i)]
, and set mid(e) = V (H e 1) ∩ V (H e 2). The width of (T, µ) is the maximum order of the middle sets over all edges of T , i.e. max{|mid(e)| : e ∈ T }. The branchwidth of H is the minimum width of a branch decomposition of H and is denoted by bw(H).

We use the following lemma.

Lemma 3. There exists a constant c 1 such that if (G, d) is a yes-instance of PDC, then bw(G) ≤ c 1 • d.
The same holds for the graphs in the yes-instances of BPDC, BFPDC, and BBFPDC.

3

The reduction Edge colorings of new edges. Let G and H be two plane graphs such that G is a subgraph of H and let q ∈ N ∪ {∞}, k ∈ N, and

d ∈ N ≥1 . Given a 3-partition p = {E 0 , E 1 , E ∞ } of E(H) \ E(G), we define the function w p : E(H) → N such that w p = {(e, 1) | e ∈ E(G)} ∪ {(e, 0) | E ∈ E 0 } ∪ {(e, 1) | e ∈ E 1 } ∪ {(e, d + 1) | E ∈ E ∞ }. We say that G has (q, k, d)-extension in H if there is a 3-partition p = {E 0 , E 1 , E ∞ } of E(H) \ E(G) such that

the following conditions hold

A. There is no path in H with endpoints in V (G) that consists of edges in E 0 , B. every face F of G contains at most k edges of E 1 ,

I P E C ' 1 5 C. ∀x, y ∈ V (G), w p -dist H (x, y) ≤ d, and D. |E 1 | ≤ q. Given a 3-partition p = {E 0 , E 1 , E ∞ } of E(H) \ E(G)
we refer to its elements as the 0-edges, the 1-edges, and the ∞-edges respectively. We also call the edges of G old-edges.

(G k) ≤ c 2 • k • bw(G)). For every q ∈ N ∪ {∞} and d ∈ N ≥1 , (G, q, k, d) is a yes-instance of BBFPDC if and only if G has a (q, k, d)-extension in G k . Moreover, this algorithm runs in O(k 2 • n) steps.

Structures for dynamic programming

For our dynamic programming algorithm we need a variant of branchwidth for plane graphs whose middle sets have additional topological properties.

Sphere-cut decomposition. Let H be a plane graph. An arc is a subset O of the plane homeomorphic to a circle and is called a noose of H if it meets H only in vertices. We also set We denote X e = V Oe and we always assume that its vertices are clockwise enumerated according to π(e). We denote by A e the set containing the arcs of O e . Also, if π(e) = [a 1 , . . . , a k , a 1], then we use the notation A e = {a 1,2 , a 2,3 , . . . , a k-1,k , a k,1 } where the boundary of the arc a i,i+1 consists of the vertices a i and a i+1 . We also define H + e = (V (H), E(H ∪ A e)), i.e., H + e is the embedding occurring if we add in H the arcs of O e as edges. A face of H + e is called internal if it is not incident to an arc in A e , i.e., it is also a face of H. A face of H + e is marginal if it is a properly included is some face of H. For our dynamic programming we require to have in hand an optimal sphere-cut decomposition. This is done combining the main result of [START_REF] Gu | Optimal branch-decomposition of planar graphs in O(n 3) time[END_REF] and [15, (5.1)] (see also [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF]) and is summarized to the following. Proposition 5. There exists an algorithm that, with input a 3-connected plane graph G and w ∈ N, outputs a sphere-cut decomposition of G of width at most w or reports that bw(G) > w.

V O = V (H) ∩ O. An arc of a noose O is a connected component of O \ V O while
Our next step is to define a series of combinatorial structures that are necessary for our dynamic programming. Given two sets A and B we denote by A B the set of all functions from B to A.

(d, k, q)-configurations. Given a set X and a non-negative integer t, we say that the pair (X , χ) is a t-labeled partition of X if X is a collection of pairwise disjoint non-empty subsets of X and χ is a function mapping the integers in {1, . . . , |X |} to integers in {0, . . . , t}. In case X = ∅, a t-labeled partition corresponds to the pair {∅, ∅} where ∅ is the "empty" function, i.e. the function whose domain is empty. Let X and A be two finite sets. Given d, k ∈ N and q ∈ N ∪ {∞}, we define a (d, k, q)-configuration of (X, A) as a quintuple ((X , χ), (A, α), (F, E), δ, z) where E) is a graph (possibly with loops) where F ⊆ {0, . . . , d + 1} X , 4. δ ∈ {0, . . . , d + 1} X 2 , and 5. if q ∈ N, then z ≤ q, otherwise z = ∞.

