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Abstract—Virtual Arc Consistency (VAC) is a recent local
consistency for processing cost function networks (aka weighted
constraint networks) that exploits a simple but powerful con-
nection with standard constraint networks. It has allowed to
close hard frequency assignment benchmarks and is capable of
directly solving networks of submodular functions. The algorithm
enforcing VAC is an iterative algorithm that solves a sequence of
standard constraint networks. This algorithm has been improved
by exploiting the idea of dynamic arc consistency between each
iteration, leading to the dynamic VAC algorithm. When VAC is
maintained during search, the difference between two adjacent
nodes in the search tree is also limited. In this paper, we show
that the incrementality of Dynamic VAC can also be useful when
maintaining VAC during search and we present results showing
that maintaining dynamic VAC during search can effectively
accelerate search.

Index Terms—Weighted CSP, Cost Function Networks, arc
consistency, dynamic arc consistency, virtual arc consistency

I. INTRODUCTION

Graphical model processing is an important problem in
Artificial Intelligence. The optimization of the combined cost
of local cost functions, central in the valued CSP frame-
work [1], captures a variety of problems such as Weighted
CSP, Maximum Probability Explanation in probabilistic net-
works or weighted MaxSAT. It has applications in resource
allocation [2], combinatorial auctions, bioinformatics [3],. . .

A variety of techniques can be used to solve this problem.
When the problem has a graph of bounded tree-width, it can
be solved using dynamic programming approaches such as
bucket or cluster tree elimination. In the general case, Depth
First Branch and Bound (DFBB) has the advantage of a
reasonable space complexity. However, DFBB requires strong
and computationally inexpensive incremental lower bounds on
the minimum cost of a node to be efficient. These bounds
can also be useful in the context of AND/OR and Tree
decomposition based tree search algorithms [4], [5], or more
space intensive search algorithms such as A*.

In the last decade, increasingly better lower bounds have
been proposed for optimization in graphical models. They can
be local consistency based bounds for solving Cost Function
Networks [6] (CFNs), MaxSAT resolution based for solving
the Partial Weighted MaxSAT problem [7], [8], or Linear
programming dual based bounds for computing a maximum
probability assignment in Markov Random Fields [9]: they all

reformulate the current problem in a new equivalent problem
using local cost transfer operations, also known as Equivalence
Preserving Transformations (EPTs, [10]). EPTs extend the tra-
ditional local consistency operations by moving costs between
cost functions of different arities while keeping the problem
equivalent. By ultimately moving cost to a constant function
with empty scope, they are able to provide a lower bound
on the optimum cost which can be incrementally maintained
during branch and bound search.

Traditional local consistencies such as AC*, DAC*, FDAC*
or EDAC* [6], [11], apply available EPTs in any order.
Instead, Virtual Arc Consistency (VAC [6], [12]) planifies the
sequence of EPTs to apply from the result of enforcing AC
on a standard constraint network which forbids tuples with
non zero cost. VAC is not only stronger than those local
consistencies: it is also able to directly solve networks of
submodular cost functions, it has a low order polynomial time
enforcing algorithm and has allowed to close hard frequency
assignment benchmarks [12]. However, it is still quite expen-
sive for general use and needs to be accelerated.

In this paper, we show that the efficiency of maintaining
VAC during search, just like its iterative behavior, can be
accelerated by exploiting the incrementality of the changes due
to branching operations. Indeed, whether an iteration of VAC
has just been executed or a decision has been taken by Branch
and Bound search, maintaining VAC requires to repeatedly
enforce standard AC on the hardened version of an incre-
mentally modified version of the problem. The exploitation of
incremental changes while maintaining Arc Consistency is the
traditional target of Dynamic Arc Consistency algorithms [13],
[14] for Dynamic CSPs [15]. We show that, just like the
incremental changes of EPTs during successive iterations of
VAC [16], the incremental changes between the problems
considered at adjacent nodes in the search tree can be suitably
exploited by Dynamic Virtual Arc Consistency, leading to a
global improvement of the efficiency on a variety of problems
extracted from the Cost Function Library1 and other related
resources.

