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a b s t r a c t

For each non-negative integer k, we provide all outerplanar obstructions for the class of
graphs whose cycle matroid has pathwidth at most k. Our proof combines a decomposition
lemma for proving lower bounds on matroid pathwidth and a relation between matroid
pathwidth and linearwidth. Our results imply the existence of a linear algorithm that, given
an outerplanar graph, outputs its matroid pathwidth.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The notions of pathwidth and branchwidth are fundamental graph parameters that appear in many topics of discrete
mathematics and algorithms. The counterpart of branchwidth on matroids has been introduced by Geelen and Whittle
in [6] and was extensively studied in [6,15,10,14,11,5]. However, not much is known for the counterpart of pathwidth on
matroids. The pathwidth of a matroid was defined by Geelen, Gerards, and Whittle in [7] (see also [9]) and was extensively
studied in the work of Kashyap [13] in the context of trellis state-complexity of linear codes. Also, connected matroids of
pathwidth at most 3 have been studied in [8,1].

Given a class of matroids M, we define its obstruction set obs(M) as the set of all minor-minimal matroids not in M
(similarly, we define obs(G) for the case where G is a class of graphs). We define Pk as the class of all matroids of pathwidth
at most k. In this paper, we study the set obs(Pk) and we characterize, for every k, all members of obs(Pk) that are cycle
matroids of outerplanar graphs.

Following Kashyap [13], we define thematroid-pathwidth (in short:µ-pathwidth) of a graph as the pathwidth of its cycle
matroid. As observed in [13], the pathwidth and the µ-pathwidth of a graph are different parameters, while the pathwidth
can be computationally reduced to µ-pathwidth.

In this paper, we show that several structural characteristics of the pathwidth of acyclic graphs are transferred to the
µ-pathwidth of outerplanar graphs. In particular, we define an operation, called fusion for ‘‘joining together’’ triples of
matroids and we prove a structural result (Lemma 3) that provides a way to construct matroids of pathwidth at least k + 1
from matroids of pathwidth at least k. Our result can be seen as the matroid-analogue of the operation defined in [19] (see
also [20,17,3]) for the case of the pathwidth of graphs (see also [12] for related recent results on the parameter of linear
rank-width).

∗ Corresponding author at: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece.
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Using our structural lemma, we prove the existence of a bijection between acyclic obstructions for linear-width (a
parameter very similar to the pathwidth for graphs) and the outerplanar obstructions of µ-pathwidth. This gives a precise
characterization of all members of obs(Pk) that are cycle matroids of outerplanar graphs. A byproduct of our results is that
the µ-pathwidth of outerplanar graphs can be computed in linear time.

2. Definitions and preliminaries

Given a graph G, we denote by V (G) its vertex set and as E(G) its edge set. We consider graphs that may have loops or
multiple edges. If a graph has no multiple edges or loops we call it simple. For any set of vertices S ⊆ V (G), we denote by
G[S] the subgraph of G induced by the vertices in S. Accordingly, for a set of edges F ⊆ E(G), we define G[F ] = (V (F), F)
where V (F) =


e∈F e. In addition, we define by F = E(G) − F .

We use the term plane graph for a planar graph along with an embedding of it in the sphere S0 without crossings. To
simplify notations, we do not distinguish between a vertex of the graph and the point of S0 used in the drawing to represent
the vertex or between an edge and the open line segment representing it. We denote by F(G), the set of faces of this
embedding, i.e. the connected components of S0 \ G, (that are open sets of S0). A planar graph G is outerplanar if it has
an embedding on the sphere S0 such that all its vertices lie on the boundary of a single face, called the outer face.

Given two graphs H and G, we write H ≼ G and call H aminor of G, if H can be obtained by a subgraph of G after a series
of edge contractions (the contraction of an edge e = {x, y} in a graph G is the operation of replacing x and y by a new vertex
xe that is made adjacent with all the neighbors of x and y in G that are different from x and y). We also use the notation G∗

to denote an embedding of the dual graph of G.
Matroids and cycle matroids of graphs. Given a matroid M, we use the notations E(M) and I(M) for its elements and the
collection of its independent sets, respectively. HenceM = {E(M), I(M)}.We also call E(M) the ground set ofM. Moreover,
following the notation of [16], we denote by B(M) the collection of the maximal independent sets, the bases of M and
C(M) the collection of the minimal dependent sets, the circuits of M. It is known (see e.g., [16]) that any of the collections
I(M), B(M) or C(M) suffices to describe a matroid M on an element set E(M).