1. (X , χ) is a 1-labeled partition of X, 2. (A, α) is a k-labeled partition of A, 3. (F,
Fusions and restrictions. Let (X 1 , χ 1) and (X 2 , χ 2) be two t-labeled partitions of the sets X 1 and X 2 respectively such that X i = {X i 1 , . . . , X i ρ1 }, i ∈ {1, 2}. We define X 1 ⊕ X 2 as follows: if x, x ∈ X 1 ∪ X 2 we say that x ∼ x if there is a set in X 1 ∪ X 2 that contains both of them. Let ∼ T be the transitive closure of ∼. Then X 1 ⊕ X 2 contains the equivalence classes of ∼ T . We now define χ 1 ⊕ χ 2 as follows: let

X 1 ⊕ X 2 = {Y 1 , . . . , Y ρ }. Then for each i ∈ {1, . . . , ρ}, we define χ 1 ⊕ χ 2 (i) = min{t, X 1 i ⊆Yi χ 1 (i) + X 2 i ⊆Yi χ 2 (i)}. The fusion of the t-labeled partitions (X 1 , χ 1) and (X 2 , χ 2) is the pair (X 1 ⊕ X 2 , χ 1 ⊕ χ 2)
that is a (t + 1)-labeled partition and is denoted by (X 1 , χ 1) ⊕ (X 2 , χ 2). Given a t-labeled partition (X , χ) of a set X and given a subset X of X we define the restriction of (X , χ) to X as the t-labeled partition (X , χ) of X where X

= {X i ∩ X | X i ∈ X } \ {∅} and χ = {(i, χ(i)) | X i ∩ X = ∅}
and we denote it by (X , χ)| X . We also define the intersection of (X , χ) with X as the t-labeled partition (X , χ) where

X = {X i ∈ X | X i ∩ (X \ X) = ∅} and χ = {(i, χ(i)) | X i ∩ X = ∅} where X = ∪ X i ∈X X i
and we denote it by (X , χ) ∩ X . Notice that (X , χ)| X and (X , χ) ∩ X are not always the same.

Dynamic programming

The following result is the main algorithmic contribution of this paper.

Lemma 6.

There exists an algorithm that, given (G, H, q, k, d, D, b) as input where G and

H are plane graphs such that G is a subgraph of H, H is 3-connected, q ∈ N ∪ {∞}, k ∈ N, d ∈ N ≥1 , b ∈ N, and D = (T, µ, π) is a sphere-cut decomposition of H with width at most b, decides whether G has (q, k, d)-extension in H in (α(q)) 2 • 2 O(b 2 log d)+2 O(b log d) • n steps.
Proof. We use the notation

E old = E(G) and E new = E(H) \ E(G), V old = V (G) and V new = V (H) \ V (G).
We choose an arbitrary edge e * ∈ E(T), subdivide it by adding a new vertex v new and update T by adding a new vertex r adjacent to v new . We then root T at this vertex r and we extend µ by setting µ(r) = ∅. In T we call leaf-edges all its edges that are incident to its leaves except from the edge e r = {r, v new }. An edge of T that is not a leaf-edge is called internal. We denote by L(T) the set of the leaf-edges of T and we denote by I(T) the internal edges of T . We also call e r root-edge. For each e ∈ E(T), let T e be the tree of the forest T \ {e} that does not contain r as a leaf and let E e be the edges that are images, via µ, of the leaves of T that are also leaves of T e . We denote H e = H[E e] and V e = V (H e) and observe that H er = H. For each edge e ∈ I(T), we define its children as the two edges that both belong in the connected component of T \ e that does not contain the root r and that share a common endpoint with e. Also, for each edge e ∈ E(T), we

. , d + 1}

Xe and, to each F e,p , assign a unique edge set E e,p . Intuitively, each F e,p corresponds to a partition of the elements of V e such that vertices in the same part have the same (X e , p)-distance signature. Moreover the existence of an edge in the (e, p)-dependency graph between two such parts implies that they contain vertices, one from each part, whose w p -distance in H e is bigger than d.

