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Online order basis algorithm and its impact on
the block Wiedemann algorithm∗

Pascal Giorgi†, Romain Lebreton‡

Abstract

Order bases are a fundamental tool for linear algebra with polynomial
coefficients. In particular, block Wiedemann methods are nowadays able
to tackle large sparse matrix problems because they benefit from fast order
basis algorithms. However, such fast algorithms suffer from two practical
drawbacks: they are not designed for early termination and often require
more knowledge on the input than necessary. In this paper, we propose an
online algorithm for order basis which allows for both early termination
and minimal input requirement while keeping quasi-optimal complexity in
the order. Using this algorithm inside block Wiedemann methods leads
to an improvement of their practical performance by a constant factor.

1 Introduction
Order bases (also called sigma bases) are the cornerstone of efficient algorithms
with polynomial matrices over finite fields. Their use in algorithms for the
determinant, column reduction [8] or minimal nullspace basis [24] has reduced
these problems to the simpler computation of polynomial matrix multiplication.
A complete panel of these reductions can be found in [13, 22].

Since their introduction in 1994 [1], order basis computations have a quasi-
optimal algebraic cost in the order of approximation. Fast linear algebra has
been included later on for square matrices [8], then for any matrix dimensions
[23]. Historically, order basis were introduced to generalize Hermite-Padé ap-
proximants to the matrix case. It is nowadays well known that a minimal
generator of a linearly generated scalar sequence is related to a specific Padé
approximant. As a non trivial transposition to the matrix case, it has been
shown in [18, 21] that order bases provide a fast solution to the problem of com-
puting a minimal generator of a linearly generated matrix sequence. Note that
many other approaches solve this problem, e.g. Toeplitz/Hankel solver, matrix
Berlekamp-Massey or matrix extended Euclidean, but only few of them provide
fast polynomial arithmetic together with fast matrix multiplication. We refer
to [16] for a classification of all possible algorithms with their corresponding
reference and complexity.
∗This work has been supported by the French ANR under the grants HPAC (ANR-11-

BS02-013), CATREL (ANR-12-BS02-001).
†Université Montpellier 2 - CNRS, LIRMM
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Modern sparse linear algebra over a finite field relies on Coppersmith’s block
Wiedemann method [5], which in turn computes a minimal matrix generating
polynomial. This is the case for linear systems solving [5] or for rank com-
putations [19]. For generic matrices with low rank deficiency, as in integer
factorization, the general a priori bound on the degree of this polynomial is
tight. However, a significant rank deficiency makes this bound loose, which
introduces a computational overhead. This situation has been observed in [6]
when computing the rank of matrices from Algebraic K-theory using the block
Wiedemann method of [19]. In such a case, early termination techniques [14]
are an important tool to probabilistically detect the degree of the minimal ma-
trix generating polynomial. However no fast block Wiedemann method enables
early termination in the order basis computation to the best of our knowledge.

Hence we focus in this paper on the application of order basis to the block
Wiedemann framework in the context of early termination. In particular, exist-
ing fast order basis algorithms such as Algorithm PM-Basis of [8] does not allow
for early termination.

Main results and outline of the paper. We contribute by giving two new
algorithms, called iPM-Basis and oPM-Basis, which both have a quasi-linear time
complexity in the degree of the approximation’s order. After some background
on order basis in Sections 2 and 3, we introduce in Section 4 Algorithm iPM-
Basis, which is an iterative variant of PM-Basis more suited to early termination.
This enables us to incorporate in block Wiedemann both early termination
and quasi-linear time algorithm for the computation of the minimal matrix
generating polynomial.

However, this is not optimal yet because we may have to compute more
coefficients of the input of the order basis than necessary. Besides, the cost
of computing this input is dominant in block Wiedemann, and so it is of great
interest to minimize the number of required coefficients. Since online algorithms
require minimal knowledge on the input, we propose a fast online order basis
oPM-Basis in Section 5.

Then we study our order basis algorithms inside block Wiedemann method
in the context of early termination. We analyze the complexity of our approach
in Section 6 and make explicit the potential gains in Proposition 7. Finally
Section 7 gives implementations and benchmarks and shows the positive impact
of oPM-Basis in practice (see Figure 4).

2 Background
Let K be a field. If A =

∑
iAix

i is in K[x]m×n or K[[x]]m×n, and i, j are integers
with i 6 j, then we write Ai...j = Ai +Ai+1x+ · · ·+Aj−1x

j−i−1, so that Ai...j
has degree less than j − i.

Let A ∈ K[x]m×m and B ∈ K[x]m×n such that deg(A) < d, deg(B) < h and
d 6 h. Then, the middle product MP(A,B, d, h) of A and B is defined as the
part Dd−1...h of the product D := A ·B, so that deg(MP(A,B, d, h)) < h−d+1.
The balanced case corresponds to h = 2d− 1; we denote this MP(A,B, d).
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2.1 Row reduced matrix
The notion of shifted degree of a polynomial matrix is an extension of the
classic polynomial degree where some scalings are introduced either by row or by
column. In particular, the shifted ~s-row degree of a row vector v ∈ K[x]1×n with
~s = [s1, . . . , sn] ∈ Zn corresponds to max

16i6n
(si + deg v[i]) ∈ Z. This naturally

extends to matrices A ∈ K[x]m×n by considering the vector in Zm of ~s-row
degrees of the rows of A.

