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Abstract
The Plane Diameter Completion problem asks, given a plane graph G and a positive integer
d, if it is a spanning subgraph of a plane graph H that has diameter at most d. We examine
two variants of this problem where the input comes with another parameter k. In the first
variant, called BPDC, k upper bounds the total number of edges to be added and in the second,
called BFPDC, k upper bounds the number of additional edges per face. We prove that both
problems are NP-complete, the first even for 3-connected graphs of face-degree at most 4 and the
second even when k = 1 on 3-connected graphs of face-degree at most 5. In this paper we give
parameterized algorithms for both problems that run in O(n3) + 22O((kd)2 log d) · n steps.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Planar graphs, graph modification problems, parameterized algorithms,
dynamic programming, branchwidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.30

1 Introduction

In 1987, Chung [1, Problem 5] introduced the following problem1: find the optimum way to
add q edges to a given graph G so that the resulting graph has minimum diameter. This
problem was proved to be NP-hard if the aim is to obtain a graph of diameter at most 3 [14],
and later the NP-hardness was shown even for the Diameter-2 Completion problem [9].
It is also know that Diameter-2 Completion is W[2]-hard when parameterized by q [6].

For planar graphs, Dejter and Fellows introduced in [3] the Planar Diameter Comple-
tion problem that asks whether it is possible to obtain a planar graph of diameter at most

∗ The first author was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. The second author was
supported by the FP7-PEOPLE-2013-CIG project CountGraph (ref. 630749), the collateral PROCOPE-
DAAD project RanConGraph (ref. 57134837), and the Berlin Mathematical School. The research of the
third author was co-financed by the European Union (European Social Fund ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF), Research Funding Program: ARISTEIA II.

1 Notice that in all problems defined in this paper we can directly assume that G is a simple graph as
loops do not contribute to the diameter of a graph and the same holds if we take simple edges instead
of multiple ones.
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d from a given planar graph by edge additions. It is not known whether Planar Diameter
Completion admits a polynomial time algorithm, but Dejter and Fellows showed that,
when parameterized by d, Planar Diameter Completion is fixed parameter tractable [3].
The proof is based on the fact that the yes-instances of the problem are closed under taking
minors. Because of the Robertson and Seymour theorem [13] and the algorithm in [11],
this implies that, for each d, the set of graphs G for which (G, d) is a yes-instance can be
characterized by a finite set of forbidden minors. This fact, along with the minor-checking
algorithm in [12] implies that there exists an O(f(d) · n3)-step algorithm (i.e. an FPT-
algorithm) deciding whether a plane graph G has a plane completion of diameter at most
d. Using the parameterized complexity, this means that Planar Diameter Completion
is FPT, when parameterized by d. To make this result constructive, one requires the set of
forbidden minors for each d, which is unknown. To find a constructive FPT-algorithm for this
parameterized problem remains a major open problem in parameterized algorithm design.

Our results. We denote by S0 the 3-dimensional sphere. By a plane graph G we mean a
simple planar graph G with the vertex set V (G) and the edge set E(G) drawn in S0 such
that no two edges of this embedding intersect. A plane graph H is a a plane completion (or,
simply completion) of another plane graph G if H is a spanning subgraph of G. A q-edge
completion of a plane graph G is a completion H of G where |E(H)| − |E(G)| ≤ q. A k-face
completion of a plane graph G is a completion H of G where at most k edges are added in
each face of G. We consider the following problem:

Plane Diameter Completion (PDC)
Input: a plane graph G and d ∈ N≥1.
Output: is there a completion of G with diameter at most d?

An important difference between PDC and the aforementioned problems is that we consider
plane graphs, i.e., the aim is to reduce the diameter of a given embedding of a planar graph
preserving the embedding. In particular, we are interested in the following variants:

Bounded Budget PDC (BPDC)
Input: a plane graph G and q ∈ N, d ∈ N≥1

Question: is there a completion H of G of diameter at most d that is also a q-edge completion?

Bounded Budget/Face PDC (BFPDC)
Input: a plane graph G and k ∈ N, d ∈ N≥1.
Question: is there a completion H of G of diameter at most d that is also a k-face completion?

We examine the complexity of the two above problems. Our hardness results are the following.

I Theorem 1. Both BPDC and BFPDC are NP-complete. Moreover, BPDC is NP-
complete even for 3-connected graphs of face-degree at most 4, and BFPDC is NP-complete
even for k = 1 on 3-connected graphs of face-degree at most 5.

The hardness results are proved using a series of reductions departing from the Planar
3-Satisfiability problem that was shown to be NP-hard by Lichtenstein in [10].

The results of Theorem 1 prompt us to examine the parameterized complexity of the
above problems (for more on parameterized complexity, we refer the reader to [5]). For this,
we consider the following general problem:
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32 Variants of Plane Diameter Completion

Bounded Budget and Budget/Face BDC (BBFPDC)
Input: a plane graph G, q ∈ N ∪ {∞}, k ∈ N, and d ∈ N≥1.
Question: is there a completion H of G of diameter at most d that is also a q-edge completion
and a k-face completion?

