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Abstract. We consider the following graph modification problem. Let
the input consist of a graph G = (V,E), a weight function w : V ∪E → N,
a cost function c : V ∪E → N and a degree function δ : V → N0, together
with three integers kv, ke and C. The question is whether we can delete a
set of vertices of total weight at most kv and a set of edges of total weight
at most ke so that the total cost of the deleted elements is at most C and
every non-deleted vertex v has degree δ(v) in the resulting graph G′. We
also consider the variant in which G′ must be connected. Both problems
are known to be NP-complete and W[1]-hard when parameterized by
kv + ke. We prove that, when restricted to planar graphs, they stay NP-
complete but have polynomial kernels when parameterized by kv + ke.

1 Introduction

Graph modification problems capture a variety of graph-theoretic problems and
are well studied in algorithmic graph theory. The aim is to modify some given
graph G into some other graph H that satisfies a certain property by applying
a bounded number of operations from a set S of prespecified graph operations.
Well-known graph operations are the edge addition, edge deletion and vertex
deletion, denoted by ea, ed and vd, respectively. For example, if S = {vd} and H
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must be a clique or independent set then we obtain the basic problems Clique
and Independent Set, respectively. To give a few more examples, if H must
be a forest and S = {ed} or S = {vd} then we obtain the problems Feedback
Edge Set and Feedback Vertex Set, respectively. As discussed in detail
later, it is also common to consider sets S consisting of more than one graph
operation.

A property is hereditary if it holds for any induced subgraph of a graph that
satisfies it, and a property is non-trivial if it is both true for infinitely many
graphs and false for infinitely many graphs. A classic result of Lewis and Yan-
nakakis [25] is that a vertex deletion problem is NP-hard for any property that is
hereditary and non-trivial. In an earlier paper Yannakakis [31] also showed that
the edge deletion problem is NP-complete for several properties, such as being
planar or outer-planar. Natanzon, Shamir and Sharan [28] and Burzyn, Bonomo
and Durán [6] proved that the graph modification problem is NP-complete when
S = {ea, ed} and the desired property is to belong to some hereditary graph
class for a variety of such graph classes.

When a problem turns out to be NP-hard, a possible next step might be
to consider it in the more refined framework offered by parameterized complex-
ity. This is certainly an appropriate direction to follow for graph modification
problems, because the bound on the total number of permitted operations is a
natural parameter k. Cai [7] proved that for this parameter the graph modifi-
cation problem is FPT if S = {ea, ed, vd} and the desired property is to belong
to any fixed graph class characterized by a finite set of forbidden induced sub-
graphs. Khot and Raman [22] determined all non-trivial hereditary properties
for which the vertex deletion problem is FPT on n-vertex graphs with parameter
n − k and proved that for all other such properties the problem is W[1]-hard
(when parameterized by n− k).

From the aforementioned results we conclude that the graph modification
problem has been thoroughly studied for hereditary properties. However, for
other types of properties, much less is known. Dabrowski et al. [10] combined
previous results [5,8,9] with new results to classify the (parameterized) complex-
ity of the problem of modifying the input graph into a connected graph where
each vertex has some prescribed degree parity for all S ⊆ {ea, ed, vd}.

In this paper we consider the case when the vertices of the resulting graph
must satisfy some prespecified degree constraints (note that such properties are
non-hereditary, so the results of Lewis and Yannakakis do not apply to this
case). Before presenting our results, we briefly discuss the known results and the
general framework they fall under.

Moser and Thilikos in [27] and Mathieson and Szeider [26] initiated an inves-
tigation into the parameterized complexity of such graph modification problems.
In particular, Mathieson and Szeider [26] introduced the following general prob-
lem.
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Degree Constraint Editing(S)
Instance: A graph G, integers d, k and a function δ : V (G)→ {1, . . . , d}.
Question: Can G be modified into a graph G′ such that dG′(v) = δ(v)

for each v ∈ V (G′) using at most k operations from the set S?

Mathieson and Szeider [26] classified the parameterized complexity of this prob-
lem for S ⊆ {ea, ed, vd}. In particular they showed the following results. If
S ⊆ {ea, ed} then the problem is polynomial-time solvable. If vd ∈ S then
the problem is NP-complete, W[1]-hard with parameter k and FPT with param-
eter d + k. Moreover, they proved that the latter result holds even for a more
general version, in which the vertices and edges have costs and the desired degree
for each vertex should be in some given subset of {1, . . . , d}. If S ⊆ {ed, vd}, they
proved that the problem has a polynomial kernel when parameterized by d+ k.
Golovach [20] considered the cases S = {ea, vd} and S = {ea, ed, vd} and proved
(amongst other results) that for these cases the problem has no polynomial
kernel when parameterized by d + k unless NP ⊆ coNP /poly. Froese, Nichter-
lein and Niedermeier [15] gave more kernelization results for Degree Con-
straint Editing(S). Golovach [19] introduced a variant of Degree Con-
straint Editing(S) in which we additionally insist that the resulting graph
must be connected. He proved that, for S = {ea}, this variant is NP-complete,
FPT when parameterized by k, and has a polynomial kernel when parameterized
by d + k. The connected variant is readily seen to be W[1]-hard when vd ∈ S
by a straightforward modification of the proof of the W[1]-hardness result for
Degree Constraint Editing(S), when vd ∈ S, as given by Mathieson and
Szeider [26].

In the light of the above NP-completeness and W[1]-hardness results (when
vd ∈ S) it is natural to restrict the input graph G to a special graph class.
Hence, inspired by the above results, we consider the set S = {ed, vd} and study
weighted versions of both variants (where we insist that the resulting graph is
connected and where we don’t) of these problems for planar input graphs. In
fact the problems we study are even more general. The problem variant not
demanding connectivity is defined as follows.

Deletion to a Planar Graph of Given Degrees (DPGGD)
Instance: A planar graph G = (V,E), integers kv, ke, C and functions

δ : V → N0, w : V ∪ E → N, c : V ∪ E → N0.
Question: Can G be modified into a graph G′ by deleting a set U ⊆ V

with w(U) ≤ kv and a set D ⊆ E with w(D) ≤ ke such that
c(U ∪D) ≤ C and dG′(v) = δ(v) for v ∈ V (G′)?

In the above problem, w is the weight and c is the cost function. The question
is whether it is possible to delete vertices and edges of total weight at most kv
and ke, respectively, so that the total cost of the deleted elements is at most C
and the obtained graph satisfies the degree restrictions prescribed by the given
function δ.
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The second problem we consider is the variant of DPGGD, in which the
desired graph G′ must be connected. We call this variant the Deletion to a
Connected Planar Graph of Given Degrees problem (DCPGGD).

Our Results. We note that DPGGD is NP-complete even if δ ≡ 3, w ≡ 1, c ≡ 0
and kv = |V (G)| − 1, and DCPGGD is NP-complete even if δ ≡ 2, w ≡ 1, c ≡ 0
and kv = 0. These observations follow directly from the respective facts that
both testing whether a planar graph of degree at most 7 has a non-trivial cubic
subgraph [30] is NP-complete and testing whether a cubic planar graph has a
Hamiltonian cycle [16] is NP-complete. In contrast to the aforementioned W[1]-
hardness results for general graphs, our two main results are that both DPGGD
and DCPGGD have polynomial kernels when parameterized by kv + ke. Note
that the integer C is neither a constant nor a parameter but part of the input. In
order to obtain our results we first show that both problems are polynomial-time
solvable for any graph class of bounded treewidth. We then use the protrusion de-
composition/replacement techniques introduced by Bodlaender at al. [3] (see [4]
for the full text). These techniques were successfully used for various problems on
sparse graphs [14,17,18,23]. We stress that DPGGD and DCPGGD do not fit
in the meta-kernelization framework of Bodlaender at al. [3]. Hence our approach
is, unavoidably, problem-specific.