1See https://mulcyber.toulouse.inra.fr/projects/costfunctionlib.

https://mulcyber.toulouse.inra.fr/projects/costfunctionlib


II. BACKGROUND

A Cost Function Network (CFN), aka weighted CSP
(WCSP) is a tuple P = (X,D,W,m) where X is a set of
n variables. Each variable i ∈ X has a domain Di ∈ D.
For a set of variables S, we denote by `(S) the set of tuples
over S. W is a set of e cost functions. Each cost function
wS ∈ W assigns costs to assignments of variables in S i.e.
wS : `(S) → [0..m] where m ∈ {1, ...,+∞}. The addition
and subtraction of costs are bounded operations, defined as
a +m b = min(a + b,m), a −m b = a − b if a < m and m
otherwise. The cost of a complete tuple t is the sum of costs
ValP (t) =

∑
wS∈W wS(t[S]) where t[S] is the projection of t

on S. We assume w.l.o.g. the existence of a unary cost function
wi for every variable, and a nullary cost function, noted w∅.
All costs being non negative in a CFN, this constant cost
defines a lower bound on the cost of every solution. In this
paper, for simplicity, we restrict ourselves to binary CFNs.

Enforcing a given local consistency on a CFN P trans-
forms it in an equivalent problem P ′ (such that ValP ′(t) =
ValP (t) ∀t) with a possibly increased lower bound w∅. The
equivalence-preserving transformations (EPTs) which shift
costs between cost functions are the elementary operations of
local consistency enforcing. Algorithm 1 describes the main
EPTs used for enforcing arc consistency, which shifts a cost
α > 0 between a binary cost function wij and a value (i, a).
This operation corresponds to either a projection of costs from
wij to (i, a) when α > 0 or an extension of costs from (i, a)
to wij when α < 0. In node consistency, similar cost transfers
can occur from unary cost functions to w∅, thus strengthening
the lower bound.

Algorithme 1 : Equivalence Preserving Transformation

1 Procedure Shift(i, j, a, α)
// precondition: wi(a) + α ≥ 0 and

wij(a, b) ≥ α for ∀b ∈ Dj

2 wi(a)←− wi(a) + α ;
3 foreach b ∈ Dj do wij(a, b)←− wij(a, b)− α ;

Notice that a standard constraint network (CN) P can be
represented as a CFN with m = 1 (a cost of 1 is associated
with forbidden tuples). In a binary CN, represented as a CFN
with m = 1, a value (i, a) is Arc Consistent (AC) w.r.t. a
constraint wij iff there is a pair (a, b) that satisfies wij (is a
support) and such that b ∈ Dj (is valid). A CN is AC if all
its values are AC w.r.t. to all constraints. Enforcing AC on a
CN produces its AC closure, which is equivalent to P and is
AC.

III. DYNAMIC VAC
A. Virtual arc consistency
Definition 1. Given a CFN P = (X,D,W,m), the CN
Bool(P ) = (X,D,W, 1) is such that ∃wS ∈W iff ∃wS ∈W ,
S 6= ∅ and wS(t) = 1 ⇔ wS(t) 6= 0. A CFN P is virtual
arc consistent (VAC) iff the arc consistent closure of the CN
Bool(P ) is non-empty [6].

Bool(P ) is therefore a CN whose solutions are exactly all
the complete assignment having cost w∅ in P . If P is not
VAC, enforcing AC on Bool(P ) will lead to a domain wipe-
out. In this case, it has been shown in [6] that there exists
a sequence of EPTs which, when applied on P , lead to an
increase of w∅. To exploit this property, VAC enforcing uses
an iterative process, each iteration being decomposed in three
phases.
• Phase 1 is an instrumented AC enforcing on the CN

Bool(P ) that records the cause of every deletion in
a dedicated data-structure denoted as killer. killer(i, a)
= j means that (i, a) has been deleted because of wij .
killer(i, a) = i means that (i, a) is a value deleted because
of its own positive cost. Otherwise, killer(i, a)= nil is
used when (i, a) is not deleted in Bool(P ). When a value
(i, a) lacks a valid support on wij , we set killer(i, a) = j
and we delete the value. If no domain wipe-out occurs,
P is VAC and we stop.

• Otherwise, Phase 2 is performed to identify a minimal
subset of value deletions that are necessary to produce the
wipe-out by tracing back the propagation history defined
by killer, in reverse order, from the wiped-out variable up
to non-zero costs. Phase 2 also computes the maximum
possible increase achievable in w∅ and the set of EPTs
to apply to P in order to achieve this increase.

• Phase 3 of VAC, modifies the original CFN by applying
the EPTs defined in Phase 2.

These 3 phases can be iterated until the problem is VAC or
until the lower bound does not increase more than a threshold
ε. In this last case, we say that we enforce VACε. In all cases,
each iteration leaves a locally reformulated problem which is
used as the starting point of the next iteration.