Notice that when q =∞ BBFPDC yields BFPDC and when q = k BBFPDC yields BPDC.
Our main result is that BBFPDC is fixed parameter tractable (belongs in the parameterized
class FPT) when parameterized by k and d.

I Theorem 2. It is possible to construct an O(n3) + 22O((kd) log d) · (α(q))2 · n-step algorithm
for BBFPDC.

In the above statement and in the rest of this paper we use the function α : N∪{∞} → N
such that if q =∞, then α(q) = 1, otherwise α(q) = q.

The main ideas of the algorithm of Theorem 2 are the following. We first observe that
yes-instances of PDC and all its variants have bounded branchwidth (for the definition of
branchwidth, see Section 2). The typical approach in this case is to derive an FPT-algorithm
by either expressing the problem in Monadic Second Order Logic – MSOL (using Courcelle’s
theorem [2]) or to design a dynamic programming algorithm for this problem. However, for
completion problems, this is not really plausible as this logic can quantify on existing edges
or vertices of the graph and not on the “non-existing” completion edges. This also indicates
that to design a dynamic programming algorithm for such problems is, in general, not an
easy task. In this paper we show how to tackle this problem for BBFPDC (and its special
cases BPDC and BFPDC). Our approach is to deal with the input G as a part of a more
complicated graph with O(k2 · n) additional edges, namely its cylindrical enhancement G′
(see Section 3 for the definition). Informally, sufficiently large cylindrical grids are placed
inside the faces of G and then internally vertex disjoint paths in these grids can be used
to emulate the edges of a solution of the original problem placed inside the corresponding
faces. Thus, by the enhancement we reduce BBFPDC to a new problem on G′ certified by a
suitable 3-partition of the additional edges. Roughly, this partition consists of the 1-weighted
edges that should be added in the completion, the 0-weighted edges that should link these
edges to the boundary of the face of G where they will be inserted, and the ∞-weighted
edges that will be the (useless) rest of the additional edges. The new problem asks for such
a partition that simulates a bounded diameter completion. The good news is that, as long
as the number of edges per face to be added is bounded, which is the case for BBFPDC,
the new graph G′ has still bounded branchwidth and it is possible, in the new instance,
to quantify this 3-partition of the graph G′. However, even under these circumstances, to
express the new problem in Monadic Second Order Logic is not easy. For these reasons we
decided to follow the more technical approach of designing a dynamic programming algorithm
that leads to the (better) complexity bounds of Theorem 2. This algorithm is quite involved
due to the technicalities of the translation of the BBFPDC to the new problem. It runs
on a sphere-cut decomposition of the plane embedding of G′ and its tables encode how a
partial solution is behaving inside a closed disk whose boundary meets only (a few of) the
edges of G′. We stress that this encoding takes into account the topological embedding
and not just the combinatorial structure of G′. Sphere-cut decompositions as well as some
necessary combinatorial structures for this encoding are presented in Section 4. The dynamic
programming algorithms is presented in Section 5 and is the most technical part of this
paper.

Due to space restrictions, various proofs are omitted in this extended abstract and are
available in [7].
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2 Definitions and preliminaries

Given a graph G, we denote by V (G) (respectively E(G)) the set of vertices (respectively
edges) of G. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G),
and we denote this by G′ ⊆ G. Also, in case V (G) = V (G′), we say that H is a spanning
subgraph of G. If S is a set of vertices or a set of edges of a graph G, the graph G \ S is
the graph obtained from G after the removal of the elements of S. If S is a set of edges, we
define G[E] as the graph whose vertex set consists of the endpoints of the edges of E and
whose edge set of E.

Distance and diameter. Let G be a graph and let w : E(G)→ N∪{∞} (w is a weighting of
the edges of G). Given two vertices x, x′ ∈ V (G) we call (x, x′)-path every path ofG with x and
x′ as endpoints. We also define w-distG(x, x′) = min{w(E(P )) | P is an (x, x′)-path in G}.

Plane graphs. To simplify notations on plane graphs, we consider a plane graph G as the
union of the points of S0 in its embedding corresponding to its vertices and edges. That way,
a subgraph H of G can be seen as a graph H where H ⊆ G. The faces of a plane graph G,
are the connected components of the set S0 \ G. A vertex v (an edge e resp.) of a plane
graph G is incident to a face f and, vice-versa, f is incident to v (resp. e) if v (resp., e) lies
on the boundary of f . The degree of a face f of G is the number of edges incident to f where
bridges of G count double in this number. The face-degree of G is the maximum degree of a
face in F (G). A set ∆ ⊆ S0 is an open disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}.
Also, ∆ is a closed disk of S0 if it is the closure of some open disk of S0.

