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August 18, 2014

Abstract

In [A. Frid, S. Puzynina, L.Q. Zamboni, On palindromic factorization of words, Adv. in
Appl. Math. 50 (2013), 737-748], it was conjectured that any infinite word whose palindromic
lengths of factors are bounded is ultimately periodic. We prove this conjecture in a particular
case where the palindromic length is replaced with the left greedy palindromic length.

1 Introduction

A fundamental question in Combinatorics on Words is how words can be decomposed into smaller
words. For instance, readers can think to some topics presented in the first Lothaire’s book [10]
like Lyndon words, critical factorization theorem, equations on words, or to the theory of codes
[1, 2], or to many related works published since these surveys. As another example, let us
mention that in the area of Text Algorithms some decompositions like Crochemore or Lempel-
Ziv factorizations play an important role [4, 8]. These factorizations have been extended to
infinite words and, for the Fibonacci word, some links have been discovered with the Wen and
Wen’s decomposition in singular words [3] (see also [7] for a generalization to Sturmian words
and see [12, 9] for more on singular words).

In [6], A. Frid, S. Puzynina and L.Q. Zamboni defined the palindromic length of a finite word
w as the least number of palindromes needed to decompose w. More precisely the palindromic
length of w is the least number k such that w = π1 · · ·πk with π1, . . . , πk palindromes. As in [6]
we denote by |w|pal the palindromic length of w. For instance |abaab|pal = 2 as abaab = a.baab.
They conjectured that if the palindromic lengths of factors of an infinite word w are bounded
(we will say that w has bounded palindromic lengths of factors) then w is ultimately periodic
(that is has the form uvω for some words u and v). By a counting argument, they proved that
any infinite word with bounded palindromic lengths of factors contains k-powers for arbitrary
integers k (it may be emphasized that this condition is true even if we bound the palindromic
lengths of prefixes of the infinite word). Moreover, if the word is aperiodic (i.e., not ultimately
periodic), each position of the word must be covered by infinitely many runs. In Section 2, we
show that the previous conjecture can be restricted to words having infinitely many palindromic
prefixes and that, with this restriction, one should expect words to be periodic instead of being
ultimately periodic. Moreover we show how to prove the conjecture when palindromic lengths of
prefixes are bounded by 2, enumerating the possible forms of palindromic prefixes of an infinite
word of such kind.

Let us mention two main difficulties in proving the previous conjecture in the general case.
Firstly, when the palindromic lengths of prefixes of an infinite word are not bounded, the function
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that associates to each integer k the length of the smallest prefix with palindromic length k might
grow very slowly. For instance, let us consider the Fibonacci infinite word: as it is the fixed
point of the morphism ϕ defined by ϕ(a) = ab and ϕ(b) = a, by [6], the palindromic lengths of
prefixes are not bounded. Actually, if m(k) denotes the length of the least nonempty prefix of the
Fibonacci word with palindromic length k, one can verifies that m(1) = 1, m(2) = 2, m(3) = 9,
m(4) = 62, m(5) = 297, m(6) = 1154, m(7) = 5473 and so on. The second problem lies in
the fact that a word may have several minimal palindromic factorizations and the palindromic
factorizations of a word and of its longest proper prefix are not related. For instance, both
words aabaab and aabaaba have palindromic length 2; the first word has two corresponding
palindromic factorizations (aabaa.b and aa.baab) and it is the longest proper prefix of aabaaba,
which admits only one unrelated decomposition into two palindromes (a.abaaba). To cope with
this, in Section 3, we introduce the notion of left greedy palindromic length, which is the number
of palindromes in the palindromic decomposition obtained considering iteratively the longest
palindromic prefix as the first element. We show that if the left greedy palindromic lengths of
prefixes of an infinite word w having infinitely many palindromic prefixes are bounded then w
is periodic. As it also implies that palindromic lengths of factors of w are bounded, this proves
the Frid, Puzynina and Zamboni’s conjecture in a special case.