The cycle matroid of a graph G, denoted as M(G), has E(G) as ground set, while its independent sets are the sub-forests
of G. On the other hand, a matroid that is isomorphic to a cycle matroid of a graph is called graphic.

Given a matroid M, the matroid whose ground set is E(M) and whose collection of bases is {E(M) − B : B ∈ B(M)} is
called the dual of the matroid M and is denoted by M∗.

Let M be a matroid and X, Y ⊆ E(M) subsets of its ground set. The matroid M \ X = {E(M) − X, I ⊆ (E(M) − X) : I ∈

I(M)} and the matroid M/Y = [M∗
\ Y ]

∗ are the deletion of X and the contraction of Y from the matroid M, respectively.
If X = {e} then we simply write M \ e instead of M \ {e}—likewise for the contraction of a single element. A matroid K is a
minor of a matroid M if K = M \ X/Y for some X, Y ⊆ E(M).

Using the definition of Oxley [16] thematroid connectivity function λ : 2E(M)
→ N is defined as follows:

λM(X) = rM(X) + rM(X) − rM(E(M))

where X = E(M) − X and r is the rank function of M, i.e. rM(X) is the maximum cardinality of an independent set of X in
M.

Amatroid that for every pair of distinct elements of its ground set has a circuit containing both of them is called connected.
This implies that the cycle matroid of a 2-connected graph is connected. It is also easy to check that if a matroid M is
connected and F ⊆ E(M), then λM(F) = 0 only if F = E(M) or F = ∅.

Another useful property of connectivity is the following.

Fact 1 ([22]). Let e be an element of a connected matroid M. Then at least one of M/e and M \ e is connected.

Given two matroids M1 and M2 on disjoint ground sets, we denote by M1 ⊕ M2 their direct sum, i.e. the matroid
(E(M1) ∪ E(M2), I(M1) ∪ I(M2)).

We continue with the definition of two dual operations on matroids which will play an important role in the proofs of
the next section. If an element is not contained in a base of a matroid, then it is called loop, while if it is in every base is called
coloop. Then, given two matroids M1 and M2 with E(M1) ∩ E(M2) = {e} where e is neither a loop nor a coloop in these
matroids, the series connection ofM1 andM2, denoted by S(M1, M2), is thematroidwith element set E(M1\e)∪E(M2\e)∪e′,
where e′ is an element not in E(M1) or E(M2) and whose collection of circuits is:

CS = C(M1 \ e) ∪ C(M2 \ e) ∪ {(C1 − e) ∪ (C2 − e) ∪ e′
: e ∈ Ci ∈ C(Mi) for i = 1, 2}.

Subsequently, the parallel connection of M1 and M2 denoted by P(M1, M2) is the matroid [S(M∗

1, M∗

2)]
∗. Properties of

series and parallel connections include many attractive features. As example the classes of graphic matroids and connected
matroids are closed under these operations—for a further study see also [16]. We will need the following property from [2].

Fact 2. Let N1, N2 be two matroids where E(N1) ∩ E(N2) = {e}. Then, P(N1, N2)/e = (N1/e) ⊕ (N2/e).
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Matroid pathwidth. Given a layout (an ordering) L = (e1, . . . , em) of E(M), we define

µ-widthM(L) = max{λM({e1, . . . , ei}) | 1 ≤ i ≤ m − 1}.

According to the definition of [7] the pathwidth of a matroid M, denoted by pw(M), is the minimum k for which there exists
a layout L = (e1, . . . , em) of its elements such that µ-widthM(L) ≤ k.

The matroid pathwidth of a graph G (or simply µ-pathwidth) is defined as the pathwidth of its cycle matroid and it is
denoted as µ-pw(G), in other words:

µ-pw(G) = pw(M(G)).

We will need the following simple lemma.

Lemma 1. The µ-pathwidth of a graph is equal to the maximum µ-pathwidth of all its biconnected components.