Branch decomposition. Given a graph H with n vertices, a branch decomposition of H is
a pair (T, µ), where T is a tree with all internal vertices of degree three and µ : L→ E(H)
is a bijection from the set of leaves of T to the edges of H. For every edge e of T , we
define the middle set mid(e) ⊆ V (H) as follows: if T \ {e} has two connected components
T1 and T2, and for i ∈ {1, 2}, let He

i = H[{µ(f) : f ∈ L ∩ V (Ti)], and set mid(e) =
V (He

1) ∩ V (He
2). The width of (T, µ) is the maximum order of the middle sets over all edges

of T , i.e. max{|mid(e)| : e ∈ T}. The branchwidth of H is the minimum width of a branch
decomposition of H and is denoted by bw(H).

We use the following lemma.

I Lemma 3. There exists a constant c1 such that if (G, d) is a yes-instance of PDC, then
bw(G) ≤ c1 · d. The same holds for the graphs in the yes-instances of BPDC, BFPDC,
and BBFPDC.

3 The reduction

Edge colorings of new edges. Let G and H be two plane graphs such that G is a subgraph
of H and let q ∈ N ∪ {∞}, k ∈ N, and d ∈ N≥1. Given a 3-partition p = {E0, E1, E∞} of
E(H) \ E(G), we define the function wp : E(H)→ N such that

wp = {(e, 1) | e ∈ E(G)} ∪ {(e, 0) | E ∈ E0} ∪ {(e, 1) | e ∈ E1} ∪ {(e, d+ 1) | E ∈ E∞}.

We say that G has (q, k, d)-extension in H if there is a 3-partition p = {E0, E1, E∞} of
E(H) \ E(G) such that the following conditions hold
A. There is no path in H with endpoints in V (G) that consists of edges in E0,
B. every face F of G contains at most k edges of E1,
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34 Variants of Plane Diameter Completion

C. ∀x, y ∈ V (G),wp-distH(x, y) ≤ d, and
D. |E1| ≤ q.

Given a 3-partition p = {E0, E1, E∞} of E(H) \ E(G) we refer to its elements as the
0-edges, the 1-edges, and the ∞-edges respectively. We also call the edges of G old-edges.

I Lemma 4. There exists a c2 ∈ Z≥1 and an algorithm that receives as input a planar graph
G on n vertices and a positive integer k and outputs a 3-connected planar graph Gw where

bw(Gk) ≤ c2 · k · bw(G)).
For every q ∈ N ∪ {∞} and d ∈ N≥1, (G, q, k, d) is a yes-instance of BBFPDC if and
only if G has a (q, k, d)-extension in Gk.

Moreover, this algorithm runs in O(k2 · n) steps.

4 Structures for dynamic programming

For our dynamic programming algorithm we need a variant of branchwidth for plane graphs
whose middle sets have additional topological properties.

Sphere-cut decomposition. Let H be a plane graph. An arc is a subset O of the plane
homeomorphic to a circle and is called a noose of H if it meets H only in vertices. We also set
VO = V (H)∩O. An arc of a noose O is a connected component of O \VO while in the trivial
case where VO = ∅, O does not have arcs. A sphere-cut decomposition or sc-decomposition
of H is a triple (T, µ, π) where (T, µ) is a branch decomposition of H and π is a function
mapping each e ∈ E(T ) to cyclic orderings of vertices of H, such that for every e ∈ E(T )
there is a noose Oe of H where the following properties are satisfied:

Oe meets every face of H at most once,
He

1 is contained in one of the closed disks bounded by Oe and He
2 is contained in the

other (He
1 and He

2 are as in the definition of branch decomposition).
π(e) is a cyclic ordering of VOe defined by a clockwise traversal of Oe in the embedding
of H.

We denote Xe = VOe and we always assume that its vertices are clockwise enumer-
ated according to π(e). We denote by Ae the set containing the arcs of Oe. Also, if
π(e) = [a1, . . . , ak, a1], then we use the notation Ae = {a1,2, a2,3, . . . , ak−1,k, ak,1} where
the boundary of the arc ai,i+1 consists of the vertices ai and ai+1. We also define H+

e =
(V (H), E(H ∪Ae)), i.e., H+

e is the embedding occurring if we add in H the arcs of Oe as
edges. A face of H+

e is called internal if it is not incident to an arc in Ae, i.e., it is also a
face of H. A face of H+

e is marginal if it is a properly included is some face of H.
For our dynamic programming we require to have in hand an optimal sphere-cut decom-

position. This is done combining the main result of [8] and [15, (5.1)] (see also [4]) and is
summarized to the following.

I Proposition 5. There exists an algorithm that, with input a 3-connected plane graph G
and w ∈ N, outputs a sphere-cut decomposition of G of width at most w or reports that
bw(G) > w.