2 Around the conjecture on palindromic lengths

The result by A. Frid, S. Puzynina and L.Q. Zamboni stating that any infinite word with
bounded palindromic lengths of factors contains k-powers for arbitrary integers k is valid also
for infinite words with bounded palindromic lengths of prefixes. Although it is an open question
whether having bounded palindromic lengths of prefixes implies having bounded palindromic
lengths of factors, it seems interesting to consider both properties. For any integer k ≥ 1, we
denote by BPLF(k) (resp. BPLP(k)) the set of all infinite words such that |u|pal ≤ k for all
their factors u (resp. all their prefixes u). We denote by BPLF the union of sets BPLF(k) and
by BPLP the union of sets BPLP(k). Of course, for any integer k, BPLF(k) ⊆ BPLP(k), and
BPLF ⊆ BPLP.

It is clear that sets BPLP(1) and BPLF(1) are equal and contain only words on the form aω

with a a letter. One can observe that, for two different letters a and b and two positive integers
i and j, |abjaib|pal = 2 when i = 1 or j = 1, and, |abjaib|pal = 3 when i ≥ 2 and j ≥ 2. Moreover
|baibajb|pal = 3 if i 6= j, i ≥ 1 and j ≥ 1. It follows that words of BPLF(2) \ BPLF(1) are
the words on the form ai(baj)ω with i 6= 0 if j = 0. Determining words in BPLP(2) is more
tedious. Before explaining a way to do it, we restrict our attention to words having infinitely
many palindromic prefixes. Next lemma explain the interest of such a restriction. For any word
w, we denote by w̃ its mirror image.

Lemma 2.1. Let w be a word in BPLP.

1. All suffixes of w′ belong to BPLP.

2. There exists a suffix w′ of w having infinitely many palindromic prefixes.

3. If w have infinitely palindromic prefixes and is ultimately periodic, then w is periodic.
Moreover there exists two palindromes (possibly one empty) such that w = (π1π2)

ω.

Proof. 1. Let a be a letter and p be a finite word. If ap = π1π2 · · ·πk with π1, . . . , πk
palindromes, then p = π2 . . . πk if π1 = a, and p = π′1aπ2 . . . πk if π1 = aπ′1a. Thus if
aw belongs to BPLP(k), w belongs to BPLP(k + 1). In particular if aw ∈ BPLP then
w ∈ BPLP . This implies that any suffix of an element of BPLP also belongs to BPLP.



2. Let I0 = {0} and for k ≥ 1, let Ik = {i | ∃j ∈ Ik−1,w[j + 1..i] is a palindrome}. Note
that for k ≥ 1, Ik is the set of all lengths of prefixes of w that can be decomposed into k
palindromes. If all suffixes of w have only a finite number of palindromic prefixes, then it
can be checked quite directly by induction that for all k ≥ 0, Ik is finite. This contradicts
the fact that w belongs to BPLP. Thus there exists a smallest integer k ≥ 1 such that Ik
is infinite. So there exists j ∈ Ik−1, such that w[j+ 1..∞] has infinitely many palindromic
prefixes.

3. If w = uvω, there exists a conjugate x of v such that for any integer k ≥ 1, there is a
palindromic prefix of w ending with xk. Thus, for all k ≥ 1, x̃k is a prefix of w and
w = x̃ω.

Now assume u = ε. From what precedes there exists a prefix π1 of v such that w has
infinitely many prefixes on the form vkπ1 with k ≥ 1: w ∈ (π1π2)

ω. Let π2 such that
v = π1π2. We let readers verify that π1 and π2 are palindromes.

From now on, A denotes an alphabet and P(Aω) denotes the set of all infinite words having
infinitely many palindromic prefixes. Previous lemma allows to reformulate Frid, Puzynina and
Zamboni’s conjecture: if w is an infinite word in BPLF∩P(Aω) then w is periodic. We suspect
that also any infinite word in BPLP∩P(Aω) is periodic. Previous lemma also suggests that any
infinite word in P(Aω)∩BPLP should be uniformly recurrent, but a direct proof of this fact is
an open problem.

We now provide a characterization of words in BPLP(2) ∩ P(Aω).

Lemma 2.2. An infinite word w over an alphabet A beginning with the letter a and having
infinitely many palindromic prefixes is in BPLP(2) if and only if it has one of the following
forms (b is a letter different from a):

1. w = aω;

2. w = (aibaj)ω for some integers i ≥ 1, j ≥ 1;

3. w = (aibj)ω for some integers i ≥ 1, j ≥ 1;

4. w = ((ab)ia)ω for some integer i ≥ 2.