Proof. Let {C1, . . . , Cr} be the biconnected components of a graph G and E1, . . . , Er the corresponding edge sets. Then, for
i = 1, . . . , r it holds that rM(Ei)+ rM(Ei) = r(M), where by M is denoted the cycle matroid of G. This implies that the value
of the connectivity function of a set of edges belonging to the same component, is irrelevant from the rest of the biconnected
components. This implies that if µ-width(Li) ≤ k for i = 1, . . . , r , where Li is a layout of Ei, then for the concatenation L of
all these layouts it also holds µ-width(L) ≤ k. �

3. A decomposition of matroids

LetM1, M2, M3 be connectedmatroids on disjoint edge sets and for each of thempick an element ei ∈ E(Mi), i = 1, 2, 3.
For the uniform matroid U1,3 with elements {e1, e2, e3} we can associate one common element with each of the three
matroids: E(U1,3) ∩ E(Mi) = {ei}. We call fusion of M1, M2, M3 on the elements {e1, e2, e3} the matroid

M = S(S(S(U1,3, M1), M2), M3)

and we denote it by fusion(M1, M2, M3, e1, e2, e3). It is easy to check that this matroid is also connected. The elements
e1, e2, e3 on which the fusion takes place will be referred to as bridge elements.

The series connections in the definition of M involve the three elements of U1,3 which implies that the order in which
the connections are performed is irrelevant. Consider now thematroid S(S(U1,3, M1), M2) one step before the composition
of the final matroid M. Let M(1) and M(2) be matroids isomorphic to U1,2 where E(M(1)) = {e1, e3} and E(M(2)) = {e2, e3}.
Keeping in mind that U1,3 is isomorphic to P(M(1), M(2)) we can observe the following.

Observation 1. The matroid P(S(M(1), M1), S(M(2), M2)) is isomorphic to the matroid S(S(U1,3, M1), M2).

In order to estimate the pathwidth of the fusion of three given matroids we need the following lemma about the
connectivity function of a matroid formed by a series connection.

Lemma 2. Let M1, M2 be connected matroids with E(M1) ∩ E(M2) = {e} and M = S(M1, M2). For any two sets F1, F2 where
F1 ⊆ E(M1) and F2 ⊆ E(M2 \ e) it holds that

λM(F1 ∪ F2) ≥ λM1(F1) + λM2\e(F2).

Proof. Let M−

i = Mi \ e, i = 1, 2. Since M1, M2 are both connected matroids it follows that their series connection M is
also connected. From the connectivity of Mi, we obtain that r(Mi) = r(M−

i ), i = 1, 2. Also, from the connectivity of M it
follows that r(M) = r(M \ e). Notice that M = S(M1, M2) implies that M \ e = M−

1 ⊕ M−

2 , which, in turn, implies that
r(M) = r(M1) + r(M−

2 ). From the definition of the connectivity function λ and the last equality, it is enough to prove that
for any two subsets F1 ⊆ E(M1), F2 ⊆ E(M−

2 ),

rM(F1 ∪ F2) ≥ rM1(F1) + rM−

2
(F2) (1)

rM(F1 ∪ F2) ≥ rM1(F1) + rM−

2
(F2). (2)

Towards a contradiction, suppose that rM(F1 ∪ F2) < rM1(F1) + rM−

2
(F2) and let B1, B2 be bases of F1, F2 respectively.

Then B1 ∪ B2 should contain a circuit C in M. Moreover, since B1 ∩ B2 = ∅ the circuit C has elements from both B1, B2—as
otherwise it would contradict their choice as bases. Contracting the elements ofM−

2 inM will force the existence of a circuit
C1 ⊆ C ∩ E(M1) = B1 in M/E(M−

2 ) = M1 which contradicts that B1 is a base in M1 and completes the proof of (1). Then
(2) easily follows from (1) by the symmetry of the connectivity function λ and the fact that F 1 ∪ F 2 = F1 ∪ F2 (recall that
F1 ∩ F2 = ∅). �

We are now ready to prove the main structural result of this paper.



Author's personal copy

98 A. Koutsonas et al. / Discrete Mathematics 315–316 (2014) 95–101

Fig. 1. An example of the application of the function φ.

Lemma 3. Let M be a matroid that is obtained by the fusion of three connected matroids Ma, Mb, Mc . Then it holds that

pw(M) ≥ min{pw(Ma), pw(Mb), pw(Mc)} + 1.

Proof. We will prove that, for any layout L = (e1, . . . , em) of the element set E(M) of M, there is an q ∈ {1, . . . ,m − 1}
such that λM({e1, . . . , eq}) ≥ k + 1 where k = min{pw(Ma), pw(Mb), pw(Mc)}.

We denote by ea, eb, ec ∈ E(M) the bridge elements of the fusion associated with the matroids Ma, Mb, Mc respectively
and, for simplicity, we use the notation Ea = E(Ma), Eb = E(Mb) and Ec = E(Mc). Assume w.l.o.g. that e1 ∈ Ea. Likewise,
we assume that the last, in L, element eℓ of E(M) \ Ea belongs in Ec . Note then that all edges of Eb appear in L after e1 ∈ Ea
and before eℓ ∈ Ec .