B. Dynamic Virtual Arc Consistency

Ultimately, VAC iterations therefore enforce AC on a se-
quence of slightly modified CNs: Bool(P ), Bool(P ′), . . . The
first proposed VAC enforcing algorithm [6] enforces AC from
scratch on each of these problems. The incremental changes on
P performed at Phase 3 of each iteration induce incremental
changes in Bool(P ), and this motivated the use of dedicated
Dynamic AC (DnAC) algorithms to enforce VAC [16].

The aim of DnAC algorithms is to maintain AC in CN
problems after constraint additions or retractions. Among ex-
isting algorithms proposed for DnAC, the AC/DC2 algorithm
has been used because of its simplicity and good empirical
results [13]. AC/DC2 uses a data structure justification(i, a)
to remember the cause of deletion for (i, a). This is exactly
equivalent to the killer data-structure of VAC and therefore
justification is available for free. The DynVAC algorithm
proposed in [16] uses a version of AC/DC2 [13] based on
AC2001 instead of AC3.

AC being naturally incremental for restriction, the addition
of a constraint can be directly handled by any coarse grained
AC algorithm that relies on a variable based propagation queue
QAC by pushing the variables of the new constraint in QAC .
Relaxation (constraint removal) is not so easy. In this case,



AC/DC2 goes through three stages. In the initialization stage,
only values which have been deleted because of the removed
constraint wij are considered as candidates for restoration. In
the propagation stage, all the neighboring values (k, c) of a
variable i having restored values and that have been removed
due to the lack of support on the constraint wki (known
through justification≡ killer) are iteratively restored. In a last
stage, all restored values need to be checked again for arc
consistency.

In the case of VAC, at each iteration, a series of modi-
fications of Bool(P ) can occur during Phase 3 through the
application of the identified sequence of EPTs. It has been
shown in [16] that the global effect of the EPTs applied on
Bool(P ) in Phase 3 consists only in a series of relaxations,
at the unary and binary levels. More precisely, when the
application of Phase 3 transforms the previous CFN P in an
equivalent CFN P ′, values or pairs with non zero cost in P
and therefore forbidden in Bool(P ) may become authorized
in Bool(P ′) if their cost becomes 0 in Bool(P ′).

Therefore, the DnAC algorithm used can be specialized for
relaxations in Dynamic VAC. The restoration protocol has
3 stages, as in AC/DC2. The initialization stage aims at
identifying restorable values. As shown in [16], this stage can
be performed after Phase 2 because it is already possible to
compute the values of the reformulated cost functions w′i and
w′ij of P ′. This stage scans only values on which EPTs will be
performed in Phase 3 and restores all restorable values. When
a value (i, a) is restored, it is stored in an array restored[i]
and variable i is kept in a list RL for future propagation.

The propagation stage propagates value restorations to
direct neighbours of the variables whose domain has been
extended, as in AC/DC2. Each such variable i can restore a
value (j, b) if it was deleted due to wij and is now supported
by a restored value in i.

The final filtering stage eliminates the restored values (i, a)
which are not arc consistent on some constraint wij and
properly set the associated killer(i, a) to j. This is precisely
what is achieved by the Phase 1 of VAC. Hence, this stage is
integrated into Phase 1 by adding the neighbour variables of
variables having restored values into the revision propagation
queue QAC .

IV. MAINTAINING DYNAMIC VAC DURING SEARCH

The standard way to maintain VAC during search is to
rebuild the CN Bool(P ) at each new node and then use this
new Bool(P ) to enforce VAC in the CFN P . If DynVAC
has been shown to enhance VAC efficiency for preprocessing
CFNs at the root node, DynVAC has never been maintained
during search.

Similarly, the simplest way to maintain Dynamic VAC
during search consists in enforcing Dynamic VAC at each
node. However, maintaining Dynamic VAC during search
offers new opportunities for incrementality. In this section,
we show that VAC can be incrementally maintained not only
between successive iterations of VAC inside a node, but also

during search between nodes, by incrementally maintaining an
AC-closure of Bool(P ) beween search nodes.