2 Preliminaries

All graphs in this paper are finite, undirected and without loops or multiple
edges. The vertex set of a graphG is denoted by V (G) and the edge set is denoted
by E(G). For a set X ⊆ V (G), we let G[X ] denote the subgraph of G induced
by X . We write G −X = G[V (G) \X ]; we allow the case where X 6⊆ V (G). If
X = {x}, we may write G − x instead. For a set L ⊆ E(G), we let G − L be
the graph obtained from G by deleting all edges of L. If L = {e} then we may
write G− e instead. For v ∈ V (G), let EG(v) = {e ∈ E(G) | e is incident to v}.
For X ⊆ V (G), let EG(X) =

⋃

v∈X EG(v). For e ∈ E(G) with e = uv, let
V (e) = {u, v}. For a set L ⊆ E(G) let V (L) = ∪e∈LV (e).

Let G be a graph. For a vertex v, we let NG(v) denote its (open) neighbour-
hood, that is, the set of vertices adjacent to v. The degree of a vertex v is denoted
by dG(v) = |NG(v)|. For a set X ⊆ V (G), we write NG(X) = (

⋃

v∈X NG(v))\X .
The closed neighbourhood NG[v] = NG(v) ∪ {v}, and for a non-negative in-
teger r, N r

G[v] is the set of vertices at distance at most r from v; note that
N0

G[v] = {v} and that N1
G[v] = NG[v]. For a set X ⊆ V (G) and a pos-

itive integer r, let N r
G[X ] =

⋃

v∈X N r
G[v]. For a positive integer r, a set

X ⊆ V (G) is an r-dominating set of G if V (G) ⊆ N r
G[X ]. For a set X ⊆ V (G),

∂G(X) = X ∩NG(V (G) \X) is the boundary of X in G.
A tree decomposition of a graph G is a pair (X , T ) where T is a tree and

X = {Xi | i ∈ V (T )} is a collection of subsets (called bags) of V (G) such that

(i)
⋃

i∈V (T ) Xi = V (G),

(ii) for each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
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(iii) for each x ∈ V (G), the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G (denoted tw(G)) is the minimum width over all tree
decompositions of G. A tree decomposition (X , T ) of a graph G is nice, if T is a
rooted binary tree such that the nodes of T are of four types:

(i) a leaf node i is a leaf of T with Xi = ∅;
(ii) an introduce node i has one child i′ with Xi = Xi′ ∪ {v} for some vertex

v ∈ V (G);

(iii) a forget node i has one child i′ with Xi = Xi′ \ {v} for some vertex v ∈ VG;
and

(iv) a join node i has two children i′ and i′′ with Xi = Xi′ = Xi′′ ,

and, moreover, the root r is a forget node with Xr = ∅. Kloks [24] proved that
every tree decomposition of a graph can be converted in linear time to a nice
tree decomposition of the same width such that the size of the obtained tree is
linear in the size of the original tree.

We need the following known observation, which is valid for every planar
bipartite graph G in which the vertices of one partition class V2 have degree
at least 3 (in order to prove this, note that 3|V2| ≤

∑

v∈V2
dG(v) = |E(G)| ≤

2|V (G)| − 4, as G is bipartite and planar).

Lemma 1. Let V1 and V2 be bipartition classes of a planar bipartite graph G
such that dG(v) ≥ 3 for every v ∈ V2 and V2 is non-empty. Then |V2| ≤ 2|V1|−4.

Protrusion decompositions. For a graph G and a positive integer r, a set
X ⊆ V (G) is an r-protrusion of G if |∂G(X)| ≤ r and tw(G[X ]) ≤ r. For
positive integers s and s′, an (s, s′)-protrusion decomposition of a graph G is a
partition Π = {R0, . . . , Rp} of V (G) such that

(i) max{p, |R0|} ≤ s,

(ii) for each i ∈ {1, . . . , p}, R+
i = NG[Ri] is an s′-protrusion of G, and

(iii) for each i ∈ {1, . . . , p}, NG(Ri) ⊆ R0 ∩ ∂G[R
+
i ].

Originally, condition (iii) only demanded that NG(Ri) ⊆ R0 holds for each
i ∈ {1, . . . , p}. However, we can move every vertex in NG(Ri) \ ∂G[R

+
i ] to Ri

without affecting any of the other properties. Hence we assume without loss of
generality that such vertices do not exist and may indeed state condition (iii)
as above (which is convenient for our purposes). The sets R+

1 , . . . , R
+
p are called

the protrusions of Π .

The following statement is implicit in [4] (see Lemmas 6.1 and 6.2).

Lemma 2 ([4]). Let r and k be positive integers and let G be a planar graph
that has an r-dominating set of size at most k. Then G has an (O(kr), O(r))-
protrusion decomposition, which can be constructed in polynomial time.
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Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and the other is a parameter k. A problem is said to
be fixed parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with input x and parameter k to an
instance (x′, k′) such that

(i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance, and
(ii) the size of x′ and k′ is bounded by f(k) for a computable function f .

The output (x′, k′) is called a kernel. The function f is said to be the size of
the kernel. A kernel is polynomial if f is polynomial. We refer to the books of
Downey and Fellows [12], Flum and Grohe [13], and Niedermeier [29] for detailed
introductions to parameterized complexity.

3 The Polynomial Kernels

In this section we construct polynomial kernels forDPGGD andDCPGGD. We
say that a pair (U,D) with U ⊆ V (G) andD ⊆ E(G) is a solution for an instance
(G, kv, ke, C, δ, w, c) of DPGGD if w(U) ≤ kv, w(D) ≤ ke and c(U ∪D) ≤ C and
G′ = G−U−D satisfies dG′(v) = δ(v) for all v ∈ V (G′). If (G, kv, ke, C, δ, w, c) is
an instance of DCPGGD then (U,D) is a solution if in addition G′ is connected.
Notice that it can happen that U = V (G) for a solution (U,D).

In order to prove our main results, we first need to introduce some additional
terminology and prove some structural results. We say that a solution (U,D) for
an instance of DPGGD or DCPGGD is efficient if D has no edges incident to
the vertices of U . We say that a solution (U,D) is of minimum cost if c(Û , D̂) ≥
c(U,D) for every solution (Û , D̂). We make two observations.

Observation 1 Any yes-instance of DPGGD or DCPGGD has an efficient
solution of minimum cost.

Observation 2 Let (G, kv, ke, C, δ, w, c) be instance of DPGGD or DCPGGD
that has an efficient solution (U,D). If dG(v) = δ(v) for some v ∈ V (G) then v
is not incident to an edge of D.

We say that an instance (G, kv, ke, C, δ, w, c) of DPGGD (DCPGGD re-
spectively) is normalized if

(i) for every v ∈ V (G), δ(v) ≤ dG(v) ≤ δ(v) + kv + ke, and
(ii) every vertex v in the set S = {u ∈ V (G) | dG(u) = δ(u)} is adjacent to a

vertex in S = V (G) \ S.

Lemma 3. There is a polynomial-time algorithm that for each instance of
DPGGD or DCPGGD either solves the problem or returns an equivalent nor-
malized instance.
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Proof. Let (G, kv, ke, C, δ, w, c) be an instance of DPGGD. To simplify notation,
we keep the same notation for the functions δ, w, c if we delete vertices or edges
and do not modify the values of the functions for the remaining elements if this
does not create confusion.

We say that a reduction rule is safe if by applying the rule we either solve
the problem or obtain an equivalent instance. It is straightforward to see that
the following reduction rules are safe.

Yes-instance rule. If S = V (G) then (∅, ∅) is a solution, return a yes-
answer and stop.

Vertex deletion rule. If G has a vertex v with dG(v) < δ(v) or dG(v) >
δ(v) + kv + ke, then delete v and set kv = kv − w(v), C = C − c(v). If
kv < 0 or C < 0, then stop and return a no-answer.

Observe that by the exhaustive application of the vertex deletion rule
and applying the yes-instance rule whenever possible, we either solve the
problem or we obtain an instance which satisfies (i) of the definition of normalized
instances, but where S 6= V (G). Notice that, in particular, the yes-instance
rule is applied if the set of vertices becomes empty. To ensure (ii), we apply the
following two rules.