The tables. Our aim is to give a dynamic programming algorithm running on the scdecomposition T . For this, we describe, for each e ∈ E(T), a table T(e) containing information on partial solutions of the problem for the graph G e in a way that the table of an edge e ∈ E(T) can be computed using the tables of the two children of e, the size of each table does not depend on G and the final answer can be derived by the table of the root-edge e r .

We define the function T mapping each e ∈ E(T) to a collection T(e) of (d, k, q)configurations of (X e , A e). In particular, Q = ((X , χ), (A, α), (F, E), δ, z) ∈ T(e) iff there exists a 3-partition p = {E 0 e , E 1 e , E ∞ e } of E new e such that the following hold: 1. C 1 , . . . , C h are the connected components of (V (H e), E 0 e), then X = {V (C 1) ∩ X e , . . . , V (C h) ∩ X e } and ∀ i∈{1,...,h} χ(i) = 1 if C i contains some vertex of V old e , otherwise χ(i) = 0. (The pair (X , χ) encodes the connected components of the 0-edges that contain vertices of X e and for each of them registers the number (0 or 1) of the vertices in V old e in them. This information is important to control Condition A.) 2. A is a partition of A e such that two arcs A, A ∈ A e belong in the same set, say A i of A if and only if they are incident to the same marginal face f i of H + e . Moreover, for each i ∈ {1, . . . , |A|}, α(i) is equal to the number of edges in E 1 e that are inside f i . (Here (A, α) encodes the "partial" faces of the embedding of G e that are inside ∆ e . To each of them we correspond the number of 1-edges that they contain in H e . This is useful in order to guarantee that during the algorithm, faces that stop being marginal do not contain more than k 1-edges, as required by Condition B.) 3. (F, E) is the (e, p)-dependency graph, i.e., the graph G e,p = (F e,p , E e,p).

(Recall that F is the collection of all the different distance vectors of the vertices of V e . Notice also that there might be pairs of vertices x, x ∈ V e whose w p -distance in G e is bigger than d. In order for G to have a completion of diameter d, these two vertices should become connected, at some step of the algorithm, by paths passing outside ∆ e .

To check this possibility, it is enough to know the distance vectors of x and x and these are encoded in the set F. Moreover the fact that x and x are still "far away" inside G e is certified by the existence of an edge (or a loop) between their distance vectors in F.)

4.

For each pair x, x ∈ X e , δ(x, x) = min{w p -dist He (x, x), d + 1}. (This information is complementary to the one stored in F and registers the distances of the vertices in X e inside H e . As we will see, F and δ will be used in order to compute the distance vectors as well as their dependencies during the steps of the algorithm.)

5.

There is no path in H e with endpoints in V old e that consists of edges in E 0 e . (This ensures that Condition A is satisfied for the current graph G e .)

Every internal face of G +

e contains at most k edges in E 1 e . (This ensures that Condition B holds for all the internal faces of G e .)

7. ∀v, v ∈ V e , either w p -dist He (v, v) ≤ d or there are two vertices x, x ∈ X e such that φ v (x) + φ v (x) ≤ d.
(Here we demand that if two vertices x 1 , x 2 of V e are "far away" (have

w p -distance > d)
inside H e then they have some chance to come "close" (obtain w p -distance ≤ d) in the final graph, so that Condition C is satisfied. This fact is already stored by an edge in E between the two distance vectors of x and x and the possibility that x 1 and x 2 may come close at some step of the algorithm, in what concerns the graph G e , depends only on these distance vectors and not on the vertices x 1 and x 2 themselves.)

8.

There are at most z edges of E 1 e inside the internal faces of G + e (clearly, this last condition becomes void when q = ∞). (This information helps us control Condition D during the algorithm.) Notice that in case X e = ∅ the only graph that can correspond to the 6th step is the graph ({∅}, ∅) which, from now on will be denoted by G ∅ .