Between two consecutive nodes, the CN Bool(P ) is only
modified according to the changes in P caused by branching
operations. The branches out of a node can be the assignment
of a variable (i = a) or a domain restriction (i 6= a),
(i < a) or (i > a). We expect that maintaining AC
with a Dynamic AC algorithm in such a slightly modified
Bool(P ) will be beneficial compared to a cold restart. Suppose
that branching operations transform the current CFN P into
P|i=a, P|i6=a, P|i>a or P|i<a. We denote all these different
cases as P|i. After a branching operation, P|i will have
modified domains and also possibly modified cost functions.
These will be respectively denoted as D′ and w′i or w′ij .
To enforce VAC incrementally between nodes, we need to
compute the AC closure of Bool(P|i) from the AC closure of
Bool(P ) using only the modification from P to P|i.

When a variable domain Di is restricted by a branching
operation of the form (i 6= a), (i < a) or (i > a) that does
not reduce the domain to a singleton, the removal of values
leads to a new domain D′i and thus a new domain, denoted
as D′i, in the currently computed AC closure of Bool(P|i).
Some values of the neighboring variables j may have lost
their support on w′ij in Bool(P|i) and thus need to be checked
for AC. Similary to the case of constraint restriction, this can
be naturally achieved by DnAC by (1) adding the neighbour
variables of i in the propagation queue QAC and (2) restarting
propagation to remove all values which are arc inconsistent in
Bool(P|i) due to this domain restriction.

When instead, an assignment is performed (or equivalently
the domain is reduced to a singleton), solvers exploits this
very specific situation to directly eliminate the variable i
from the problem. Therefore, the modifications caused by a
variable assignment (i = a) are more complex than for other
domain reductions. Indeed, when the domain of a variable i is
restricted to a single value a, the unary cost wi(a) of (i, a) is
immediately projected on w∅. Then binary costs wij(a, b) are
also projected on neighboring values (j, b) of i and the binary
cost functions w′ij are removed from the CFN P|i=a.

Property 1. The CFN P|i=a = (X,D′,W ′) which is obtained
from P by a variable assignment (i = a) satisfies t he
following properties:

a) w′i(a) = 0.
b) for every variable j, there is not cost function w′ij

connecting i and j.
c) for every value (j, b) such that ∃wij in P , we have

w′j(b) = wj(b) + wij(a, b).

Figure 1 lists all the situations that can happen after a
variable assignment (i = a) for the values (j, b) of a neighbor
variable j. It shows that, except for the two cases that will be
considered later in Corollary 2, the deleted/non deleted status
of (j, b) remains unchanged in Bool(P|i=a). To show this, we
first prove the following Corollary of Property 1:

Corollary 1. The CN Bool(P|i=a) satisfies the following



Fig. 1. All possible situations that can happen after a variable assignment

properties:
a) for every variable j 6= i, j is arc consistent with i.
b) (i, a) is an arc consistent value in Bool(P|i=a).

Proof. a) The constraints of Bool(P|i=a) are directly de-
fined from the cost functions of P|i=a. From Property 1b),
we know that there does not exist any w′ij in P|i=a where
j 6= i. Therefore, there also does not exists any constraint
w′ij in Bool(P|i=a). As a result, j is arc consistent with
variable i.

b) In Bool(P|i=a), (i, a) cannot be deleted because of its
positive cost since w′i(a) = 0 according to Property 1a).
Moreover, (i, a) cannot be killed by any other variable
j because no constraint links i to other variables in
Bool(P|i=a).

Considering the various the cases where the status of (j, b)
does not change, most are straightfoward. The only non
obvious case is when w′j(b) = wj(b) = 0 and (j, b) is arc
consistent in Bool(P ). This implies that (j, b) is arc consistent
with every variable k 6= i in Bool(P ). Because the variable
assignment does not change cost functions wjk, (j, b) will
still be arc consistent with k in Bool(P|i=a). In addition,
Corollary 1a) indicates that (j, b) is also arc consistent with
i in Bool(P|i=a). Therefore, being arc consistent with every
variable and having a zero unary cost, (j, b) is an arc con-
sistent value in Bool(P|i=a) (and it has the same status as in
Bool(P )).

Then, as shown in Figure 1, there are two cases where
the status of values may change compared to the status in
Bool(P ), requiring to update Bool(P|i=a) . This is proved in
Corollary 2. In all other cases, as we saw, the status of values

in Bool(P|i=a) remains the same as in Bool(P ).

Corollary 2. Each variable assignment (i = a) in P can
generate both:

a) the removal of values (j, b) in Bool(P|i=a) such that there
exists wij in P and w′j(b) > wj(b) = 0.

b) the restoration of values (j, b) in Bool(P|i=a) which were
deleted in Bool(P ) by wij and such that w′j(b) = 0.