Our next step is to define a series of combinatorial structures that are necessary for our
dynamic programming. Given two sets A and B we denote by AB the set of all functions
from B to A.
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(d, k, q)-configurations. Given a set X and a non-negative integer t, we say that the pair
(X , χ) is a t-labeled partition of X if X is a collection of pairwise disjoint non-empty subsets
of X and χ is a function mapping the integers in {1, . . . , |X |} to integers in {0, . . . , t}. In
case X = ∅, a t-labeled partition corresponds to the pair {∅,∅} where ∅ is the “empty"
function, i.e. the function whose domain is empty. Let X and A be two finite sets. Given
d, k ∈ N and q ∈ N ∪ {∞}, we define a (d, k, q)-configuration of (X,A) as a quintuple
((X , χ), (A, α), (F , E), δ, z) where
1. (X , χ) is a 1-labeled partition of X,
2. (A, α) is a k-labeled partition of A,
3. (F , E) is a graph (possibly with loops) where F ⊆ {0, . . . , d+ 1}X ,
4. δ ∈ {0, . . . , d+ 1}X2 , and
5. if q ∈ N, then z ≤ q, otherwise z =∞.

Fusions and restrictions. Let (X1, χ1) and (X2, χ2) be two t-labeled partitions of the sets
X1 and X2 respectively such that Xi = {Xi

1, . . . , X
i
ρ1
}, i ∈ {1, 2}. We define X1 ⊕ X2 as

follows: if x, x′ ∈ X1 ∪X2 we say that x ∼ x′ if there is a set in X1 ∪ X2 that contains both
of them. Let ∼T be the transitive closure of ∼. Then X1 ⊕ X2 contains the equivalence
classes of ∼T . We now define χ1 ⊕ χ2 as follows: let X1 ⊕X2 = {Y1, . . . , Yρ}. Then for each
i ∈ {1, . . . , ρ}, we define χ1 ⊕ χ2(i) = min{t,

∑
X1

i′⊆Yi
χ1(i′) +

∑
X2

i′⊆Yi
χ2(i′)}.

The fusion of the t-labeled partitions (X1, χ1) and (X2, χ2) is the pair (X1 ⊕X2, χ1 ⊕ χ2)
that is a (t+ 1)-labeled partition and is denoted by (X1, χ1)⊕ (X2, χ2). Given a t-labeled
partition (X , χ) of a set X and given a subset X ′ of X we define the restriction of (X , χ)
to X ′ as the t-labeled partition (X ′, χ′) of X ′ where X ′ = {Xi ∩ X ′ | Xi ∈ X} \ {∅} and
χ′ = {(i, χ(i)) | Xi ∩X ′ 6= ∅} and we denote it by (X , χ)|X′ . We also define the intersection
of (X , χ) with X ′ as the t-labeled partition (X ′, χ′) where X ′ = {Xi ∈ X | Xi∩ (X \X ′) 6= ∅}
and χ′ = {(i, χ(i)) | Xi ∩X ′′ 6= ∅} where X ′′ = ∪X′

i
∈X ′Xi and we denote it by (X , χ) ∩X ′.

Notice that (X , χ)|X′ and (X , χ) ∩X ′ are not always the same.

5 Dynamic programming

The following result is the main algorithmic contribution of this paper.

I Lemma 6. There exists an algorithm that, given (G,H, q, k, d,D, b) as input where G and
H are plane graphs such that G is a subgraph of H, H is 3-connected, q ∈ N ∪ {∞}, k ∈ N,
d ∈ N≥1, b ∈ N, and D = (T, µ, π) is a sphere-cut decomposition of H with width at most b,
decides whether G has (q, k, d)-extension in H in (α(q))2 · 2O(b2 log d)+2O(b log d) · n steps.

Proof. We use the notation Eold = E(G) and Enew = E(H) \ E(G), V old = V (G) and
V new = V (H) \ V (G). We choose an arbitrary edge e∗ ∈ E(T ), subdivide it by adding a new
vertex vnew and update T by adding a new vertex r adjacent to vnew. We then root T at
this vertex r and we extend µ by setting µ(r) = ∅. In T we call leaf-edges all its edges that
are incident to its leaves except from the edge er = {r, vnew}. An edge of T that is not a
leaf-edge is called internal. We denote by L(T ) the set of the leaf-edges of T and we denote
by I(T ) the internal edges of T . We also call er root-edge. For each e ∈ E(T ), let Te be
the tree of the forest T \ {e} that does not contain r as a leaf and let Ee be the edges that
are images, via µ, of the leaves of T that are also leaves of Te. We denote He = H[Ee] and
Ve = V (He) and observe that Her

= H. For each edge e ∈ I(T ), we define its children as
the two edges that both belong in the connected component of T \ e that does not contain
the root r and that share a common endpoint with e. Also, for each edge e ∈ E(T ), we

IPEC’15



36 Variants of Plane Diameter Completion

define ∆e as the closed disk bounded by Oe such that G ∩∆e = He. Finally, for each edge
e ∈ E(T ), we set Xe = mid(e), V new

e = Ve ∩ V new, V old
e = Ve ∩ V old, Enew

e = Ee ∩ Enew,
and Eold

e = Ee ∩ Eold.