Bounding the set of characteristics. Our next step is to bound T(e) for each e ∈ E(T). Notice first that |X e | = |A e | ≤ b. This means that there are 2 O(b log b) instantiations of (X , χ) and 2 O(k+b log b) instantiations of (A, α). As we previously noticed, the different instantiations of (F, E) are |Φ e | = 2 2 O(b log d) . Moreover, there are 2 O(b 2 log d) instantiations of δ and α(q) instantiations of z. We conclude that there exists a function f such that for each e ∈ V (T),

|T(e)| ≤ f (k, q, b, d). Moreover, f (k, q, b, d) = α(q) • 2 O(b 2 log d)+2 O(b log d) .
The characteristic function on the root edge. Observe that E new is (k, d, q, w)-edge colorable in H if and only if T(e r) = ∅, i.e., ((∅, ∅), (∅, ∅), G ∅ ,∅, z) ∈ T(e r) for some z ≤ q. Indeed, if this happens, conditions 1-4 become void while conditions 5, 6, 7, and 8 imply that H = H e satisfies the conditions A, B, C, and D respectively in the definition of the (k, d, q, w)-edge colorability of E new .

The computation of the tables. We will now show how to compute T(e) for each e ∈ E(T).

We now give the definition of T(e) in the case where e is a leaf of T is the following: Given a q ∈ N ∪ {∞}, we define

A(q) = {∞} if q = ∞, otherwise A(q) = {z | z ≤ q}.
Suppose now that e l is a leaf-edge of T where π(e l) = [a 1 , a 2 , a 1] and A e l = {a 1,2 , a 2,1 }.

1. If {a 1 , a 2 } ∈ E old e , then T(e l) = { ({{a 1 }, {a 2 }}, {(1, 1), (2, 1)}), ({{a 1,2 }, {a 2,1 }}, {(1, 0), (2, 0)}), {(a 1 , 0), (a 2 , w({a 1 , a 2 }))}, {(a 1 , w({a 1 , a 2 })), (a 2 , 0)} , ∅ , {((a 1 , a 2), w({a 1 , a 2 }))}, z | z ∈ A(q)}, I P E C ' 1 5 2. if {a 1 , a 2 } ∈ E new e and {a 1 , a 2 } ⊆ V old e , then T(e l) = Q 1 ∪ Q ∞ where Q 1 = { ({{a 1 }, {a 2 }}, {(1, 1), (2, 1)}) ({{a 1,2 , a 2,1 }}, {(1, 1)}) ({(a 1 , 0), (a 2 , 1)}, {(a 1 , 1), (a 2 , 0)} , ∅) {((a 1 , a 2), s)}, z | z ∈ A(q) -{0}} Q ∞ = { ({{a 1 }, {a 2 }}, {(1, 1), (2, 1)}) ({{a 1,2 , a 2,1 }}, {(1, 0)}) ({(a 1 , 0), (a 2 , d + 1)}, {(a 1 , d + 1), (a 2 , 0)} , K) {((a 1 , a 2), d + 1)}, z | z ∈ A(q)} (the set K above contains a single edge that is not a loop), and if {a 1 , a 2 } ∈ E new e and {a 1 , a 2 } V old e , then T(e l) = Q 1 ∪ Q ∞ ∪ Q 0 where Q 0 = { ({{a 1 , a 2 }}, {(1, 1 -{a 1 , a 2 } ⊆ V new e)}) ({{a 1,2 , a 2,1 }}, {(1, 0)}) ({{(a 1 , 0), (a 2 , 0)}}, ∅) {((a 1 , a 2), 0)}, z | z ∈ A(q)}.
Assume now that e is a non-leaf edge of T with children e l and e r , the collection T(e) is given by join(T(e 1), T(e 2)) where join is a procedure that is depicted below. Notice that A e is the symmetric difference of A e l and A er and X e consists of the endpoints of the arcs in A e . We also set X F e = (X e l ∪ X er) \ X e .

Procedure join Input: two collections Ce l and Ce r of (d, k, q)-configurations of (Xe l , Ae l) and (Xe r , Ae r).