Contraction rule. If G has two adjacent vertices u, v ∈ S = {x ∈
V (G) | dG(x) = δ(x)} such that NG(v) ⊆ S, then we construct the
instance (G′, kv, ke, C, δ

′, w′, c′) as follows.
– Contract uv. Denote the obtained graph G′ = G/uv and let z be the

vertex obtained from u and v.
– Set δ′(z) = dG′(z) and set δ′(x) = dG′(x) for any x ∈ S \ {u, v}. For

each x ∈ S, set δ′(x) = δ(x).
– Set w′(z) = w(u)+w(v) and c′(z) = c(u)+c(v). For x ∈ V (G)\{u, v},

set w′(x) = w(x) and c′(x) = c(x).
– For each xz ∈ E(G′), set w′(xz) = ke + 1 and c′(xz) = 0. For all

other edges xy ∈ E(G′), set w′(xy) = w(xy) and c′(xy) = c(xy).

Let (U,D) be an efficient solution for (G, kv, ke, C, δ, w, c). By Observa-
tion 2, D has no edges incident to u or v. Also either u, v ∈ U or u, v /∈ U ,
because u and v are adjacent and dG(u) = δ(u) and dG(v) = δ(v). Let
U ′ = (U \ {u, v}) ∪ {z} if u, v ∈ U and U ′ = U otherwise. We have that
(U ′, D) is a solution for (G′, kv, ke, C, δ

′, w′, c′). If (U ′, D′) is an efficient solution
for (G′, kv, ke, C, δ

′, w′, c′), then D′ has no edges incident to z by Observation 2.
If z ∈ U ′, let U = (U ′ \ {z}) ∪ {u, v} and U = U ′ otherwise. We obtain that
(U,D) is a solution for the original instance.

We exhaustively apply the above rule. Assume that it cannot be applied
for (G, kv, ke, C, δ, w, c). Then we have that this instance satisfies (i) and the
following holds: for any v ∈ S 6= V (G), either v is adjacent to a vertex in S or v
is an isolated vertex. It remains to deal with isolated vertices.

Isolates removal rule. If G has an isolated vertex v, then delete v.

7



To see that above rule is safe, notice that, because the considered instance
satisfies (i), it follows that δ(v) ≤ dG(v) = 0, so v ∈ S. Clearly, by the exhaustive
application of the isolates removal rule, we either solve the problem or obtain
an instance that satisfies (i) and (ii).

Now consider an instance (G, kv, ke, C, δ, w, c) of DCPGGD.
We replace the yes-instance rule by the following variant.

Yes-instance rule (connected). If S = V (G) and G is connected,
then (∅, ∅) is a solution, return a yes-answer and stop.

It is straightforward to verify that the vertex deletion rule and the con-
traction rule are safe for this problem. By applying these rules and by the
application of the connected variant of the yes-instance rule whenever possi-
ble, we either solve the problem or obtain an equivalent instance that satisfies (i)
and has the property that for any v ∈ S, either v is adjacent to a vertex in S or v
is an isolated vertex. Suppose that (G, kv, ke, C, δ, w, c) satisfies these properties.
Observe that if H is a component of G, then for any solution (U,D), either
V (H) ⊆ U or V (G) \ V (H) ⊆ U . Therefore, it is safe to apply the following
variant of the isolates removal rule.

Isolates removal rule (connected). If G has an isolated vertex v, then
if w(V (G) \ {v}) ≤ kv and c(V (G) \ {v}) ≤ C, then (V (G) \ {v}, ∅) is a
solution, return a yes-answer and stop. Otherwise, if w(V (G)\{v}) > kv
or c(V (G)\{v}) > C, delete v and set kv = kv−w(v) and C = C− c(v);
if kv < 0 or C < 0, then stop and return a no-answer.

It is easy to see that if the input graph was planar then the graph formed
after applying the rules above will also be planar. ⊓⊔

Lemma 4. If (G, kv, ke, C, δ, w, c) is a normalized yes-instance of DPGGD
(DCPGGD respectively) then G has a 2-dominating set of size at most kv+2ke.

Proof. We prove the lemma for DPGGD; the proof for DCPGGD is the same.
Let (G, kv, ke, C, δ, w, c) be a normalized yes-instance of the problem. Let (U,D)
be a solution and W = U ∪ V (D). Clearly, |W | ≤ kv + 2ke, because the weights
are positive integers. We show that W is a 2-dominating set of G.

Let S = {v ∈ V (G) | dG(v) = δ(v)} and S = V (G)\S. For any vertex v ∈ S,
either v ∈ U or v is adjacent to a vertex of U or v is incident to an edge of D.
Hence, S ⊆ NG[W ]. Let v ∈ S. Because the considered instance is normalized, v
is adjacent to a vertex u ∈ S. It implies, that S ⊆ N2

G[W ]. ⊓⊔

The following is a direct consequence of Lemmas 2 and 4.

Lemma 5. There is a fixed constant α such that, if (G, kv, ke, C, δ, w, c) is a
normalized yes-instance of DPGGD (DCPGGD respectively), then G has an
(α(kv + 2ke), α)-protrusion decomposition. Moreover, if there is such a decom-
position, one can be constructed in polynomial time.
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The next lemma states that, for both DPGGD and DCPGGD, an optimal
solution can be found in polynomial time on graphs of bounded treewidth. The
proof is based on the standard techniques for dynamic programming over tree
decompositions.

Lemma 6. DPGGD (DCPGGD respectively) can be solved, and an efficient
solution (U,D) of minimum cost can be obtained in (kv + ke)

O(q) · poly(n) time
(in (q(kv +ke))

O(q) ·poly(n) time respectively) for instances (G, kv , ke, C, δ, w, c)
where G is an n-vertex graph of treewidth at most q and δ(v) ≤ dG(v) ≤ δ(v) +
kv + ke for v ∈ V (G).

Proof. We use more or less standard approach for construction of dynamic pro-
gramming algorithms for graphs of bounded treewidth.

First, we consider DPGGD. Let (G, kv, ke, C, δ, w, c) be an instance of the
problem where tw(G) ≤ q and δ(v) ≤ dG(v) ≤ δ(v) + kv + ke for all v ∈ V (G).
We first of all assume that a nice tree decomposition (X , T ) of G with width
t = O(q) is given. To simplify later arguments, we may assume t ≥ 2. For this,
we may use the algorithm of [2] to obtain an decomposition whose width is at
most five times the optimal in 2O(q) · n steps and then convert it to a nice tree
decomposition using the aforementioned results of Kloks [24].

Let r denote the root of T . For any node i ∈ V (T ), let Ti denote the subtree
of T induced by i and its descendants and let Gi = G[

⋃

j∈V (Ti)
Xj ]. We apply a

dynamic programming algorithm over (X , T ).
First, we describe the tables that are constructed for the nodes of T . Let

i ∈ V (T ). We define tablei as a partial function whose inputs are quintuples
(X,Y, γ, hv, he) where

– X ⊆ Xi,
– Y ⊆ E(G[Xi]),
– γ : Xi \X → {0, . . . , kv + ke},
– hv ≤ kv and
– he ≤ ke.

The value of tablei is a minimum cost pair (U,D) ∈ 2V (Gi) × 2E(Gi) with the
following properties:

(i) for any v ∈ U and any e ∈ D, v and e are not incident,
(ii) w(U) ≤ hv and w(D) ≤ he,
(iii) U ∩Xi = X and D ∩ E(G[Xi]) = Y ,
(iv) for every v ∈ Xi \X , the number of neighbours of v in Gi that belong in

U \Xi plus the number of edges of D \ E(G[Xi]) that are incident to v is
exactly γ(v),

(v) for each v ∈ V (Gi) \Xi, dG′

i
(v) = δ(v) where G′

i = Gi − U −D,

and, if no such pair (U,D) exists, then tablei(X,Y, d, hv, he) is void.
Recall that Xr = ∅. Observe that (G, kv, ke, C, δ, w, c) is a yes-instance if

and only if tabler(∅, ∅,∅, kv, ke) is non-void (where ∅ : ∅ → {0, . . . , kv + ke}).
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Moreover, in such a case, the value of tabler(∅, ∅,∅, kv, ke) is a minimum-cost
solution for this instance.

Now we explain how we construct tablei for each i ∈ V (T ). If i is a leaf

node, tablei is constructed in a straightforward way because Xi = ∅. Indeed,
for 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke we set tablei(∅, ∅,∅, hv, he) = (∅, ∅) and
have tablei void in all other cases. Hence, it remains to give the construction
for introduce, forget, and join nodes. Let i ∈ V (T ) be a node of one of these
types. Assume inductively that the function tablei′ for every child i′ of i has
already been constructed.