Distance signatures and dependency graphs. Let p = {E0
e , E

1
e , E

∞
e } be a 3-partition of

Enew
e . For each vertex v ∈ Ve, we define the (Xe,p)-distance vector of v as the function

φv : Xe → {0, . . . , d + 1} such that if x ∈ Xe then φv(x) = min{wp-distGe
(v, x), d + 1}.

We define the (e,p)-dependency graph Ge,p = (Fe,p, Ee,p) (that may contain loops) where
Fe,p = {φv | v ∈ Ve} and such that two (not necessarily distinct) vertices φ and φ′ of Fe,p are
connected by an edge in Ee,p if and only if there exist v, v′ ∈ Ve such that φ = φv, φ′ = φv′

and wp-distHe(v, v′) > d. Notice that the set Φe = {Ge,p | p is a 3-partition of Enew
e } has at

most 2(d+2)|Xe| elements because {Fe,p | p is a 3-partition of Enew
e } ⊆ {0, . . . , d+ 1}Xe and,

to each Fe,p, assign a unique edge set Ee,p. Intuitively, each Fe,p corresponds to a partition
of the elements of Ve such that vertices in the same part have the same (Xe,p)-distance
signature. Moreover the existence of an edge in the (e,p)-dependency graph between two
such parts implies that they contain vertices, one from each part, whose wp-distance in He

is bigger than d.

The tables. Our aim is to give a dynamic programming algorithm running on the sc-
decomposition T . For this, we describe, for each e ∈ E(T ), a table T(e) containing information
on partial solutions of the problem for the graph Ge in a way that the table of an edge
e ∈ E(T ) can be computed using the tables of the two children of e, the size of each table
does not depend on G and the final answer can be derived by the table of the root-edge er.

We define the function T mapping each e ∈ E(T ) to a collection T(e) of (d, k, q)-
configurations of (Xe,Ae). In particular, Q = ((X , χ), (A, α), (F , E), δ, z) ∈ T(e) iff there
exists a 3-partition p = {E0

e , E
1
e , E

∞
e } of Enew

e such that the following hold:
1. C1, . . . , Ch are the connected components of (V (He), E0

e ), then
X = {V (C1) ∩Xe, . . . , V (Ch) ∩Xe} and
∀i∈{1,...,h} χ(i) = 1 if Ci contains some vertex of V old

e , otherwise χ(i) = 0.
(The pair (X , χ) encodes the connected components of the 0-edges that contain vertices
of Xe and for each of them registers the number (0 or 1) of the vertices in V old

e in them.
This information is important to control Condition A.)

2. A is a partition of Ae such that two arcs A,A′ ∈ Ae belong in the same set, say Ai of A
if and only if they are incident to the same marginal face fi of H+

e . Moreover, for each
i ∈ {1, . . . , |A|}, α(i) is equal to the number of edges in E1

e that are inside fi.
(Here (A, α) encodes the “partial” faces of the embedding of Ge that are inside ∆e. To
each of them we correspond the number of 1-edges that they contain in He. This is useful
in order to guarantee that during the algorithm, faces that stop being marginal do not
contain more than k 1-edges, as required by Condition B.)

3. (F , E) is the (e,p)-dependency graph, i.e., the graph Ge,p = (Fe,p, Ee,p).
(Recall that F is the collection of all the different distance vectors of the vertices of Ve.
Notice also that there might be pairs of vertices x, x′ ∈ Ve whose wp-distance in Ge is
bigger than d. In order for G to have a completion of diameter d, these two vertices
should become connected, at some step of the algorithm, by paths passing outside ∆e.
To check this possibility, it is enough to know the distance vectors of x and x′ and these
are encoded in the set F . Moreover the fact that x and x′ are still “far away” inside Ge
is certified by the existence of an edge (or a loop) between their distance vectors in F .)
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4. For each pair x, x′ ∈ Xe, δ(x, x′) = min{wp-distHe
(x, x′), d+ 1}.

(This information is complementary to the one stored in F and registers the distances of
the vertices in Xe inside He. As we will see, F and δ will be used in order to compute
the distance vectors as well as their dependencies during the steps of the algorithm.)

5. There is no path in He with endpoints in V old
e that consists of edges in E0

e .
(This ensures that Condition A is satisfied for the current graph Ge.)

6. Every internal face of G+
e contains at most k edges in E1

e .
(This ensures that Condition B holds for all the internal faces of Ge.)

7. ∀v, v′ ∈ Ve, either wp-distHe
(v, v′) ≤ d or there are two vertices x, x′ ∈ Xe such that

φv(x) + φv′(x′) ≤ d.
(Here we demand that if two vertices x1, x2 of Ve are “far away” (have wp-distance > d)
inside He then they have some chance to come “close” (obtain wp-distance ≤ d) in the
final graph, so that Condition C is satisfied. This fact is already stored by an edge in
E between the two distance vectors of x and x′ and the possibility that x1 and x2 may
come close at some step of the algorithm, in what concerns the graph Ge, depends only
on these distance vectors and not on the vertices x1 and x2 themselves.)