A first step for the proof of the lemma is next result.

Lemma 2.3. Any infinite word in BPLP(2) ∩ P(Aω) contains at most two different letters.

Proof. Assume that w contains at least three letters. Then it has a prefix on the form pc with
p containing exactly two different letters a and b, and with c a letter different from a and b.
Inequality |pc|pal ≤ 2 implies |p|pal = 1. Let pcxp̃ be the shortest palindromic prefix of w having
pc as a prefix (cx ends with c). Assume a is the first letter of p. There exists an integer n ≥ 1
and a word y such that p = anby. Let u = pcxỹ. We let readers verify that |u|pal = 3.

In order to prove Lemma 2.2, we consider the possible palindromic prefixes of w. By next(u)
we denote the set of all palindromes over {a, b} having u as a proper prefix, such that all proper
palindromic prefixes are prefixes of u and such that |p|pal ≤ 2 for all their prefixes p. For instance
next(ai) = {ai+1} ∪ next(aib)

Lemma 2.4. For any integer i ≥ 1,

1. next(aib) = {aibjai | j ≥ 1} ∪ {ai(baj)kbai | k ≥ 1, 1 ≤ j < i};



2. next(ai(baj)kbai) = ∅ when 1 ≤ j < i, k ≥ 1;

3. next(ai(bjai)ka) = ∅ when j ≥ 2 and k ≥ 1;

4. next(ai(bjai)kb) = {ai(bjai)k+1} when j ≥ 1 and k ≥ 1;

5. next(ai(bai)ka) = ∅ when i ≥ 2 and k ≥ 2;

6. next(aibai+1) = {aibai+jbai | j ≥ 1}.
7. next(ai(bai+j)kbai) = {ai(bai+j)k+1bai} when j ≥ 1, k ≥ 1;

8. next(a(ba)ka) = {(a(ba)k)2} when k ≥ 2.

9. next((a(ba)k)α) = {(a(ba)k)α+1} when k ≥ 2 and α ≥ 2

The combinatorial proof of each item of the previous lemma, which is rather tedious, but not
difficult, is omitted for lack of space.

Proof of Lemma 2.2. The if part is straightforward. Let w be an infinite word in BPLP(2) ∩
P(Aω) beginning with the letter a. By Lemma 2.3, w contains at most two different letters.
Let b be the second possible letter. For some integer i ≥ 1, w begins with aib. By Items 1 and
2 of Lemma 2.4, for some integer j ≥ 1, w begins with aibjai. Assume w 6= (aibj)ω. Let k ≥ 1
be the maximal integer such that ai(bjai)k is a prefix of w. By Item 4 of Lemma 2.4, w begins
with ai(bjai)ka for some k ≥ 1. By Item 3 of Lemma 2.4, j = 1. Assume k = 1. By Item 6 of
Lemma 2.4 there exists an integer j′ ≥ 1 such that w begins with aibi+j

′
bai. Thus by Item 7 of

Lemma 2.4, w = (aibaj
′
)ω. Assume from now on that k ≥ 2. By Item 5 of Lemma 2.4, i = 1

and by Items 8 and 9 of Lemma 2.4, w = (a(ba)k)ω.

Maybe the main interest of previous proof is the idea of studying the links between successive
palindromic prefixes of the considered infinite words. Determining BPLF(3) seems much more
difficult, as a simple case analysis seems unfeasible for the large number of cases and the fact
that words, such as (abac)ω, that contain three different letters must be considered.

3 Left greedy palindromic length

As explained in the introduction, we introduce a new measure of complexity for finite words,
the left greedy palindromic length, and show that if a word w in P(Aω) is such that the left
greedy palindromic lengths of its prefixes are bounded, then w is periodic.

The left greedy palindromic length of a word w is defined inductively by: |w|LgPal = 0 when w
is the empty word, |w|LgPal = 1 + |u| if w = πu with π the longest palindromic prefix of w. For
instance, |abaa|LgPal = 2 and |abaab|LgPal = 3. Similarly, we define the right greedy palindromic
length |w|RgPal considering at each step the longest palindromic suffix: |abaa|RgPal = 3 and
|abaab|RgPal = 2.