In what follows we write tablei(X,Y, γ, hv, he)  (U,D) to refer to the
following procedure: If tablei(X,Y, γ, hv, he) is undefined, set it to be equal
to (U,D). If tablei(X,Y, γ, hv, he) = (Û , D̂) and c(Û ∪ D̂) > c(U ∪ D),
change tablei(X,Y, γ, hv, he) to be equal to (U,D). Otherwise, do not change
tablei(X,Y, γ, hv, he).

Construction for an introduce node. Let i′ be the child of i and Xi = Xi′ ∪
{v}. Notice that NGi

(v) ⊆ Xi′ . We start with tablei empty. Then, for each pair
hv, he where hv ≤ kv and he ≤ ke and each pair ((X ′, Y ′, γ′, h′

v, h
′
e), (U

′, D′)) ∈
tablei′ where h′

v ≤ hv and h′
e ≤ he, we do the following:

– Let X ← X ′ ∪ {v}, Y ← Y ′, γ ← γ′, U ← U ′ ∪ {v}, and D ← D′.
If hv ≥ h′

v + w(v), then tablei(X,Y, γ, hv, he)  (U,D).
– Let X ← X ′, U ← U ′, γ ← γ′ ∪ {(v, 0)}.

For every L ⊆ {vu | vu ∈ E(G), u ∈ Xi′ \X ′}, let Y ← Y ′ ∪L, D ← D′ ∪L,
and if he ≥ h′

e + w(L), then tablei(X,Y, γ, hv, he)  (U,D).

Construction for a forget node. Let i′ be the child of i and Xi = Xi′ \ {v}.
We start with tablei empty. For each pair ((X ′, Y ′, γ′, hv, he), (U,D)) ∈ tablei′ ,
we do the following.

– If v ∈ X ′ then let X ← X ′\{v}, Y ← Y ′, and define γ by replacing in γ′ each
pair (u, γ′(u)) where uv ∈ E(G) and u ∈ Xi \X by the pair (u, γ′(u) + 1).
If maxu∈Xi\X γ(u) ≤ kv + ke, then tablei(X,Y, γ, hv, he)  (U,D).

– If v /∈ X ′, then let X ← X ′, L ← {vu ∈ E(G) | u ∈ Xi} ∩ Y ′, Y ← Y ′ \ L,
and define γ by replacing in γ− = γ′ \ {(v, γ′(v))} each pair (u, γ′(u)) where
uv ∈ L by the pair (u, γ′(u) + 1).
If δ(v) = dG(v) − |L| − γ′(v) and maxu∈Xi\X γ(u) ≤ kv + ke, then
tablei(X,Y, γ, hv, he)  (U,D).

Construction for a join node. Let i′ and i′′ be the children of i. We start
with tablei empty. For each pair ((X,Y, γ′, h′

v, h
′
e), (U

′, D′)) ∈ tablei′ and each
pair ((X,Y, γ′′, h′′

v , h
′′
e ), (U

′′, D′′) ∈ tablei′′ we do the following.

– Let γ ← γ′ + γ′′, U ← U ′ ∪ U ′′ and D ← D′ ∪D′′.
If maxu∈Xi\X γ(u) ≤ kv + ke, then for any two integers hv, he such
that h′

v + h′′
v − w(X) ≤ hv ≤ kv and h′

e + h′′
e − w(Y ) ≤ he ≤ ke,

tablei(X,Y, γ, hv, he)  (U,D).
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Using standard arguments, it is straightforward to verify the correctness of
the algorithm. To evaluate the running time, recall that tablei receives a quin-
tuple (X,Y, γ, hv, he) as input. There are at most 2t+1 possible choices for X ,
23(t+1)−6 = 23t−3 choices of Y (because of the planarity of G), (kv + ke + 1)t+1

choices of γ, kv + 1 possible values of hv and ke + 1 possible values for he. We
therefore have that each tablei has has (kv + ke)

O(t) entries. This implies that
the running time of the dynamic programming algorithm is (kv + ke)

O(t) · n.

Now we consider DCPGGD. The difference is that we have to keep track
of components of a partial solution as is standard for dynamic programming
algorithms for graphs of bounded treewidth with a connectivity condition such
as, e.g. the Steiner Tree problem. Let (G, kv, ke, C, δ, w, c) be an instance of
DCPGGD where tw(G) ≤ t and δ(v) ≤ dG(v) ≤ δ(v) + kv + ke for v ∈ V (G).
Without loss of generality we assume that a nice tree decomposition (X , T ) of G
with treewidth at most t is given and apply a dynamic programming algorithm
over (X , T ). Let i ∈ V (T ).

We define tableci as a partial function whose inputs are quintuples
(P , Y, γ, hv, he) where

– P = {P0, . . . , Ps} is a partition of Xi,
– Y ⊆ E(G[Xi]),
– γ : Xi \X → {0, . . . , kv + ke},
– hv ≤ kv and
– he ≤ ke.

The value of tableci is a minimum cost pair (U,D) ∈ 2V (Gi) × 2E(Gi) with the
following properties:

(i) for any v ∈ U and any e ∈ D, v and e are not incident,
(ii) w(U) ≤ hv and w(D) ≤ he,
(iii) U ∩Xi = P0 and D ∩ E(G[Xi]) = Y ,
(iv) for every v ∈ Xi \X , the number of neighbours of v in Gi that belong in

U \Xi, plus the number of edges of D \E(G[Xi]) that are incident to v is
exactly γ(v),

(v) for each v ∈ V (Gi) \Xi, dG′

i
(v) = δ(v) where G′

i = Gi − U −D,
(vi) if s = 0, then G′

i = Gi − U −D is connected and if s ≥ 1, then G′
i has s

components H1, . . . , Hs such that V (Hi) ∩Xh = Pi for h ∈ {1, . . . , s},

and, if no such pair (U,D) exists, then tableci (P , Y, d, hv, he) is void.
As in the non-connected case, (G, kv, ke, C, δ, w, c) is a yes-instance if and

only if tablecr(∅, ∅,∅, kv, ke) is non-void and the value of tablecr(∅, ∅,∅, kv, ke),
if exists, is a minimum-cost solution for this instance.

The partial function tableci is constructed for every i ∈ V (T ) similarly to
the construction of tablei for DPGGD. Because there are at most (t + 1)t+1

partitions P of each Xi, we have that each table contains (t(kv + ke))
O(t) en-

tries. Therefore, the running time of the dynamic programming algorithm is
(t(kv + ke))

O(t)n. ⊓⊔
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We are now ready to present our two main results, starting with the one for
DPGGD.

Theorem 1. DPGGD has a polynomial kernel when parameterized by kv + ke.

Proof. Let (G, kv, ke, C, δ, w, c) be an instance of DPGGD. By Lemma 3, we may
assume that this instance is normalized. By Lemma 4, if (G, kv, ke, C, δ, w, c) is a
yes-instance, then G has a 2-dominating set of size at most kv+2ke. By Lemma 5,
there is a fixed constant α such that G has an (α(kv+2ke), α)-protrusion decom-
position, and such a decomposition, if it exists, can be constructed in polynomial
time. To simplify later arguments, we may assume α ≥ 3. Clearly, if we fail to ob-
tain such a decomposition, we return a no-answer and stop. Hence, from now on
we assume that an (α(kv +2ke), α)-protrusion decomposition Π = {R0, . . . , Rp}
of G is given. As before, we keep the same notation δ, w, c for the restrictions
of these functions. Again, we will introduce new reduction rules. We will keep
the notation for G and for the parameters unchanged where this is well-defined.
We also assume that if we consider sets of vertices or edges associated with the
considered instance and delete vertices or edges from the graph, then we also
delete these elements from the associated sets.

For each i ∈ {1, . . . , p}, we construct Wi ⊆ Ri and Li ⊆ EG(Ri). To do this,
we consider the set Q of all possible quintuples q = (hv, he, X, Y, δ′) such that

– 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke,
– X ⊆ NG(Ri) and Y ⊆ E(G[NG(Ri) \X ]), and
– We define F = G[R+

i ]−X−Y and require that δ′ : V (F )→ N0 is a function
such that δ′(v) ≤ dF (v) ≤ δ′(v)+kv+ke for v ∈ NG(Ri)\X and δ′(v) = δ(v)
for v ∈ Ri.