8. There are at most z edges of E1
e inside the internal faces of G+

e (clearly, this last condition
becomes void when q =∞).
(This information helps us control Condition D during the algorithm.)

Notice that in case Xe = ∅ the only graph that can correspond to the 6th step is the graph
({∅}, ∅) which, from now on will be denoted by G∅.

Bounding the set of characteristics. Our next step is to bound T(e) for each e ∈ E(T ).
Notice first that |Xe| = |Ae| ≤ b. This means that there are 2O(b log b) instantiations of (X , χ)
and 2O(k+b log b) instantiations of (A, α). As we previously noticed, the different instantiations
of (F , E) are |Φe| = 22O(b log d) . Moreover, there are 2O(b2 log d) instantiations of δ and α(q)
instantiations of z. We conclude that there exists a function f such that for each e ∈ V (T ),
|T(e)| ≤ f(k, q, b, d). Moreover, f(k, q, b, d) = α(q) · 2O(b2 log d)+2O(b log d) .

The characteristic function on the root edge. Observe that Enew is (k, d, q,w)-edge col-
orable in H if and only if T(er) 6= ∅, i.e., ((∅,∅), (∅,∅), G∅,∅, z) ∈ T(er) for some z ≤ q.
Indeed, if this happens, conditions 1–4 become void while conditions 5, 6, 7, and 8 imply
that H = He satisfies the conditions A, B, C, and D respectively in the definition of the
(k, d, q,w)-edge colorability of Enew.

The computation of the tables. We will now show how to compute T(e) for each e ∈ E(T ).
We now give the definition of T(e) in the case where e is a leaf of T is the following:

Given a q ∈ N ∪ {∞}, we define A(q) = {∞} if q =∞, otherwise A(q) = {z | z ≤ q}.
Suppose now that el is a leaf-edge of T where π(el) = [a1, a2, a1] and Ael

= {a1,2, a2,1}.
1. If {a1, a2} ∈ Eold

e , then
T(el) = {

(
({{a1}, {a2}}, {(1, 1), (2, 1)}),

({{a1,2}, {a2,1}}, {(1, 0), (2, 0)}),({
{(a1, 0), (a2,w({a1, a2}))}, {(a1,w({a1, a2})), (a2, 0)}

}
, ∅
)
,

{((a1, a2),w({a1, a2}))}, z
)
| z ∈ A(q)},
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2. if {a1, a2} ∈ Enew
e and {a1, a2} ⊆ V old

e , then T(el) = Q1 ∪Q∞ where
Q1 = {

(
({{a1}, {a2}}, {(1, 1), (2, 1)})

({{a1,2, a2,1}}, {(1, 1)})
(
{
{(a1, 0), (a2, 1)}, {(a1, 1), (a2, 0)}

}
, ∅)

{((a1, a2), s)}, z
)
| z ∈ A(q)− {0}}

Q∞ = {
(

({{a1}, {a2}}, {(1, 1), (2, 1)})
({{a1,2, a2,1}}, {(1, 0)})
(
{
{(a1, 0), (a2, d+ 1)}, {(a1, d+ 1), (a2, 0)}

}
,K)

{((a1, a2), d+ 1)}, z
)
| z ∈ A(q)}

(the set K above contains a single edge that is not a loop), and if {a1, a2} ∈ Enew
e and

{a1, a2} * V old
e , then T(el) = Q1 ∪Q∞ ∪Q0 where

Q0 = {
(

({{a1, a2}}, {(1, 1− 〈{a1, a2} ⊆ V new
e 〉)})

({{a1,2, a2,1}}, {(1, 0)})
({{(a1, 0), (a2, 0)}}, ∅)
{((a1, a2), 0)}, z

)
| z ∈ A(q)}.

Assume now that e is a non-leaf edge of T with children el and er, the collection T(e) is
given by join(T(e1),T(e2)) where join is a procedure that is depicted below. Notice that
Ae is the symmetric difference of Ael

and Aer
and Xe consists of the endpoints of the arcs

in Ae. We also set XF
e = (Xel

∪Xer ) \Xe.

Procedure join
Input: two collections Cel and Cer of (d, k, q)-configurations of (Xel , Ael ) and (Xer , Aer ).
Output: a collection Cr of (d, k, q)-configurations of (Xe, Ae)
(1) set Ce = ∅
(2) for every pair (Qel , Qer ) ∈ Cel × Cer , if merge(Qel , Qer ) 6= void,

then let Ce ← Ce ∪ {merge(Qel , Qer )}.
(3) return Ce

It remains to describe the routine merge. For this, assume that it receives as inputs the
(d, k, q)-configurations Ql = ((Xl, χl), (Al, αl), (Fl, El), δl, zl) and Qr = ((Xr, χr), (Ar, αr),
(Fr, Er), δr, zr) of (Xel

,Ael
) and (Xer ,Aer ) respectively. Procedure merge(Qel

, Qer ) returns
a (d, k, q)-configuration ((X , χ), (A, α), (F , E), δ, z) of (Xe,Ae) constructed as follows:
1. If zr + zr > q, then return void, otherwise z = zl + zr (This controls the number of

1-edges that are now contained in ∆e)
2. Let (X ′, χ′) = (Xl, χl)⊕ (Xr, χr) and if χ′−1(2) 6= ∅ then return void.