Property 3.1. For any word u, |u|pal ≤ min(|u|LgPal, |u|RgPal).

As a consequence, if for an infinite word w there exists an integer K such that |p|LgPal ≤ K for
any prefix p of w, then also |p|pal ≤ K. We have the stronger property:

Property 3.2. If for an infinite word w there exists an integer K such that |p|LgPal ≤ K for
any prefix p of w, then also |u|pal ≤ 2K for any factor u of w.



Proof. Let u be a factor of w and let p be such that pu is a prefix of w. By hypothesis, there
exist π1, . . . , πk palindromes such that 1 ≤ k ≤ K and pu = π1 · · ·πk. Let x, y be the words and
i be the integer such that πi = xy and u = yπi+1 · · ·πk. The word ỹ is a prefix of the palindrome
πi. Hence π1 · · ·πi−1ỹ is a prefix of w. By hypothesis, there exist palindromes π′1, . . . , π′k′ such
that k ≤ K and π1 · · ·πi−1ỹ = π′1 · · ·π′k′ . As, by definition, palindromes πj and π′j have to be
chosen as the longest palindromic prefixes of respectively πj · · ·πk and π′j · · ·π′k′ , it follows that
π1 = π′1, . . . , πi−1 = π′i−1 and ỹ = π′i · · ·π′k′ . Hence u = π′k′ · · ·π′iπi+1 · · ·πk is the product of at
most 2K palindromes.

One can observe that the words in P(Aω) such that |p|LgPal ≤ 2 for any prefix p are neces-
sarily words of the form aω or (abk)ω (a and b are letters). Indeed for any integer k, n ≥ 1,
|aibka|LgPal = 3 if i ≥ 2, |(abk)naib|LgPal = 3 if i ≥ 2 and |(abk)nabia|LgPal = 3 if i 6= k.

Now we state our main result.

Theorem 3.3. If the left greedy palindromic lengths of prefixes of a word w ∈ P(Aω) are
bounded, then w is periodic.

As a consequence of Lemma 2.1, we have as a corollary that if the left greedy palindromic lengths
of prefixes of a word w are bounded, then w is ultimately periodic.

The proof of Theorem 3.3 is an adaptation of the proof of next result which is nothing else than
Theorem 3.3 in the special case of words containing infinitely many different letters.

Lemma 3.4. For any infinite word w over an infinite alphabet having infinitely many palin-
dromic prefixes, the set {|p|LgPal | p prefix of w} is unbounded.

Proof. Let (πn)n≥0 be the sequence of palindromic prefixes of w (all palindromic prefixes of w
occur in the sequence and (|πn|)n≥0 is (strictly) increasing). Let n be an integer such that a
letter α occurs in πn+1 but not in πn. Then πn+1 = πnππn. Let p be a proper prefix of πn:

|πnπp|LgPal = 2 + |p|LgPal (1)

Indeed, one can observe first that by definition of n and palindromes (πi)i≥0, πn is the longest
palindromic prefix of πnπp. Now we have to verify that π is the longest palindromic prefix of
πp. Let us write π = xαy with |x|α = 0 and assume that πz is a palindromic prefix of πp. As
πn = ps = zts for words s and t, and as πn and πn+1 are palindromes, we deduce that αx̃ is a
suffix of z and s̃t̃xα is a prefix of πn+1. As |s̃t̃x|α = 0 (as |πn|α = 0), necessarily |t| = |p|.
As w contains infinitely many letters, Equation (1) implies the lemma.

In the adaptation of the previous proof to Theorem 3.3, the infinite alphabet is replaced with
infinitely many powers of a given word. The existence of such powers is guaranteed by an
inductive hypothesis. More precisely, given an infinite word w, let MaxLgPalPref(w) be the
supremum of the set {|p|LgPal | p prefix of w}. Our proof of Theorem 3.3 acts by induction
on MaxLgPalPref(w). The only infinite words such that all their nonempty prefixes are of left
greedy palindromic length 1 are words on the form aω. Assume that K is an integer such that,
for any infinite word x in P(Aω), MaxLgPalPref(x) ≤ K implies that x is periodic. Let w be
such that MaxLgPalPref(w) = K + 1.