Observe that there are at most 2α sets X , at most 23α−6 sets Y , at most
(kv + 1)(ke + 1) pairs hv, he, and for each X , there are at most (kv + ke + 1)α

possibilities for δ′. Therefore |Q| ≤ 2α23α−6(kv + 1)(ke + 1)(kv + ke + 1)α =
(kv + ke)

O(α).
For each q = (hv, he, X, Y, δ′) ∈ Q, we construct an instance Iq =

(F, hv, he, C, δ
′, w′, c) of DPGGD such that

– w′(v) = kv + 1 for v ∈ NG(Ri) \X and w′(v) = w(v) for v ∈ Ri and
– w′(e) = ke + 1 for e ∈ E(G[NG(Ri) \X ]) \ Y and w′(e) = w(e) for all other

edges of F .

By Lemma 6, we can solve the problem for this instance in (kv + ke)
O(α) time.

Let (Uq, Dq) denote the obtained solution of minimum cost and set Uq = Dq = ∅
if no solution exists for Iq. Let

Wi =
⋃

q∈Q

Uq and Li =
⋃

q∈Q

Dq.

Because each Uq has at most kv vertices and each Dq has at most ke edges, we
obtain that |Wi| ≤ |Q|kv ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · (kv + ke + 1)α · kv and
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|Li| ≤ |Q|ke ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · (kv + ke + 1)α · ke. Hence, the size
of Wi and Li is (kv + ke)

O(α).
Let W = R0 ∪

⋃

i∈{1,...,p}Wi and L = E(G[R0]) ∪
⋃

i∈{1,...,p} Li. Be-

cause max{p, |R0|} ≤ α(kv + 2ke), we have that |W | = (kv + ke)
O(α) and

|L| = (kv + ke)
O(α). We prove the following claim.

Claim A. If (G, kv, ke, C, δ, w, c) is a yes-instance of DPGGD, then it has an
efficient solution (U,D) of minimum cost such that U ⊆W and D ⊆ L.

We prove Claim A as follows. Let (U,D) be an efficient solution for
(G, kv, ke, C, δ, w, c) of minimum cost such that s = |U \W | + |D \ L| is min-
imum. If s = 0, then the claim is fulfilled. Suppose, for contradiction, that
s > 0. This means that there is an i ∈ {1, . . . , p} such that (U ∩ Ri) \Wi 6= ∅
or (D ∩ EG(Ri)) \ Li 6= ∅. Let X = U ∩ NG(Ri), Y = D ∩ E(NG(Ri))
and F = G[R+

i ] − X − Y . Let hv = |U ∩ V (F )| and he = |D ∩ E(F )|.
For each vertex v ∈ NG(Ri) \ X , let dv be the total number of vertices in
U \ V (F ) adjacent to v plus the number of edges in D \E(F ) incident to v. Let
δ′(v) = dF (v)− (dG(v)− δ(v)− dv) for v ∈ NG(Ri) \X and δ′(v) = δ(v) for all
other vertices of F .

Clearly, (F, hv, he, C, δ
′, w′, c) = Iq is the instance of DPGGD when q =

(hv, he, X, Y, δ′) if we set w′ as before. Let U ′ = U ∩ V (F ) and D′ = D ∩E(F ).
Then (U ′, D′) is a solution for the instance Iq and, therefore Iq is a yes-
instance. In particular, this means that there is a solution (U ′′, D′′) for Iq =
(F, hv, he, C, δ

′, w′, c) that was constructed by the aforementioned procedure for
the construction of Wi and Li. Clearly, U

′′ ⊆ Wi ⊆ W and D′′ ⊆ Li ⊆ L.
Because our algorithm for graphs of bounded treewidth finds a solution of min-
imum cost, it follows that c(U ′′ ∪D′′) ≤ c(U ′ ∪D′). It remains to observe that
(Û , D̂), where Û = (U \ U ′) ∪ U ′′ and D̂ = (D \ D′) ∪ D′′, is a solution for
(G, kv, ke, C, δ, w, c) with c(Û ∪ D̂) ≤ c(U ∪ D), but this contradicts the choice
of (U,D) because |Û \W |+ |D̂ \ L| < s. This completes the proof of Claim A.

Let S = {v ∈ V (G) | dG(v) = δ(v)}\W and T = {v ∈ V (G) | dG(v) > δ(v)}\W ;
because the instance we consider is normalized, these sets form a partition of
V (G) \W (note that these sets may be empty). If v ∈ S, then for any efficient
solution (U,D) such that U ⊆ W and D ⊆ L, v is not adjacent to any vertex
of U and not incident to any edge of L. This implies that it is safe to exhaustively
apply the following rule without destroying the statement of Claim A.

Set adjustment rule. If there is a vertex v ∈ S that is adjacent to a
vertex u ∈ W , then set W = W \{u} and set S = S∪{u} if dG(u) = δ(u)
and set T = T ∪ {u} if dG(u) > δ(u). If v ∈ S, remove any edge incident
to v from L.

By Claim A, it is safe to modify the weights as follows.

Weight adjustment rule. Set w(v) = kv +1 for v ∈ V (G)\W and set
w(e) = ke + 1 for e ∈ E(G) \ L.
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After the exhaustive application of the set adjustment rule, we have that
NG(S) ⊆ T . Now it is safe to remove S.

S-reduction rule. If v ∈ S, then remove v and set δ(u) = δ(u)− 1 for
u ∈ NG(v). If δ(u) < 0 for some u ∈ NG(v), then return a no-answer
and stop.

To show that the above rule is safe, let G′ = G−S and let δ′ be the function
obtained from δ by the application of the rule. Suppose that (G, kv , ke, C, δ, w, c)
is a yes-instance. Then, by Claim A, we have a solution (U,D) such that U ⊆W
and D ⊆ L. Because NG(S) ⊆ T , T ∩ W = ∅ and the vertices of S are not
incident to edges of L, it follows that we do not stop and (U,D) is a solution
for (G′, kv, ke, C, δ

′, w, c). Now let (U,D) be a solution for (G′, kv, ke, C, δ
′, w, c).

Because of the application of the weight adjustment rule, U ⊆W and D ⊆ L.
Because NG(S) ⊆ T , T ∩W = ∅ and the vertices of S are not incident to edges
of L, we have that (U,D) is a solution for (G, kv, ke, C, δ, w, c). This completes
the proof that the S-reduction rule is safe.

Let W ′ = W ∪ V (L) and T ′ = T \ V (L). Clearly, |W ′| ≤ |W | + 2|L| =
(kv + ke)

O(α).
Using similar arguments to those for the S-reduction rule, the following

rule is also safe.

T ′-reduction rule. If uv ∈ E(G[T ′]), then remove uv and set δ(u) =
δ(u) − 1 and δ(v) = δ(v) − 1. If δ(u) < 0 or δ(v) < 0, then return a
no-answer and stop.

After the exhaustive application of the above rule, T ′ is an independent set
in the obtained graph G. Some of the vertices of this independent set may have
the same neighbourhoods. We deal with them using the next rule.

Twin reduction rule. Suppose there are u, v ∈ T ′ with NG(u) =
NG(v). If δ(u) = δ(v), then remove v and set δ(x) = max{0, δ(x) − 1}
for x ∈ NG(u). If δ(u) 6= δ(v) then return a no-answer and stop.