(This compute the “fusion” of the connected components of (V (Hel
, E0

el
)) and (V (Her

, E0
er

))
with vertices in Vel

and Ver
and makes sure that none of the created components contains

2 or more 0-vertices.)
3. Let (X , χ) = (X ′l , χ′l)|Ve

(This computes the fusion (X ′l , χ′l) is restricted on the boundary Oe of ∆e.)
4. Let (A′, α′) = (Al, αl)⊕ (Ar, αr) and if α′−1(k + 1) 6= ∅ then return void.
5. Let (A, α) = (Al, αl)⊕ (Ar, αr)|Ae

.
6. Compute the function γ : (Fel

∪ Fer
∪Xe)× (Fel

∪ Fer
∪Xe)→ {0, . . . , d+ 1}, whose

description is given latter.
7. Take the disjoint union of the graphs (Fl, El) and (Fr, Er) and remove from it every

edge {φ1, φ2} for which γ(φ1, φ2) ≤ d. Let G+ = (F+, E+) be the obtained graph.
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8. If for some edge {φ1, φ2} ∈ E+ it holds that for every x1, x2 ∈ Ve, γ(φ1, x1)+γ(φ2, x2) >
d, then return void.

9. Consider the function λ : Fl ∪ Fr → {1, . . . , d}Xe such that λ(φ) = {(x, γ(φ, x)) | x ∈
Xe}.

10. For every φ′ ∈ λ(Fl ∪ Fr), do the following for every set F = λ−1(φ′): identify in G+ all
vertices in F and if at least one pair of them is adjacent in G+, then add an loop on the
vertex created after this identification. Let G = (F , E) be the resulting graph (notice
that F = λ(Fl ∪ Fr)).

11. δ = {((x, x′), γ(x, x′)) | x, x′ ∈ Ve}.

The definition of function γ. We present here the definition of the function γ used in the
above description of the tables of the dynamic programming procedure.

Given a non-empty set X and q ∈ {0, 1} we define

ordq(X) = {π | ∃X ′ ⊆ X : X ′ 6= ∅ ∧ |X ′| mod 2 = q

∧ π is an ordering of X ′}

Given γl and γr, we define γ : (Fel
∪ Fer

∪Xe)× (Fel
∪ Fer

∪Xe)→ {0, . . . , d+ 1} by
distinguishing the following cases:
1. If (x ∈ Xe \Xer

∧ φ ∈ Fel
) or (x ∈ Xe \Xel

∧ φ ∈ Fer
), then

γ(φ, x) = min
{
φ(x),min{φ(p1) +

∑
J1,ρ−1K

δs(i)(pi, pi+1) +

δs(ρ)(pρ, x) | [p1, . . . , pρ] ∈ ord0(XF
e )}

}
,

where s(i) = “l” if 〈x ∈ Xe \Xel
〉 = (imod 2), otherwise s(i) = “r”.

2. If (x ∈ Xe \Xel
∧ φ ∈ Fel

) or (x ∈ Xe \Xer
∧ φ ∈ Fer

), then
γ(φ, x) = min

{
φ(p1) +

∑
J1,ρ−1K

δt(i)(pi, pi+1) + δt(ρ)(pρ, x)

| [p1, . . . , pρ] ∈ ord1(XF
e )}

}
,

where t(i) = “l” if 〈x ∈ Xe \Xel
〉 6= (imod 2), otherwise t(i) = “r”.

3. If x is one of the (at most two) vertices in (Xer
∩Xer

) \XF
e and φ ∈ Fel

∪ Fer
, then

γ(φ, x) = min
{
φ(x),

min{φ(p1) +
∑

J1,ρ−1K

δu(i)(pi, pi+1) + δu(q)(pρ, x)

| [p1, . . . , pρ] ∈ ordq(XF
e )} | q ∈ {0, 1}

}
where u(i) = “r” if 〈φ ∈ Fel

〉 = (imod 2), otherwise u(i) = “l”.
4. If φ, φ′ ∈ Fl ∪ Fr, then

γ(φ, φ′) = min
{
φ(p1) +

∑
J1,ρ−1K

δu(i)(pi, pi+1) + φ′(pρ)

| [p1, . . . , pρ] ∈ ordq(XF
e )
}

In this equality, q = 1 if φ and φ′ belong in different sets in {Fl,Fr}, otherwise q = 0.
The function u is the same as in the previous case.