Output: a collection Cr of (d, k, q)-configurations of (Xe, Ae) It remains to describe the routine merge. For this, assume that it receives as inputs the (d, k, q)-configurations Q l = ((X l , χ l), (A l , α l), (F l , E l), δ l , z l) and Q r = ((X r , χ r), (A r , α r), (F r , E r), δ r , z r) of (X e l , A e l) and (X er , A er) respectively. Procedure merge(Q e l , Q er) returns a (d, k, q)-configuration ((X , χ), (A, α), (F, E), δ, z) of (X e , A e) constructed as follows:

1. If z r + z r > q, then return void, otherwise z = z l + z r (This controls the number of 1-edges that are now contained in ∆ e) 2. Let (X , χ) = (X l , χ l) ⊕ (X r , χ r) and if χ -1 (2) = ∅ then return void.

(This compute the "fusion" of the connected components of (V (H e l , E 0 e l)) and (V (H er , E 0 er)) with vertices in V e l and V er and makes sure that none of the created components contains 2 or more 0-vertices.) 3. Let (X , χ) = (X l , χ l)| Ve (This computes the fusion (X l , χ l) is restricted on the boundary O e of ∆ e .) 4. Let (A , α) = (A l , α l) ⊕ (A r , α r) and if α -1 (k + 1) = ∅ then return void. 5. Let (A, α) = (A l , α l) ⊕ (A r , α r)| Ae . 6. Compute the function γ : (F e l ∪ F er ∪ X e) × (F e l ∪ F er ∪ X e) → {0, . . . , d + 1}, whose description is given latter. 7. Take the disjoint union of the graphs (F l , E l) and (F r , E r) and remove from it every edge {φ 1 , φ 2 } for which γ(φ 1 , φ 2) ≤ d. Let G + = (F + , E +) be the obtained graph.

8.

If for some edge {φ 1 , φ 2 } ∈ E + it holds that for every x 1 , x 2 ∈ V e , γ(φ 1 , x 1) + γ(φ 2 , x 2) > d, then return void. 9. Consider the function λ : F l ∪ F r → {1, . . . , d} Xe such that λ(φ) = {(x, γ(φ, x)) | x ∈ X e }. 10. For every φ ∈ λ(F l ∪ F r), do the following for every set F = λ -1 (φ): identify in G + all vertices in F and if at least one pair of them is adjacent in G + , then add an loop on the vertex created after this identification. Let G = (F, E) be the resulting graph (notice that

F = λ(F l ∪ F r)). 11. δ = {((x, x), γ(x, x)) | x, x ∈ V e }.
The definition of function γ. We present here the definition of the function γ used in the above description of the tables of the dynamic programming procedure.

Given a non-empty set X and q ∈ {0, 1} we define

ord q (X) = {π | ∃X ⊆ X : X = ∅ ∧ |X | mod 2 = q ∧ π is an ordering of X }
Given γ l and γ r , we define γ : (F e l ∪ F er ∪ X e) × (F e l ∪ F er ∪ X e) → {0, . . . , d + 1} by distinguishing the following cases:

1. If (x ∈ X e \ X er ∧ φ ∈ F e l) or (x ∈ X e \ X e l ∧ φ ∈ F er), then γ(φ, x) = min φ(x), min{φ(p 1) + 1,ρ-1 δ s(i) (p i , p i+1) + δ s(ρ) (p ρ , x) | [p 1 , . . . , p ρ] ∈ ord 0 (X F e)} , where s(i) = "l" if x ∈ X e \ X e l = (i mod 2), otherwise s(i) = "r". 2. If (x ∈ X e \ X e l ∧ φ ∈ F e l) or (x ∈ X e \ X er ∧ φ ∈ F er), then γ(φ, x) = min φ(p 1) + 1,ρ-1 δ t(i) (p i , p i+1) + δ t(ρ) (p ρ , x)
| [p 1 , . . . , p ρ] ∈ ord 1 (X F e)} , where t(i) = "l" if x ∈ X e \ X e l = (i mod 2), otherwise t(i) = "r". 3. If x is one of the (at most two) vertices in (X er ∩ X er) \ X F e and φ ∈ F e l ∪ F er , then γ(φ, x) = min φ(x),

min{φ(p 1) + 1,ρ-1 δ u(i) (p i , p i+1) + δ u(q) (p ρ , x) | [p 1 , . . . , p ρ] ∈ ord q (X F e)} | q ∈ {0, 1} where u(i) = "r" if φ ∈ F e l = (i mod 2), otherwise u(i) = "l". 4. If φ, φ ∈ F l ∪ F r , then γ(φ, φ) = min φ(p 1) + 1,ρ-1 δ u(i) (p i , p i+1) + φ (p ρ) | [p 1 , . . . , p ρ] ∈ ord q (X F e)
In this equality, q = 1 if φ and φ belong in different sets in {F l , F r }, otherwise q = 0. The function u is the same as in the previous case.