To prove that the above rule is safe, consider a pair of vertices u, v ∈ T ′

with NG(u) = NG(v) and δ(u) = δ(v). Let G′ = G − v and let δ′ denote the
function obtained from δ by the rule. Suppose that (G, kv , ke, C, δ, w, c) is a
yes-instance. Then we have a solution (U,D) such that U ⊆ W and D ⊆ L.
Notice that T ′ ∩ U = ∅ and the vertices of T ′ are not incident to the edges
of L. Note that u, v /∈ U and if x ∈ NG(u) then ux, vx /∈ D. We have that U
contains exactly dG(u)− δ(u) vertices that are adjacent to u. Therefore, (U,D)
is a solution for (G′, kv, ke, C, δ

′, w, c). Now assume that (U,D) is a solution for
(G′, kv, ke, C, δ

′, w, c). By the same arguments, U contains exactly dG′(u)−δ′(u)
vertices that are adjacent to u. Also if x ∈ NG(u) and δ′(x) = 0, then x ∈ U ,
because u /∈ U and ux /∈ D. Because NG(u) = NG(v), δ(u) = δ(v) and T ′

is an independent set, U contains dG(u) − δ(u) vertices that are adjacent to u
and dG(v) − δ(v) vertices that are adjacent to v. It follows that (U,D) is a
solution for (G, kv, ke, C, δ, w, c). Now consider the case when NG(u) = NG(v)
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and δ(u) 6= δ(v). Suppose, for contradiction that there is a solution (U,D). By
the above arguments, U contains exactly dG(u)− δ(u) vertices that are adjacent
to u and dG(v)− δ(v) vertices that are adjacent to v. Since NG(u) = NG(v) and
δ(u) 6= δ(v), this is a contradiction, so there cannot be such a solution.

After the exhaustive application of the above rule for any two vertices
u, v ∈ T ′, we have that NG(u) 6= NG(v). Let T ′

0, T
′
1, T

′
2, T

′
≥3 denote the sets

of vertices in T ′ that are of degree 0, 1, 2 and at least 3 respectively. Observe
that dG(v) > δ(v) ≥ 0 for v ∈ T ′. Therefore, T ′

0 = ∅ and T ′
1, T

′
2, T

′
≥3 form

a partition of T ′ (note that these sets may be empty). By the twin reduc-

tion rule |T ′
1| = |NG(T

′
1)| ≤ |W

′| and |T ′
2| ≤

(

|NG(T ′

2
)|

2

)

≤ 1
2 |W

′|(|W ′| − 1). By
Lemma 1, |T ′

≥3| ≤ 2|NG(T
′)| − 4 ≤ 2|W ′| − 4 (or |T ′

≥3| = 0). We have that

|V (G)| = |W ′| + |T ′| = |W ′| + |T ′
1| + |T

′
2| + |T

′
≥3| ≤

1
2 |W

′|2 + 7
2 |W

′|. Since, W ′

has (kv + ke)
O(α) vertices, we obtain that the obtained graph G has size kO(1)

where k = kv + ke, i.e. we have a polynomial kernel for DPGGD.

To complete the proof, it remains to observe that the construction of the nor-
malized instance can be done in polynomial time by Lemma 3, the construction
of W and L can be done in polynomial time by Lemma 6, and all the subsequent
reduction rules can be applied in polynomial time. ⊓⊔

The proof of our second main result is based on the same approach as the
proof of Theorem 1, but it is more technically involved because we have to ensure
connectivity of the graph obtained by the editing.

Theorem 2. DCPGGD has a polynomial kernel when parameterized by kv+ke.

Proof. Let (G, kv, ke, C, δ, w, c) be an instance of DCPGGD. By Lemma 3, we
may assume that this instance is normalized. By Lemma 4, if (G, kv , ke, C, δ, w, c)
is a yes-instance, then G has a 2-dominating set of size at most kv + 2ke. By
Lemma 5, there is a fixed constant α such that G has an (α(kv + 2ke), α)-
protrusion decomposition, and such a decomposition, if it exists, can be con-
structed in polynomial time. To simplify later arguments, we may assume α ≥ 3.
Clearly, if we fail to obtain such a decomposition, we return a no-answer and
stop. Hence, from now on we assume that an (α(kv +2ke), α)-protrusion decom-
position Π = {R0, . . . , Rp} of G is given. As before, we keep the same notation
δ, w, c for the restrictions of these functions. Again, we will introduce new reduc-
tion rules. We will keep the notation for G and for the parameters unchanged
where this is well-defined. We also assume that if we consider sets of vertices or
edges associated with the considered instance and delete vertices or edges from
the graph, then we also delete these elements from the associated sets.

For each i ∈ {1, . . . , p}, we construct Wi ⊆ Ri and Li ⊆ EG(Ri). To do this,
we consider the set Q of all possible sextuples q = (hv, he, X, Y,P , δ′) such that

– 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke,

– X ⊆ NG(Ri) and Y ⊆ E(G[NG(Ri) \X ]),

– P = {P1, . . . , Ps} is a set covering of NG(Ri) \X , with s ≤ |NG(Ri) \X |,
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– We define F = G[R+
i ]−X−Y and require that δ′ : V (F )→ N0 is a function

such that δ′(v) ≤ dF (v) ≤ δ′(v)+kv+ke for v ∈ NG(Ri)\X and δ′(v) = δ(v)
for v ∈ Ri.

Observe that there are at most 2α sets X , at most 23α−6 sets Y , at most
(kv + 1)(ke + 1) pairs hv, he, and for each X , there are at most 2α

2

possible
set covers P and at most (kv + ke + 1)α possibilities for δ′. Therefore |Q| ≤

2α23α−6(kv + 1)(ke + 1)2α
2

(kv + ke + 1)α = (kv + ke)
O(α2).

For each q = (hv, he, X, Y,P , δ′) ∈ Q, we construct an instance Iq =
(FP , hv, he, C, δ

′′, w′, c′) of DCPGGD such that

– FP is the graph obtained from F by adding a set of s new vertices Z =
{z1, . . . , zs} and making zi adjacent to all the vertices of Pi. If P = ∅, which
means that NG(R

+
i ) = X , then we simply have that Z = ∅ and FP = F .

– δ′′(v) = dFP
(v) for v ∈ Z and δ′′(v) = δ′(v) for v ∈ V (FP ) \ Z.

– w′(v) = kv + 1 for v ∈ (NG(Ri) \X) ∪ Z and w′(v) = w(v) for v ∈ Ri.
– w′(e) = ke + 1 for e ∈ (E(G[NG(Ri) \X ]) \ Y ) ∪EFP

(Z), and w′(e) = w(e)
for all other edges of FP .

– c′(v) = 0 for v ∈ Z and c′(v) = c(v) for v ∈ V (FP ) \ Z; c′(e) = 0 for
e ∈ EFP

(Z) and c′(e) = c(e) for all other edges in FP .

Since |Z| ≤ |NG(Ri)| ≤ α, it follows that |Z| ≤ α and therefore tw(FP ) ≤
tw(F ) + α ≤ 2α. We can check in linear time whether FP is planar [21]. If it is
not, then Iq is not a valid instance of DCPGGD and we set (Uq, Dq) = (∅, ∅).
Otherwise, by Lemma 6, we can solve DCPGGD for Iq in (α(kv + ke))

O(α) ·
poly(n) time and find a solution of minimum cost. Let (Uq, Dq) be the obtained
solution of minimum cost and let Uq = Dq = ∅ if no solution exists. Notice that
Z ∩ Uq = ∅, because the vertices of Z have weight kv + 1, and Dq has no edges
incident to the vertices of Z, because these edges have weight ke + 1. Let

Wi =
⋃

q∈Q

Uq and Li =
⋃

q∈Q

Dq.

Because each Uq has at most kv vertices and each Dq has at most ke edges, we

obtain that |Wi| ≤ |Q|kv ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · 2α
2

· (kv + ke + 1)α · kv
and |Li| ≤ |Q|ke ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · 2α

2

· (kv + ke + 1)α · ke. Hence,

the size of Wi and Li is (kv + ke)
O(α2).

Let W = R0 ∪
⋃

i∈{1,...,p} Wi and L = E(G[R0]) ∪
⋃

i∈{1,...,p} Li. Because

max{p, |R0|} ≤ α(kv + 2ke), we have that |W | = (kv + ke)
O(α2) and |L| =

(kv + ke)
O(α2). We prove the following claim.

Claim A. If (G, kv, ke, C, δ, w, c) is a yes-instance of DCPGGD, then it has
an efficient solution (U,D) of minimum cost such that U ⊆W and D ⊆ L.