Lemma 3.5. There exist nonempty palindromes u and v, a length increasing sequence (πi)i≥0
of palindromes and a strictly increasing sequence of integers (`i)i≥1 such that π−1i−1πi begins with

(uv)`iu for all i ≥ 1.



Proof. Let (πi)i≥1 be the length increasing sequence of palindromic prefixes of w. Let i be
an integer and let p be any word such that πip is a proper prefix of πi+1. By definition of
the sequence (πj)j≥1, we have |πip|LgPal = 1 + |p|LgPal ≤ K + 1. So for all proper prefixes
p of π−1i πi+1 we have|p|LgPal ≤ K. One can prove that the sequence (|πi+1| − |πi|)i≥1 is not
decreasing and unbounded. Thus by König’s lemma (see [11, Prop. 1.2.3]), there exists an
infinite word w′ such that each of its prefixes p is a prefix of π−1j πj+1 for some j ≥ 1. From
what precedes MaxLgPalPref(w′) = K and, by hypothesis, w′ is periodic.

As w ∈ P(Aω), also w′ ∈ P(Aω). Thus by Item 3 of Lemma 2.1, w′ = (uv)ω for two palindromes
u and v. There exist two sequences of integers (`i)i≥1 and (ji)i≥0 such that (uv)`iu is a prefix
of π−1ji πji+1 which itself is a prefix of π−1ji πji+1 . The sequence (`i)i≥1 can be chosen strictly
increasing. Replacing (πi)i≥0 by the sequence (πji)i≥0 ends the proof.

When w is not periodic, the previous fact implies that the set of factors of the form (uv)`u not
preceded by uv and not followed by vu is infinite. This set plays the role of an infinite alphabet,
and, not trivially, the proof of Lemma 3.4 can be adapted to state a contradiction.

4 Conclusion

Property 3.1 is that, for any word u, |u|pal ≤ min(|u|LgPal, |u|RgPal). The next example shows
that the value of min(|u|LgPal, |u|RgPal)− |u|pal can be arbitrarily large.

Let fn be the nth Fibonacci word (f1 = a, f2 = ab, fn = fnfn−1 for n ≥ 3). Z.-X. Wen and
Z.-Y. Wen [12] introduced the notion of singular words for the Fibonacci word. Let (πn)n≥2 be
the sequence of these singular words and let αnβn denotes the length 2 suffix of fn (with αn,
βn letters): πn = αfnβ

−1. Moreover (see [5]), for n ≥ 2, fn = Bnαnβn where Bn is the nth
nonempty bispecial factor. All singular words are primitive palindromes. Moreover πn is the
longest palindromic suffix of Bnαn. Thus one can verify that |αnBn|LgPal = |Bnαn|RgPal = n
while |αnBn|pal = |Bnαn|pal = 2. Taking two fresh letters c and d, letting un = αnBncdBnαn,
we obtain |un|LgPal = n+ 4 = |un|RgPal while |un|pal = 6.

By Lemma 2.1 one can see that for a periodic word in BPLP, the value of min(|u|LgPal, |u|RgPal)−
|u|pal taken over factors u of w cannot be arbitrarily large. Finally to summarize this paper,
observe that that the Frid, Puzynina and Zamboni’s conjecture could be stated as follows. For
an infinite word w having infinitely many palindromic prefixes, the following assertions are
equivalent:

1. w has bounded palindromic lengths of factors;

2. w has bounded palindromic lengths of prefixes;

3. w has bounded left greedy palindromic lengths of factors;

4. w has bounded left greedy palindromic lengths of prefixes;

5. w is periodic;

6. w = (uv)ω for two palindromes u and v.

Equivalence between assertions 3 to 6 are proved in this paper. Indeed Equivalence between
assertions 5 and 6 is provided by item 3 of Lemma 2.1. Clearly assertion 6 implies assertions 3
which implies assertion 4. Finally Theorem 3.3 states that assertion 4 implies assertion 5.

Clearly assertion 6 implies assertions 1 which implies assertion 2. That assertion 1 or assertion
2 implies assertion 6 stays an open problem.
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