By the definition of fusion follows that M/(Ea ∪ Ec) = Mb. Consider the matroid M′
= M/(Eb \ eb) and observe

that M′
= S(S(U1,3, Ma), Mc). Let Lb = (ep1 , . . . , eps) be the restriction of L in E(Mb). As pw(Mb) ≥ k, there is an

h ∈ {1, . . . , s − 1} such that λMb(Fb) ≥ k, where Fb = {ep1 , . . . , eph} ⊆ Eb. Let F ′
= {ej ∈ L | ej ∉ Eb and j < ph}.

Observe now that F ′
⊆ Ea ∪ Ec and {e1, . . . , eph} = Fb ∪ F ′. Since E(M′

\ eb) = Ea ∪ Ec , it also holds that F ′
⊆ E(M′

\ eb).
From Observation 1, M ′ can be seen as a parallel connection of two matroids on the element eb. This, together with Fact 2
implies that M′/eb is not connected. By Fact 1, it follows that the matroid M′

\ eb is connected.
By the connectivity of M′

\ eb and the fact that e1 ∈ F ′, eℓ ∉ F ′ we obtain that λM′\eb(F
′) ≥ 1. Observe finally that

M′
∩ Mb = {eb} and M = S(M′, Mb). Applying Lemma 2 implies that λM(Fb ∪ F ′) ≥ k + 1. As {e1, . . . , eph} = Fb ∪ F ′, we

can choose q = ph. �

4. µ-pathwidth and linear width

Let T be the set of all trees. We define the function φ that maps trees to graphs such that for every T ∈ T , φ(T ) is the
graph obtained if we identify all the leaves of T to a single vertex (see Fig. 1 for an example). We denote the new vertex as
the join-vertex of φ(T ).

Observe that if G is a 2-connected outerplanar graph, then its dual H belongs to the class φ(T ), where its join-vertex
corresponds to the outer face of G.

Let G be a graph. For any set of edges F ⊆ E(G) we denote by ∂G(F) the set of vertices of the graph that are incident with
an edge in F and also with an edge in E(G) \ F . The boundary function δG(F) of the graph G is defined as δG(F) = |∂G(F)|. We
define the linear width of a graph G as the minimum integer k for which there exists a layout L = (e1, . . . , em) of the edge
set E(G), such that max{δG({e1, . . . , ei}) | 1 ≤ i ≤ m − 1} ≤ k and we write lw(G) ≤ k.

Given a graph G and an edge set F ⊆ E(G) as before, we denote by σG(F) the number of the connected components of
G[F ]. We will need the following well known fact (see, e.g. [16,15,6]).

Fact 3. Let G be a connected graph and F ⊆ E(G). Then λM(G)(F) = δG(F) − σG(F) − σG(F) + 1.

Using this fact we can prove the following relation between the linear width of a tree T and the µ-pathwidth of φ(T ).

Lemma 4. For every tree T , it holds that µ-pw(φ(T )) ≤ lw(T ).

Proof. Let F be an edge set in E(T ), where F ≠ ∅ and F ≠ E(T ). By the definition of the function φ, the tree T and the
graph H = φ(T ) share a common edge set. Note that only non-leaf vertices of T contribute to δT (F) and observe that the
corresponding vertices of H , with the possible addition of the vertex v, into which the leaves of T merged, are the ones that
contribute to δH(F); i.e. δH(F) ≤ δT (F)+1. From Fact 3, we obtain that λM(H)(F) = δH(F)−σH(F)−σH(F)+1 ≤ δH(F)−1 ≤

δT (F). It is straightforward now to conclude that given any sequence of E(T ) that results to lw(T ) ≤ ℓ, the same sequence
results to µ-pw(H) ≤ ℓ. �

We recursively define the parameterized family of trees Tk, for any non-negative integer k, as follows:

• Let T0 contain the tree obtained by the 1-subdivision of K2.
• For k ≥ 1, Tk contains any tree that can be obtained by the following procedure: Take three (not necessarily distinct)

members of Tk−1, add a new vertex and connect it with some non-leaf vertex in each of these three trees. As long as a
leaf in the resulting graph has a neighbor of degree 3, delete this leaf.
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Fig. 2. The classes T0, T1 , and part of T2 .

Fig. 3. The u-fusion operation.

Fig. 4. The sets H0, H1 , and part of H2 .