We prove Claim A as follows. Let (U,D) be an efficient solution for
(G, kv, ke, C, δ, w, c) of minimum cost such that s = |U \W | + |D \ L| is mini-
mum. If s = 0, then the claim is fulfilled. Suppose, for contradiction, that s > 0.
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This means that there is an i ∈ {1, . . . , p} such that (U ∩ Ri) \ Wi 6= ∅ or
(D ∩ EG(Ri)) \ Li 6= ∅.

Let X = U ∩ NG(Ri), Y = D ∩ E(NG(Ri)) and F = G[R+
i ] −X − Y . Let

hv = |U ∩ V (F )| and he = |D ∩ E(F )|. If X 6= NG(Ri), then consider the
graph H = G − U −D − R+

i and let H1, . . . , Hs denote the components of H .
Next, starting with the graph H ′ = G − U − D − Ri, contract each Hj to a
single vertex zj and call the resulting graph H ′′. Note that Z = {z1, . . . , zs} is
an independent set in H ′′. By the definition of protrusion decomposition, every
vertex of NG(Ri) \ X is adjacent to at least one vertex in Z. Likewise, since
G−U −D is connected, every vertex zj must have a neighbour in NG(Ri) \X .
If there is a vertex zj ∈ Z such that removing it from H ′′ does not increase the
number of components in H ′′ and every vertex in NG(Ri) \X has a neighbour
in Z \ {zj} then we remove zj from H ′′ and from Z. Doing this exhaustively,
we obtain a graph with |Z| ≤ |NG(Ri) \X | ≤ α. Call this graph FP . Without
loss of generality assume Z = {z1, . . . , zt}. Let Pj = NH′′(zj) for j ∈ {1, . . . , t}.
Then P = {P1, . . . , Pt} is a set cover of NG(Ri) \X containing at most α sets.
If X = NG(Ri), then set P = ∅ and FP = F . Now FP is precisely the graph
constructed from F and P earlier. Note that FP is planar since it is obtained
from G by contractions, vertex deletions and edge deletions.

For each vertex v ∈ NG(Ri) \ X , let dv be the total number of vertices in
U \ V (F ) adjacent to v plus the number of edges in D \ E(F ) incident to v.

Let δ′(v) = dFP
(v)− (dG(v)− δ(v)−dv) for v ∈ NG(Ri)\X and δ′(v) = δ(v)

for other vertices of FP . Set w
′, c′ and δ′′ as before.

Clearly, Iq = (FP , hv, he, C, δ
′, w′, c′) is an instance of DCPGGD when q =

(hv, he, X, Y,P , δ′). Let U ′ = U ∩ V (F ) and D′ = D ∩ E(F ). Then (U ′, D′) is a
solution for the instance Iq and, therefore Iq is a yes-instance.

In particular, this means that there is a solution (U ′′, D′′) for Iq =
(FP , hv, he, C, δ

′′, w′, c′) that was constructed by the aforementioned procedure
for the construction of Wi and Li. Clearly, U

′′ ⊆ Wi ⊆ W and D′′ ⊆ Li ⊆ L.
Because our algorithm for graphs of bounded treewidth finds a solution of min-
imum cost, it follows that c(U ′′ ∪D′′) ≤ c(U ′ ∪D′). It remains to observe that
(Û , D̂), where Û = (U \ U ′) ∪ U ′′ and D̂ = (D \ D′) ∪ D′′, is a solution for
(G, kv, ke, C, δ, w, c) with c(Û ∪ D̂) ≤ c(U ∪ D), but this contradicts the choice
of (U,D) because |Û \W |+ |D̂ \ L| < s. This completes the proof of Claim A.

If v ∈ W = V (G) \W and dG(v) = δ(v), then for any efficient solution (U,D)
such that U ⊆ W and D ⊆ L, v is not adjacent to a vertex of U . Moreover,
EG(v) ∩ D = ∅, by Observation 2. This implies that it is safe to apply the
following rule without destroying the statement of Claim A.

Set adjustment rule. If there is a vertex v ∈ W with dG(v) = δ(v),
then set W = W \NG(v) and set L = L \ EG(v).

The sets W and L give us the following possibility to remove some vertices
when there is the unique possibility to satisfy degree restrictions.

Vertex deletion rule. If there is a vertex v ∈ W with dG(v) > δ(v)
such that EG(v) ∩ L = ∅ then
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– if |NG(v) ∩W | < dG(v)− δ(v), then return a no-answer and stop;
– if |NG(v)∩W | = dG(v)− δ(v), then delete the vertices of NG(v)∩W

and set kv = kv − w(NG(v) ∩W ) and C = C − c(NG(v) ∩W ); if
kv < 0 or C < 0, then return a no-answer and stop.

We exhaustively apply the above two rules until they can no longer be further
applied. Let S = {v ∈ V (G) | dG(v) = δ(v)} \W . Notice that NG(S) ⊆ W by
the set adjustment rule. It is easy to see that the following rule is safe.

S-neighbour rule. If v has k neighbours in S, and δ(v) < k then return
a no-answer and stop.

We apply the S-neighbour rule exhaustively. Next, we contract the edges
of G[S].

S-contraction rule 1. If G has two adjacent vertices u, v ∈ S, then we
do as follows.
– For any vertex x ∈ V (G) \ {u, v} such that xu, xv ∈ E(G), set

δ(x) = δ(x) − 1.
– Contract uv; let z denote the vertex obtained from u and v.
– Set w(z) = kv + 1 and c(z) = 0.
– For e ∈ EG(z), set w(e) = ke + 1, c(e) = 0.

We now show that the S-contraction rule 1 is safe. To do this, let
(G′, kv, ke, C, δ

′, w′, c′) denote the instance obtained by an application of the
rule. Let (U,D) be an efficient solution for (G, kv, ke, C, δ, w, c) such that U ⊆W
and D ⊆ L. By Observation 2, D has no edges incident to u or v. Also u, v /∈ U ,
because u, v ∈ S. Notice that δ(x) ≥ 2 by the S-neighbour rule. If (U ′, D′)
is an efficient solution for (G′, kv, ke, C, δ

′, w′, c′), then D′ has no edges e inci-
dent to z, because w′(e) > ke. Similarly, z /∈ U ′ because w′(z) > kv. Also note
that δ′(x) ≥ 1 because of the S-neighbour rule. We obtain that (U ′, D′) is a
solution for the original instance.

We exhaustively apply S-contraction rule 1. Note that S is an independent
set in the obtained instance.

Stopping rule. If G has two components that contain vertices of W ,
then return a no-answer and stop. Suppose W contains a vertex v which
is isolated in G. In this case if w(V (G)\{v}) ≤ kv and c(V (G)\{v}) ≤ C,
then return a (V (G) \ {v}, ∅) as a solution and stop, otherwise, return a
no-answer and stop.

Clearly, if G has two components that contain vertices of W , then one of
these components should be deleted. By Claim A, we know that if there is a
solution then there must be a minimal cost solution that does not delete any
vertices of W . This contradiction means that there is no solution. If v ∈W is an
isolated vertex of G, then because dG(v) ≥ δ(v), it follows that δ(v) = dG(v) and
we conclude that (V (G) \ {v}, ∅) must be a solution. Therefore, the stopping
rule is safe.
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Assume that we do not stop at this stage. Then we obtain the instance
(G, kv, ke, C, δ, w, c) of the problem and sets W,L such that the sets S = {v ∈
V (G) | dG(v) = δ(v)} \W and T = {v ∈ V (G) | dG(v) > δ(v)} \W form a
partition of W (note that these sets may be empty), S is an independent set, no
vertex of W is isolated in G, and L∩E(S) = ∅. Also for any v ∈ S, NG(v) ⊆ T ,
by the set adjustment rule.

By Claim A, it is safe to modify the weights as follows.

Weight adjustment rule. Set w(v) = kv +1 for v ∈ V (G)\W and set
w(e) = ke + 1 for e ∈ E(G) \ L.

Our next aim is to bound the size of S. In the proof of Theorem 1 we simply
deleted the vertices of S and adjusted δ appropriately. Here we need to preserve
connectivity. Hence, we delete vertices only if this does not destroy connectivity
and we use contractions otherwise.