5. If x1, x2 ∈ Xe \Xer
or x1, x2 ∈ Xe \Xel

, then
δ(x1, x2) = min

{
δy(0,x1)(x1, x2),min{δy(0,x1)(x1, p1) +∑

i∈J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ord0(XF
e )}

}
In this equality y(i, x) = “l” if 〈x ∈ Xe \Xer

〉 = 〈i mod 2 = 0〉 otherwise y(i, x) = “r”.
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6. If x1, x2 belong in different sets is {Xe \Xer
, Xe \Xel

}, then
δ(x1, x2) = min

{
δy(0,x1)(x1, p1) +

∑
J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ord1(XF
e )
}

The function y is the same as in the previous case.
7. If exactly one, say x2, of x1, x2 belongs in Xer

∩Xer
) \XF

e , then

δ(x1, x2) = min
{
δy(0,x1)(x1, x2),

min
{

min{δy(0,x1)(x1, p1) +
∑

J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ordq(XF
e )}|q ∈ {0, 1}

}}
The function y is the same as in the two previous cases. In case x1 belongs in Xer ∩
Xer

) \XF
e , then just swap the positions of x1 and x2 in the above equation.

8. If both x1, x2 belong in Xer
∩Xer

) \XF
e , then

δ(x1, x2) = min
{
δl(x1, x2), δr(x1, x2),
min{min{δz(0,j)(x1, p1) +∑

J1,ρ−1K

δz(i,j)(pi, pi+1) + δz(q,j)(pρ, x2) |

[p1, . . . , pρ] ∈ ordq(XF
e )}|(q, j) ∈ {0, 1}2}

}
In the previous equality, z(i, j) = “l” if (i+ jmod 2) = 0, otehrwise z(i, x) = “r”.

Running time analysis. It now remains to prove that procedure join runs in (α(q))2 ·
2O(k2)+2O(b log d) steps. Recall that there exists a function f such that |T(e)| ≤ f(k, q, b, d).
Therefore merge will be called in Step (2) at most (f(k, q, b, d))2 times. The first computa-
tionally non-trivial step of merge is Step 5, where function γ is computed. Notice that γ
has at most ((d+ 1)|Xel

| + (d+ 1)|Xer | + |Xe|)2 = 2O(b·log d) entries and each of their values
require running over all permutations of the subsets of XF

e that are at most b! = 2O(b·log b).
These facts imply that the computation of γ takes 2O(b·log b) steps. As Steps 6–10 deal with
graphs of 2O(b·log d) vertices, the running time of join is the claimed one. J

We are now in position to prove the main algorithmic result of this paper.

Proof of Theorem 2. Given an input I = (G, q, k, d) of BBFPDC, we run the algorithm
of Lemma 4 with G and k as input. Let H = Gk be the output of this algorithm. From
the same lemma, he construction of H takes O(k2n) steps. Then we run the algorithm of
Proposition 5 with (H,w) as input, where w = c1 · c2 · k · d. If the answer is that bw(H) > w,
then, from Lemma 4, tw(G) > c1 · d, therefore, from Lemma 3, we can safely report that
I is a no-instance. If the algorithm of Proposition 5 outputs a sphere-cut decomposition
D = (T, µ) of width at most w = O(k · d) then we call the dynamic programming algorithm
of Lemma 6, with input (G,H, q, k, d,D, b). This, from Lemma 4, provides an answer to
BBFPDC for the instance I in (α(q))2 ·2O((kd)2 log d)+2O((kd) log d) ·n = (α(q))2 ·22O((kd) log d) ·n
steps and this completes the proof of the theorem. J

6 Discussion

We remark that our algorithm still works for the classic PDC problem when the face-degree
of the input graph is bounded. For this we define the following problem:
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Bounded Face BDC (FPDC)
Input: a plane graph G with face-degree at most k ∈ N≥3, and d ∈ N
Question: is it possible to add edges in G such that the resulting embedding remains plane and
has diameter at most d?

We directly have the following corollary of Theorem 2.

I Theorem 7. It is possible to construct an O(n3)+22O((kd) log d) ·n-step algorithm for FPDC.

To construct an FPT-algorithm for PDC when parameterized by d remains an insisting
open problem. The reason why our approach does not apply (at least directly) for PDC is
that, as long as a completion may add an arbitrary number of edges in each face, we cannot
guarantee that our dynamic programming algorithm will be applied on a graph of bounded
branchwidth. We believe that our approach and, in particular, the machinery of our dynamic
programming algorithm, might be useful for further investigations on this problem.

All the problems in this paper are defined on plane graphs. However, one may also
consider the “non-embedded” counterparts of the problems PDC and BPDC by asking that
their input is a planar combinatorial graphs (without a particular embedding). Similarly, such
a counterpart can also be defined for the case of BFPDC if we ask whether the completion
has an embedding with at most k new edges per face. Again, all these parameterized problems
are known to be (non-constructively) in FPT, because of the results in [13, 11]. However, our
approach fails to design the corresponding algorithms as it strongly requires an embedding of
the input graph. For this reason we believe that even the non-embedded versions of BPDC
and BFPDC are as challenging as the general Planar Diameter Completion problem.

Acknowledgement. We would like to thank the anonymous referees of an earlier version of
this paper for their remarks and suggestions that improved the presentation of the paper.
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