If

x 1 , x 2 ∈ X e \ X er or x 1 , x 2 ∈ X e \ X e l , then δ(x 1 , x 2) = min δ y(0,x1) (x 1 , x 2), min{δ y(0,x1) (x 1 , p 1) + i∈ 1,ρ-1 δ y(i,x1) (p i , p i+1) + δ y(0,x2) (p ρ , x 2) | [p 1 , . . . , p ρ] ∈ ord 0 (X F e)
} In this equality y(i, x) = "l" if x ∈ X e \ X er = i mod 2 = 0 otherwise y(i, x) = "r".

I P E C ' 1 5 6. If x 1 , x 2 belong in different sets is {X e \ X er , X e \ X e l }, then δ(x 1 , x 2) = min δ y(0,x1) (x 1 , p 1) + 1,ρ-1 δ y(i,x1) (p i , p i+1) + δ y(0,x2) (p ρ , x 2) | [p 1 , . . . , p ρ] ∈ ord 1 (X F e)
The function y is the same as in the previous case.

If exactly one, say x

2 , of x 1 , x 2 belongs in X er ∩ X er) \ X F e , then δ(x 1 , x 2) = min δ y(0,x1) (x 1 , x 2), min min{δ y(0,x1) (x 1 , p 1) + 1,ρ-1 δ y(i,x1) (p i , p i+1) + δ y(0,x2) (p ρ , x 2) | [p 1 , . . . , p ρ] ∈ ord q (X F e)} | q ∈ {0, 1}
The function y is the same as in the two previous cases. In case x 1 belongs in X er ∩ X er) \ X F e , then just swap the positions of x 1 and x 2 in the above equation.

8. If both x 1 , x 2 belong in X er ∩ X er) \ X F e , then δ(x 1 , x 2) = min δ l (x 1 , x 2), δ r (x 1 , x 2), min{min{δ z(0,j) (x 1 , p 1) + 1,ρ-1 δ z(i,j) (p i , p i+1) + δ z(q,j) (p ρ , x 2) | [p 1 , . . . , p ρ] ∈ ord q (X F e)} | (q, j) ∈ {0, 1} 2
} In the previous equality, z(i, j) = "l" if (i + j mod 2) = 0, otehrwise z(i, x) = "r". G,H,q,k,d,D,b). This, from Lemma 4, provides an answer to BBFPDC for the instance I in (α(q)) 2 • 2 O((kd) 2 log d)+2 O((kd) log d) • n = (α(q)) 2 • 2 2 O((kd) log d) • n steps and this completes the proof of the theorem.

Running time analysis. It now remains to prove that procedure join runs in

(α(q)) 2 • 2 O(k 2)+2 O(b log d)

Discussion

We remark that our algorithm still works for the classic PDC problem when the face-degree of the input graph is bounded. For this we define the following problem:

Bounded Face BDC (FPDC) Input: a plane graph G with face-degree at most k ∈ N ≥3 , and d ∈ N Question: is it possible to add edges in G such that the resulting embedding remains plane and has diameter at most d?

We directly have the following corollary of Theorem 2.

Theorem 7. It is possible to construct an O(n 3)+2 2 O((kd) log d) •n-step algorithm for FPDC.

To construct an FPT-algorithm for PDC when parameterized by d remains an insisting open problem. The reason why our approach does not apply (at least directly) for PDC is that, as long as a completion may add an arbitrary number of edges in each face, we cannot guarantee that our dynamic programming algorithm will be applied on a graph of bounded branchwidth. We believe that our approach and, in particular, the machinery of our dynamic programming algorithm, might be useful for further investigations on this problem.