Proof. a) From Property 1c), unary costs of values (j, b)
that are neighbour with i in P may only increase or
remain unchanged in P|i=a. Some may therefore go from
a zero to a non-zero cost. In this case, the corresponding
values are deleted in Bool(P|i=a). From the dynamic AC
point of view, this can be considered as a restriction,
with the addition of a unary constraint on j (i.e., domain
restriction).

b) If (j, b) is a value removed in Bool(P ) because of
wij (killer(j, b)= i), this implies that wj(b) = 0 (oth-
erwise, we would have killer(j, b)= j). According to
Property 1c), the unary cost of (j, b) in P|i=a can remain
unchanged, i.e.; w′j(b) = 0, if wij(a, b) = 0. Such a value
with zero cost cannot be killed by itself in Bool(P|i=a).
Furthermore, i is no longer a reason to delete (j, b)
because as Corollary 1a) states, (j, b) is arc consistent
with i. Hence, (j, b) can become viable in Bool(P|i=a).
For the dynamic AC point of view, this corresponds to the
relaxation of a unary constraint on j (domain relaxation)
and (j, b) needs to be considered as restorable.

In summary, the change in a cost function network P caused
by variable assignments can lead to both the restoration and
the removal of values in the CN Bool(P ). DnAC can perform



Algorithme 2 : algorithm updating Bool(P ) wrt a variable
assignment

1 Procedure assign(i, a)
2 Di = Di = {a};
3 UnaryProject(i);
4 foreach wij do
5 foreach b ∈ Dj do
6 if wj(b) = 0 and wj(b) + wij(a, b) > 0 then
7 remove b from Dj ;
8 add j into QAC ;

9 wj(b)← wj(b) + wij(a, b);
10 if wj(b) = 0 and killer(j, b) = i then
11 restore(j, b);

12 remove wij and wij ;

13 relaxation(RL);
14 AC-revise(QAC);

15 Procedure relaxation(RL)
16 while RL 6= ∅ do
17 i← RL.pop(); flag ← false;
18 foreach wij do
19 foreach b ∈ Dj −Dj s.t. killer(j, b) = i do
20 if ∃a ∈ restored[i] s.t. wij(a, b) = 0 then
21 restore(j, b);
22 flag ← true;

23 restored[i] ← ∅;
24 if flag then QAC ← QAC ∪ {j | wij ∈W};

25 Procedure restore(j, b)
26 add b into Dj and restored[j];
27 killer(j, b) = nil;
28 add j into RL;

this combined work by using two dedicated queues QAC and
RL, the former for propagating value removals and the second
for value restorations. QAC stores variables whose domain has
been reduced while RL stores variables whose domain has
been relaxed.

Procedure assign(i, a) in Algorithm 2 is used to update P
and Bool(P ) when assigning (i = a). The unary cost of
(i, a) and binary costs of pairs of values ((i, a), (j, b)) are
respectively projected on w∅ and on wj(b) (line 3, 9). Only
neighboring values (j, b) of i are considered (line 5). New
values of non-zero cost (line 6) will be removed from Bool(P )
(line 7). The removal of (j, b) can further lead to the removal
of other values. Thus, j is pushed into queue QAC for the
future revision for AC (line 8). Conversely, if (j, b) has been
removed by i and still has a zero cost (line 10), it is restorable
and will be restored (line 11). This is done by Procedure
restore(j, b) at line 25 which adds b into array restored[j] and
adds j into queue RL for the future propagation of value

restorations. Array restored[j] contains values of i that have
just restored in Bool(P ) and wait for being propagated. After
defining all values to be removed and restored because of the
value assignment for i, the algorithm will do the propagation
for value restorations and then for value removals (line 13, 14
respectively).

AC-revise(QAC) is simply the usual instrumented AC en-
forcement used in VAC while relaxation(RL) aims to prop-
agate value restorations in Bool(P ). At each iteration of
Procedure “relaxation” (line 15), a variable i is popped from
RL. i ∈ RL means that some value of i have been restored.
The restored values of i can provide AC supports (line 20)
for neighboring values (j, b) which have been deleted due
to i (line 19). In this case, (j, b) will be restored (line 21)
and ”flag” is activated in order to inform that i need to be
rechecked for AC later by adding its neighbour variables j
into queue QAC (line 24).