For an example of the above construction, see Fig. 2 (only two of the four members of the class T2 are depicted in Fig. 2).
We denote by Lk the class of graphs with linear-width at most k. Linear-width is a parameter defined in [21] and studied

in [4,20].While it differs by atmost one from themore knownparameter of pathwidth, it ismore easy to study in our context
because of the strong similarity of its definition to the one of µ-pathwidth.

The acyclic obstructions for Lk are determined by the following result (see Theorem 29 in [20]).

Proposition 1. For every non-negative integer k, obs(Lk) ∩ T = Tk.

5. Obstructions for µ-pathwidth

Let now G1,G2,G3 be three disjoint 2-connected graphs and vi, ui ∈ V (Gi) a pair of distinct vertices for i = {1, 2, 3}. We
call u-fusion of the graphs G1,G2,G3 on the given pairs of vertices the graph G constructed as follows:

(a) For i = {1, 2, 3} if the vertices vi, ui are adjacent in Gi, then delete the edge {vi, ui} in Gi (in case {vi, ui} is a multiple
edge, delete only one of its copies)

(b) Identify vertices v1, v2, v3 to a single vertex v, take a new vertex u not in G1,G2 or G3, and add the edges {u1, u}, {u2, u}
and {u3, u} (see Fig. 3).

Notice thatG is 2-connected by construction.Wewill call the vertices v, u base vertex and top vertex of the resulting graph
respectively and the three edges incident to u bridge edges in G.

Lemma 5. Let G be a u-fusion of three disjoint 2-connected graphs G1,G2 and G3. Thenµ-pw(G) ≥ min{µ-pw(G1), µ-pw(G2),
µ-pw(G3)} + 1.

Proof. For i = 1, 2, 3 let us denote by vi, ui ∈ V (Gi) the pair of vertices involved in the u-fusion of the three graphs. Consider
for each graph Gi the graph G+

i which has the same vertex set as Gi and edge set E(G+

i ) = E(Gi) if ei = {vi, ui} ∈ E(Gi) or
else E(G+

i ) = E(Gi) ∪ ei. Clearly µ-pw(G+

i ) ≥ µ-pw(Gi) for i = 1, 2, 3.
Recall that, by its definition, a matroid formed as a fusion of three graphic matroids is itself graphic as the class of graphic

matroids is closed under series connection. By construction, the cycle matroid of G is isomorphic to the matroid obtained by
the fusion of the cycle matroids of the graphs G+

1 ,G+

2 ,G+

3 on the elements e1, e2, e3. Then, the application of Lemma 3 yields
that µ-pw(G) ≥ min{µ-pw(G1), µ-pw(G2), µ-pw(G3)} + 1. �

For each non-negative integer k, we define Hk = φ(Tk), i.e. a graph H belongs to the class Hk, if and only if H = φ(T ) for
some T ∈ Tk (see also Fig. 4).

Under a closer look it becomes apparent, that the u-fusion can parallel the mechanism which generates the family Tk,
in such a way, that the family Hk can be similarly generated by the u-fusion, starting with the graph C2—the only member
of the class H0. This fact is demonstrated by the following lemma. (We stress though, that an arbitrary application of the
u-fusion on graphs from the class Hk−1 will not necessarily generate a graph in Hk.)

Lemma 6. Any graph in Hk, where k ≥ 1, is a u-fusion of three graphs of the class Hk−1.
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Fig. 5. The sets H∗

0 , H∗

1 and part of H∗

2 .

Proof. Let H be a graph in Hk. Then, there exists a tree T in Tk, such that H = φ(T ). Recall that T is obtained from three
trees of Tk−1, say T1, T2 and T3, by the recursive procedure described in the definition of the family of trees. We denote as t
the new vertex added during the construction of T , as h the corresponding vertex of H and as ti for i ∈ {1, 2, 3} the vertex
of Ti joined to t .

Let now Hi = φ(Ti) and vi, ui be a pair of vertices of Hi, where vi is the join-vertex of Hi and ui is corresponding to the
vertex ti of Ti. By definition, the vertex ti cannot be a leaf in Ti and thus vertices vi, ui are distinct. Then, let U be the u-fusion
of H1,H2 and H3 on the given pairs of vertices and denote as u and v the top and the base vertex of U , respectively. We will
show that H is isomorphic to the graph U .