S-deletion rule. If, for a vertex v ∈ S, one of the following is fulfilled
– dG(v) = 1,
– dG(v) = 2 and for {x, y} = NG(v), xy ∈ E(G) \ L or
– there is a vertex u ∈ S such that u 6= v and NG(v) ⊆ NG(u),

then delete v and set δ(x) = δ(x) − 1 for x ∈ NG(v); if δ(x) < 0, then
return a no-answer and stop.

S-contraction rule 2. If v ∈ S, then let u ∈ NG(v) and let ∆ =
dG(u)−δ(u). For every vx ∈ E(v)\{vu} such that ux ∈ E(G), delete vx,
add a vertex z adjacent to v and x, set δ(z) = 2, w(z) = kv +1, w(zx) =
w(zv) = ke + 1 and c(z) = c(zx) = c(zv) = 0 and add z to S. Then
contract uv in the obtained graph and set δ(y) = dG(y)+∆, w(y) = kv+1
and c(y) = 0 for the vertex y obtained from u and v.

The above two rules are safe, because NG(v) ⊆ T and the vertices of T are
not included in any solutions.

We apply these rules exhaustively. First we apply the S-deletion rule when-
ever it is possible. Then we apply the S-contraction rule 2. Notice that the
S-contraction rule creates new vertices that are obtained by subdividing the
edges of E(v) and they are placed in S. Therefore, it may happen that we can
again apply the S-deletion rule, and in this case we do so. Finally, we get the
graph G with the following properties:

(i) for any v ∈ S, dG(v) = 2 and for {x, y} = NG(v), x, y ∈ V (L), and
(ii) for any distinct u, v ∈ S, NG(u) 6= NG(v) (by the S-deletion rule). In

particular, this means that |S| ≤ (2|L|)2.

LetW ′ = W∪V (L)∪S and T ′ = T \V (L). Clearly,W ′ and T ′ form a partition
of V (G) (one of the sets could be empty). Notice that |W ′| ≤ |W | + 3|L| =

(kv + ke)
O(α2). Now our aim is to bound the size of T ′.
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T ′-deletion rule. If there are two distinct u, v ∈ T ′ such that NG(u) ∩
W ′ = NG(v)∩W ′, dG(u)−δ(u) = dG(v)−δ(v) and v is an isolated vertex
of G[T ′], then delete v and set δ(x) = max{0, δ(x)− 1} for x ∈ NG(u).

To see that the T ′-deletion rule is safe, it is sufficient to recall that δ(v) 6=
dG(v) because we already applied the vertex deletion rule. Hence, |NG(v) ∩
W | > dG(v) − δ(v), so in any solution u and v have common adjacent vertices
that are not deleted. Because E(v)∩L = ∅ and E(u)∩L = ∅, the edges of E(u)
and E(v) cannot be deleted. Therefore, we maintain connectivity by the T ′-
deletion rule. It is straightforward to verify that the T ′-deletion rule is safe
with respect to degree restrictions.

T ′-contraction rule. If there are two distinct u, v ∈ T ′ such that
NG(u) ∩W ′ = NG(v) ∩W ′, dG(u) − δ(u) = dG(v) − δ(v) and u and v
are in the same component of G[T ′], do the following.
– For each vx ∈ E(v) such that x /∈ T ′, delete vx and set δ(x) =

max{0, δ(x)− 1}.
– Let y ∈ NG(v) in the obtained graph and let ∆ = dG(y)− δ(y). For

every x ∈ NG(v) ∩NG(y), set δ(x) = max{0, δ(x)− 1}. Contract yv
to a vertex z and set δ(z) = dG(z) +∆, w(z) = kv + 1, c(z) = 0 and
let w(zx) = ke + 1, c(zx) = 0 for every x ∈ NG(z). Add z to T ′.

To show that the T ′-contraction rule is safe, again recall that δ(v) 6=
|NG(v) ∩W ′| because we already applied the vertex deletion rule. Hence, in
any solution, u and v have common adjacent vertices in W ′ that are not deleted.
Because E(T ′) ∩ L = ∅, the edges of E(T ′) cannot be deleted. Therefore, we do
not destroy connectivity by the T ′-contraction rule. It is straightforward to
verify that the T ′-contraction rule is safe with respect to degree restrictions.

We exhaustively apply the above two rules. First, we apply the T ′-deletion
rule if possible. Then we apply the T ′-contraction rule and if after the ap-
plication of this rule we again can again apply the T ′-deletion rule, we do
so.

For i = 0, 1, 2, let Ti = {v ∈ T ′ : |NG(v) ∩ W ′| = i}, and T≥3 = {v ∈
T ′ : |NG(v) ∩W ′| ≥ 3}. Because we exhaustively applied the vertex deletion
rule, we have that T0 = T1 = ∅. By Lemma 1, |T≥3| ≤ 2|NG(T

′)|−4 ≤ 2|W ′|−4
(or T≥3 is empty). Therefore we have that G[T ′] has at most 2|W ′| components
that contain vertices of T≥3. It remains to evaluate |T2|. Because of the vertex
deletion rule, for any v ∈ T2, dG(v) − δ(v) = 1 as otherwise we would either
stop or delete the neighbours of v in W . Any two distinct u, v ∈ T2 such that
NG(u) ∩W ′ = NG(v) ∩W ′ belong to distinct components of G[T ′] by the T ′-

deletion rule and the T ′-contraction rule. There are at most
(

|W ′|
2

)

such

components that are isolated vertices of G[T ′] and there are at most
(

|W ′|
2

)

|T≥3|
vertices in T2 that there are in same components with the vertices of T≥3, and the

total number of such vertices is at most
(

|W ′|
2

)

(2|W ′|). Let T ′
2 denote the set of

remaining vertices of T2. Observe that each component of G[T ′
2] is a component

of G[T ′] and has at least two vertices of T2. Moreover, for any two vertices u
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and v in the same component of G[T ′
2], NG(u) ∩W ′ 6= NG(v) ∩W ′. Let G′ be

the graph obtained from G by contracting the edges of G[T ′
2]. Each component

of G[T ′
2] is contracted into a single vertex. Let Z denote the set of vertices of G′

obtained from the components of G[T ′
2]. The set Z is independent and for each

v ∈ Z, dG′(v) ≥ 3. By Lemma 1, |Z| ≤ 2|NG′(Z)| − 4 ≤ 2|W ′| − 4 (or Z is
empty). Hence, G[T ′

2] has at most 2|W ′| components. Because each component

has at most
(

|W ′|
2

)

vertices, |T ′
2| ≤

(

|W |
2

)

(2|W ′|). Hence, |T2| ≤
(

|W ′|
2

)

(4|W ′|+1).
We have that |V (G)| = |W ′|+ |T ′| = |W ′|+ |T0|+ |T1|+ |T2|+ |T≥3| = O(|W ′|3).

Since W ′ has (kv + ke)
O(α2) vertices, we obtain that the obtained graph G has

size kO(1) where k = kv + ke, i.e. we have a polynomial kernel.
To complete the proof, it remains to observe that the construction of the nor-

malized instance can be done in polynomial time by Lemma 3, the construction
of W and L can be done in polynomial time by Lemma 6, and all the subsequent
reduction rules can be applied in polynomial time. ⊓⊔

4 Conclusions

We proved that DPGGD andDCPGGD are NP-complete but allow polynomial
kernels when parameterized by kv + ke. These problems generalize the Degree
Constrained Editing(S) problem and its connected variant for S = {ed, vd};
this can be seen, for instance, by testing all possible pairs kv, ke with kv+ke = k
or by a slight adjustment of our algorithms. Note that by setting kv = 0 or
ke = 0 we obtain the same results for S = {ed} and S = {vd}, respectively
(recall though that for S = {ed} this is not so surprising, as the less general
problem Degree Constrained Editing({ed}) is polynomial-time solvable for
general graphs).

Several open problems remain. We note that graph modification problems
that permit edge additions are less natural to consider for planar graphs, because
the class of planar graphs is not closed under edge addition. However, we could
allow other, more appropriate, operations such as edge contractions and vertex
dissolutions when considering planar graphs. Belmonte et al. [1] considered the
setting in which only edge contractions are allowed and obtained initial results for
general graphs that extend the work of Mathieson and Szeider [26] on Degree
Constrained Editing(S) in this direction.
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