When the search backtracks, the AC-closure of Bool(P )
can be simply rebuilt via the restoration of the justification
system “killer” through trailing. Indeed, if killer(i, a) = nil,
this means that (i, a) was consistent in the old Bool(P ). In this
case, (i, a) will be set as an available value in Di. Conversely,
if killer(i, a) = j or i, this means that (i, a) was removed
because of constraint wij or wi. In this case, (i, a) will be
removed from Di.

A. Example

Consider the CFN P in Figure 2(a). It has four variables
i, j, k and l, with domains Di = Dk = Dl = {a, b, c}, Dj =
{a, b}, and four cost functions wik, wil, wjk, wjl. Values are
represented as vertices. Numbers displayed besides values
represent non-zero unary costs of values. An edge between
two vertices indicates that the corresponding pair of values
has a binary cost of 1. Zero costs are not represented. Suppose
that P is the CFN obtained at some node of the tree search.
The AC-closure of Bool(P ) for this node is represented in
Figure 2(b). Forbidden values are shown as crossed-out and
edges represent forbidden pairs. The dotted arrows represent
the killer data-structure for removed values, pointing to the
variable that offered no valid support. A removed value
without any justification arrow means that the value is deleted
because of its own positive unary cost.

Now we will show how Bool(P ) is updated in two cases: a
domain restriction (i 6= a) and a variable assignment (i = a).

In the case (i 6= a), DynVAC will propagate the domain
reduction of i to neighboring variables k, l. We observe that
(i, a) was also deleted in Bool(P ) of the parent node. It did not
support any value. Thus, the removal of (i, a) does not lead
to any support loss. The propagation procedure stops here.
We obtain a new Bool(P ), which is identical to the old one
in Figure 2(b). In this favorable case, DynVAC has almost
nothing to do to construct Bool(P|i 6=a).

Consider now the case of a variable assignment (i = a).
Only the pair ((i, a), (l, c)) has positive cost and this binary
cost will be projected to (l, c) : w′l(c) = 1. Then cost
functions wik, wil are removed from P . The network of P|i=a
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Fig. 2. Updating Bool(P ) in the case of a variable assignment

is presented in Figure 2(c). Similarly, following assignment,
values (i, b), (i, c) and constraint wik, wil will be removed
from Bool(P ) and value (i, a) will be set as consistent in
Bool(P|i=a) (Figure 2(d)). In the neighborhood of i, only
value (k, c) is restorable because it was removed due to wij
but wij has just been removed from Bool(P ). Thus, (k, c)
is restored (Figure 2(e)). The restoration of (k, c) does not
make any other value restorable. At the same time, in the
neighborhood of i, only value (l, c) has an increased unary
cost. (l, c) will be deleted in Bool(P|i=a) because of its
positive cost (Figure 2(f)). The domain of l becomes empty
and VAC can project unary costs of 1 to w∅. We observe
that the result of enforcing AC on the subproblem of Bool(P )
defined by variables j, k, l (for constraints wjl, wjk, wkl) is
preserved and that a variable wipeout is detected early.

V. EXPERIMENTS

In this section, we will compare the efficiency of VAC when
being maintained during search in three different ways:

• Static VAC (VAC): Bool(P ) is always rebuilt from
scratch whenever a new iteration of VAC or a branching
operation is performed.

• Normal Dynamic VAC (norDVAC): Bool(P ) is main-
tained incrementally inside each node of the search
(betwwen VAC iterations) but it is rebuilt from scratch
when the search makes a branching operation.

• Full DynVAC (fulDVAC): Bool(P ) is incrementally
maintained both inside each node of the search and when
a branching operation is performed.

As described in [6], we remind the reader that when VAC is
enforced in practice, iterations are stopped when the increase
of the lower bound w∅ becomes less than a threshold ε. This
is called VACε. When maintained during search, two different
ε thresholds are used. A small value εr is used at the root
for maximum results. Then a larger value εs is used during
search.

Furthermore, to accelerate VAC enforcing, [6] suggest to try
to collect largest costs first by using relaxations of Bool(P )
that only forbids tuples with sufficiently large costs, above a
threshold θ. This is denoted as Bool(P )θ. VAC is enforced
with a decreasing sequence of thresholds (θ1, θ2, ...θk) with
θk = ε.

In VAC and Normal DynVAC, θ is reinitialized to θ1
when the search makes a branching operation (i.e, goes down
in the search tree) or when the search backtracks. In Full
DynVAC however, in order to incrementally maintain DynVAC
during search between nodes, θ is incrementally updated when
the search makes a branching operation and is restored by
“trailling” when the search backtracks.