By associating the vertex hwith u and j, the join-vertex of H , with v, we effectively define a bijection between V (H) and
V (U), since all other vertices of both graphs correspond to the non-leaf vertices of T1, T2 and T3. The choice of the vertices ui,
implies that the neighbors of h in H and u in U match under this bijection. Consider now that ti is adjacent to a leaf of Ti (for
some i ∈ {1, 2, 3}). Then, ui is adjacent to vi in Hi and hence, this edge is deleted during the u-fusion, just as the neighboring
leaf of ti is deleted during the formation of T . It follows that the neighbors of j in H and v in U are also matched. �

We use Lemmata 5 and 6 to prove the following lemma.

Lemma 7. Let H be a graph in Hk for some non-negative integer k. Then H is an obstruction for µ-pathwidth less than or equal
to k.

Proof. Following the standard course for a proof of an obstruction set let us first attend to the value of theµ-pathwidth of a
given graph in Hk. Notice that µ-pw(C2) = 1 and that, for any k ≥ 1, every graph in Hk is 2-connected, i.e. its cycle matroid
is connected. In addition, by Lemma 6, every graph inHk is a u-fusion of three graphs of the classHk−1. Applying inductively
Lemma 5 implies that for any integer k ≥ 0, all graphs in Hk have µ-pathwidth at least k + 1. On the other hand, a graph
in Hk has clearly µ-pathwidth at most k+ 1, as otherwise its image in Tk over φ−1 would have also linear width more than
k + 1 by Lemma 4. Summarizing, all graphs in Hk for k ≥ 0 have µ-pathwidth equal to k + 1.

Consider now such a graph H in Hk and also the tree T = φ−1(H). For an edge e in E(H) = E(T ), we examine the graph
H/e and the tree T/e. Since T belongs in Tk all leaves have neighbors of degree 2 and therefore T/e is again a tree with the
same number of leaves. Moreover, both T/e and the cycle matroid of H/e are connected. It follows that H/e = φ(T/e) and
hence by Lemma 4, µ-pw(H/e) ≤ k, as T is an obstruction for linear width of at most k.

Similarly, we examine the graph H \ e and the tree T \ e. Since the cycle matroid M(H \ e) is not connected, it does not
hold that H \ e = φ(T \ e). However, each connected block Mi in M(H \ e) is the cycle matroid of φ(Ti), where Ti is a minor
of T \ e. In any case, again Lemma 4 immediately implies that µ-pw(H \ e) ≤ k. �

Conversely, we will prove that if the dual of a biconnected outerplanar graph is an obstruction to µ-pathwidth then it
belongs to the family Hk.

Lemma 8. Let H be the dual of a biconnected outerplanar graph that is an obstruction for µ-pathwidth at most k. Then H ∈ Hk.

Proof. To a contradiction, suppose that H does not belong to the family Hk. Since H is an obstruction for µ-pathwidth at
most k, surely µ-pw(H) ≥ k + 1 and Lemma 4 implies lw(T ) ≥ k + 1, for the corresponding tree T = φ−1(H). Thus it
contains a minor T ′

≼ T such that T ′
∈ Tk+1. Consider now H ′

= φ(T ′) and observe that H ′
≼ H; a contradiction since by

definition H ′
∈ Hk+1. �

For every non-negative integer k, we define H∗

k as the class of all duals of the graphs in Hk (see Fig. 5). The previous two
lemmata, along with Lemma 1, imply the main result of our paper.

Theorem 1. For every non-negative integer k, the set H∗

k is the obstruction set for the class outerplanar graphs withµ-pathwidth
at most k.

The theorem reveals a bijection between the acyclic obstructions for linear width and the outerplanar obstructions for µ-
pathwidth. This also gives a way to lower bound the size of Pk. Copying the counting made in [19] (see also [20]), it follows
that |obs(Pk)| ≥ (k!)2.

Another consequence of our results is the following.

Corollary 1. Let G be a biconnected outerplanar graph and let T be a tree such that G∗
= φ(T ). Then µ-pw(G) = lw(T ).
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The latter implies the existence of a linear time algorithm for the computation of theµ-pathwidth of outerplanar graphs.

Corollary 2. There exists a linear algorithm that, given an outerplanar graph, outputs its µ-pathwidth.

Proof. LetG be an outerplanar graph. Let alsoG1, . . . ,Gr be its biconnected components andH1, . . . ,Hr their corresponding
duals. Let

k = max{lw(φ−1(Hi)) | i = 1, . . . , r}.

The linear-width of trees can be computed in linear time, using a straightforward adaptation of the linear algorithm of [18]
for computing the pathwidth of a graph. Therefore, from Corollary 1 and Lemma 1 we have that µ-pw(G) = k. �
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