All the problems in this paper are defined on plane graphs. However, one may also consider the "non-embedded" counterparts of the problems PDC and BPDC by asking that their input is a planar combinatorial graphs (without a particular embedding). Similarly, such a counterpart can also be defined for the case of BFPDC if we ask whether the completion has an embedding with at most k new edges per face. Again, all these parameterized problems are known to be (non-constructively) in FPT, because of the results in [START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF][START_REF] Robertson | Graph minors XIII. The disjoint paths problem[END_REF]. However, our approach fails to design the corresponding algorithms as it strongly requires an embedding of the input graph. For this reason we believe that even the non-embedded versions of BPDC and BFPDC are as challenging as the general Planar Diameter Completion problem.

Lemma 4 .

 4 There exists a c 2 ∈ Z ≥1 and an algorithm that receives as input a planar graph G on n vertices and a positive integer k and outputs a 3-connected planar graph G w where bw

I P E C ' 1 5

 5 define ∆ e as the closed disk bounded by O e such that G ∩ ∆ e = H e . Finally, for each edge e ∈ E(T), we set X e = mid(e),V new e = V e ∩ V new , V old e = V e ∩ V old , E new e = E e ∩ E new, and E old e = E e ∩ E old . Distance signatures and dependency graphs. Let p = {E 0 e , E 1 e , E ∞ e } be a 3-partition of E new e . For each vertex v ∈ V e , we define the (X e , p)-distance vector of v as the function φ v : X e → {0, . . . , d + 1} such that if x ∈ X e then φ v (x) = min{w p -dist Ge (v, x), d + 1}. We define the (e, p)-dependency graph G e,p = (F e,p , E e,p) (that may contain loops) where F e,p = {φ v | v ∈ V e } and such that two (not necessarily distinct) vertices φ and φ of F e,p are connected by an edge in E e,p if and only if there exist v, v ∈ V e such that φ = φ v , φ = φ v and w p -dist He (v, v) > d. Notice that the set Φ e = {G e,p | p is a 3-partition of E new e } has at most 2 (d+2) |Xe | elements because {F e,p | p is a 3-partition of E new e } ⊆ {0, . .

) set Ce = ∅ (2) for every pair (Qe l , Qe r) ∈ Ce l × Ce r , if merge(Qe l , Qe r) = void, then let Ce ← Ce ∪ {merge(Qe l , Qe r)}. (3) return Ce

 steps. Recall that there exists a function f such that |T(e)| ≤ f (k, q, b, d). Therefore merge will be called in Step (2) at most (f (k, q, b, d)) 2 times. The first computationally non-trivial step of merge is Step 5, where function γ is computed. Notice that γ has at most ((d + 1) |Xe l | + (d + 1) |Xe r | + |X e |) 2 = 2 O(b•log d) entries and each of their values require running over all permutations of the subsets of X F e that are at most b! = 2 O(b•log b) . These facts imply that the computation of γ takes 2 O(b•log b) steps. As Steps 6-10 deal with graphs of 2 O(b•log d) vertices, the running time of join is the claimed one. We are now in position to prove the main algorithmic result of this paper. Proof of Theorem 2. Given an input I = (G, q, k, d) of BBFPDC, we run the algorithm of Lemma 4 with G and k as input. Let H = G k be the output of this algorithm. From the same lemma, he construction of H takes O(k 2 n) steps. Then we run the algorithm of Proposition 5 with (H, w) as input, where w = c 1 • c 2 • k • d. If the answer is that bw(H) > w, then, from Lemma 4, tw(G) > c 1 • d, therefore, from Lemma 3, we can safely report that I is a no-instance. If the algorithm of Proposition 5 outputs a sphere-cut decomposition D = (T, µ) of width at most w = O(k • d) then we call the dynamic programming algorithm of Lemma 6, with input (

Acknowledgement. We would like to thank the anonymous referees of an earlier version of this paper for their remarks and suggestions that improved the presentation of the paper.

* The first author was supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. The second author was supported by the FP7-PEOPLE-2013-CIG project CountGraph (ref. 630749), the collateral PROCOPE-DAAD project RanConGraph (ref. 57134837), and the Berlin Mathematical School. The research of the third author was co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), Research Funding Program: ARISTEIA II.