Our experiments use a set of benchmarks (in wcsp format)
that are collected from different resources:

• maxcsp, planning, celar, tag08, warehouse, bep are ex-
tracted from the Cost Function Library (CFLib)2

• GeomSurf−7 are collected from Computer Vision and
Pattern Recognition (CVPR) OpenGM2 benchmark3

• Coloring consists of unsatisfiable binary CN instances
with constraints defined in extension representing graph
coloring problems.

• ImageAlignment and ProteinFolding are taken from 2011
Probabilistic Inference Challenge.

• CPD are instances of computational protein design prob-
lems [3], [17].

Following the result of previous DynVAC experimentations
for preprocessing in [16] that showed that DynVAC does
not improve VAC on problems with boolean domains, we
excluded problems with only boolean variables. The resulting
very wide set of benchmarks represents a total of more than
1,000 instances coming from various application areas.

In our experiments, we set εr = 1, εs = 1000 for
problems with very large costs (such as tag08, warehouse,
CPD, GeomSurf−7), and εr = 1, εs = 100 for problems
with large cost such as ImageAlignment. For the remaining
problems, we use ε = 0.0001, εS = 0.1. The same thresholds
are used in all algorithms. All experiments are executed on
the same hardware using AMD Opteron(tm) 6176 processors.

Table I reports the mean run-time (in seconds) for solv-
ing these different categories of benchmarks by enforcing
static VAC, normal DynVAC and full DynVAC. Each line
corresponds to a category of benchmarks where the number
of instances (#inst) and the mean values of problem size
(n: number of variables, d: domain size, e: number of cost
functions) are given. We also report the mean graph densities

2https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib
3http://hci.iwr.uni-heidelberg.de/opengm2



TABLE I
AVERAGE SOLVING TIME PER CATEGORY OF BENCHMARKS WHEN MAINTAINING VARIANTS OF VAC IN SEARCH.

# mean mean mean mean Maint Maint Maint Speedup Speedup
Categories inst n d e dens VAC norDVAC fulDVAC /norDVAC /VAC

coloring 22 120 4 1203 0.112 16.70 26.35 18.64 1.41 0.9017 17 17

GeomSur7 300 505 7 2140 0.011 6.20 9.36 1.08 8.67 5.74300 300 300

maxcsp 340 31 10 129 0.213 58.76 78.75 58.99 1.34 1.00340 340 340

planning 76 240 14 14746 0.307 20.22 11.69 9.56 1.22 2.1175 75 76

Matching 4 19 19 166 0.441 104.03 367.40 281.99 1.30 0.374 3 3

celar 46 137 36 1346 0.507 364.27 337.31 290.78 1.16 1.2538 37 38

tag08 82 185 62 8003 0.179 14.09 31.42 27.39 1.15 0.5181 80 81

ImageAlignment 10 191 70 1819 0.123 18.58 23.74 3.23 7.36 5.7610 10 10

warehouse 57 216 78 18739 0.237 164.26 289.30 90.49 3.20 1.8254 51 55

CPD 35 50 148 1561 0.527 39.30 46.79 46.72 1.00 0.8424 24 24

bep 4 18 168 160 0.500 3.20 2.62 2.56 1.02 1.253 3 3

ProteinFolding 31 334 221 1583 0.384 27.68 48.58 27.12 1.79 1.0230 30 30

per category (dens). The graph density of an instance is defined
as the ratio of its number of cost functions with the number
of edges in a complete graph.

The three following columns reprots results for our three
algorithms. Each box here contains two numbers. The italic
number in the bottom right corner represents the number of
instances solved by the algorithm in less than one hour while
the number in the top left corner represents the mean value of
the run-time. This mean is computed only over problems that
are solved in less than 1 hour by all three variants of VAC.
The best results are in bold. Finally, the last two columns give
the speedups obtained by full DynVAC compared respectively
to normal DynVAC and VAC.

From these last two columns, we observe that full DynVAC
outperforms normal DynVAC on all categories of benchmarks
and is more efficient than VAC in most cases.

Compared to normal DynVAC, Full DynVAC shows very
significant speed-ups on the categories GeomSur-7, Im-
ageAlignment and warehouse (speed-ups of 8.7, 7.4 and
3.2 respectively). For the other categories (coloring, maxcsp,
planning, matching, celar, tag08, ProteinFolding), the speed-
up of full DynVAC goes from a factor 1.79 to a factor 1.15.
Finally, it has almost the same efficiency on two categories
(CPD and bep).

To explain these differences, we have to remember what
makes full DynVAC different from normal DynVAC. The
difference between full DynVAC and nornal DynVAC comes
from the way they update Bool(P ) after a branching operation.
In full DynVAC, only the variables of Bool(P ) that are

directly linked to the branching variable (its neighborhood) are
modified and restorations are propagated to the other variables
before arc consistency is rechecked on the modified variables.
In normal DynVAC, the whole arc consistency process is re-
done from scratch on the reinitialized Bool(P ). It is therefore
expected that the graph density of the instance solved will have
a strong impact on efficiency. If the graph density is low, very
few variables will appear in the neighborhood of the modidifed
variable and full DynVAc should save a lot of work compared
to normal Dyn VAC.

Another important factor for efficiency is the domain size.
If we restore a few values incrementally in a domain that was
initially large, the cost of repropagating AC can be much lower
than if resetting the whole domain from scratch. If we restore
a few values in a domain that was initially small, AC will
not be significantly faster than if resetting the whole initial
domain.

Overall, it is therefore expected that the greatest savings
will be obtained by full DynVAC on problems with low graph
densities and large domains. If we analyse the characteristics
of the categories of problems on which full DynVAC behaves
very well, we effectively observe that GeomSur-7 has a
very low graph density (0,011 –lowest density of the set of
benchmarks), ImageAlignement has a low density (0.123) and
a great domain size (70), and warehouse has a medium density
(0.237) but is characterized by a large domain size (78).
Along the same line, by observing the categories on which
full DynVAC is only slightly faster than normal DynVAC, we
see that they are characterized by a high graph density (0.527



for CPD and 0.5 for bep).
This impact of density and domain size on the performance

of full DynVAC seems to be confirmed on the other categories
of problems. Coloring, for instance, has a very low density
(0.112), and we would expect a very good performance of full
DynVAC. However, the moderately improved performance of
full DynVAC on this coloring category (’only’ 1.4 times faster
than normal DynVAC) can be explained by the very small
mean domain size (4).

We now compare the efficiency of full DynVAC to the
efficiency of static VAC. We observe that full DynVAC is
better than static VAC on 7 of the 12 categories. The categories
GeomSur-7, ImageAlignment and warehouse, where full Dyn-
VAC was significantly better than normal DynVAC, remain
very favorable to full DynVAC when compared to static VAC.
This tends to show that the criteria of density and domain size
remain true when comparing to static VAC. We also observe
that category planning is another example where full DynVAC
is significantly faster than static VAC (by a factor 2.11).

Overall, if we compare the efficiency of the two variants of
DynVAC to static VAC we observe that when normal DynVAC
is faster than static VAC then full DynVAC is even faster. This
however happens for only two categories: planning and bep,
whereas full DynVAC is faster on 7 categories.

In summary, incrementally maintaining DynVAC during
search is in general very beneficial in comparison with restart-
ing from scratch after each branching operation and graph
density and domain size are the main criteria that have a visible
impact on the performance of full DynVAC.

VI. CONCLUSION

Following [16] that introduced the Dynamic VAC algorithm
combining the idea of dynamic arc consistency algorithms
with the iterative VAC algorithm in order to efficiently main-
tain arc consistency in the CN Bool(P ) during VAC enforcing
for preprocessing, we show that Dynamic VAC can be also be
maintained during search.

In this situation, two approaches can be considered: either
Dynamic VAC can be just maintained at each node of the
search tree or the incrementality of Dynamic VAC can be
exploited also to account for the small problem changes that
occur following branching operations in the search tree.

By exploiting both incremental changes caused by branch-
ing operations as well as incremental changes of EPTs during
sucessive iterations of VAC, the new fully incremental method
outperforms both the direct application of dynamic VAC
and the usual maintenance of static VAC on a variety of
problems. This is especially true for problems having small
graph densities and large domains.

There are still more opportunities to accelerate algorithms
maintaining VAC during search. Indeed, VAC does not require
to enforce AC on Bool(P ) but only to detect if the AC closure
is empty or not. Therefore, it is sufficient to identify a single
viable value in each domain to conclude. This simplified prob-
lem has been solved using so-called Lazy AC algorithms [18]

that could also be injected in VAC algorithms to increase their
efficiency.
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