A matrix R ∈ K[x]m×n is said to be ~s-row reduced if the ~s-row degree of
R is less than or equal to the ~s-row degree of UR for any unimodular matrix
U . Comparisons of ~s-row degrees use the lexicographic order on their sorted
vectors. The existence of a minimal ~s-row degree matrix in the set of UR for U
unimodular is ensured by [22, Lemma 2.11]. One can ensure the unicity of row
reduction by using the well known Popov form [2].

The following lemma gives a criterion to certify that a matrix is ~s-row re-
duced. Let us denote by x~s the diagonal matrix Diag(xs1 , . . . , xsn) ∈ K[x]n×n.

Lemma 1 ([2, 22]). Let ~u be the ~s-row degree of a matrix R ∈ K[x]m×n and
T ∈ Km×n such that x−~uRx~s = T + O(x−1)x→∞. Then R is ~s-row reduced if
and only if T has full rank.

The following lemma states the compatibility of ~s-row degree and row re-
ducedness with matrix multiplication.

Lemma 2 ([22, Lemmas 2.14, 2.18]). Let A,B belong to K[x]m×m with B
invertible, ~u-row reduced and of ~u-row degree ~v. Then the ~u-row degree of AB
is equal to the ~v-row degree of A and AB ∈ K[x]m×m is ~u-row reduced if and
only if A ∈ K[x]m×m is ~v-row reduced.

3 Order basis algorithms
Let F =

∑
i>0 Fix

i ∈ K[[x]]m×n be a matrix of power series withm > n, σ a pos-
itive integer and (F, σ) be the K[x]-module

{
v ∈ K[x]1×m s.t. vF ≡ 0 mod xσ

}
.

A polynomial matrix P is a (left) order basis of F of order σ ∈ N∗ and shift
~s ∈ Zm if the rows of P form a basis of (F, σ) and P is ~s-row reduced (see
[22, 23] for more details). Without loss of generality, we only consider in this
paper the case n = Θ(m) as in [8]. Indeed the techniques of [23] allow to reduce
the general situation to our particular case.

Nowadays there are mainly two algorithms for computing order bases. In
this section, we propose a new presentation of these two algorithms of [8] using
the framework of order basis of [22].

Throughout the paper, the order basis algorithms, except Basis, will take
as input a power series matrix F ∈ K[[x]]m×n, a shift vector ~s ∈ Zm and an
approximation order σ ∈ N∗, and return a (σ,~s) order basis P of F and its
~s-row degree ~u.

3.1 Base case (order 1)
In order to simplify the presentation of all following order basis algorithms, we
treat separately the case σ = 1. This case corresponds to finding a polynomial
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matrix M of minimal ~s-row degree such that MF ≡ 0 mod x. This problem
roughly reduces to the computation of a row echelon form of the kernel of
πF ∈ Km×n, where π is a permutation matrix such that the sequence π~s is
increasing. Hence, one can use the PLE decomposition [12] over K for this
matter. In this decomposition, P is a permutation matrix, L is a lower unit
triangular matrix and E is the row echelon form. Note that among all possible
PLE decompositions, we use one revealing the row rank profile.

Let ω be the exponent in the complexity of matrix multiplication over fields,
which satisfies ω < 2.3727 [20].

Algorithm 1: Basis(F0, ~s)
Input: F0 ∈ Km×n, ~s ∈ Zm
Output: M ∈ K[x]m×m, ~u ∈ Zm

1: Find a permutation π s.t. π~s is sorted increasingly
2: Compute the PLE decomposition τLE of πF0

3: Let r = rank(E) and write L =

[
Lr
G Im−r

]
4: M =

[
xIr
−GL−1r Im−r

]
τ−1π

5: ~u = τ−1π~s+
[
1r 0n−r

]T
6: return M,~u

Proposition 1. Algorithm Basis outputs a (1, ~s) order basis M of F0 and its
~s-row degree ~u in O(mnrω−2) operations in K, where r corresponds to the rank
of F0.

Proof. For the correctness of the algorithm, we need to prove thatMF0 ≡ 0 mod
x, detM 6= 0 and M is ~s-row reduced. By definition of the row echelon form, it
is clear that them−r last rows of E are zero. Consequently the lastm−r rows of
MF0 are also zero. Since the first r rows ofM are [xIr 0], it is clear thatMF0 ≡
0 mod x. Then detM = ±xr 6= 0. Finally we assume, without loss of generality,
that the permutations π and τ are equal to the identity. This assumption implies
that ~s is already sorted increasingly and that ~u = [s1+1, . . . , sr+1, sr+1, . . . , sm]
is the ~s-row degree of M . Therefore, we have x−~uMx~s = Im + O(x−1)x→∞,
which implies by Lemma 1 that M is ~s-row reduced and then concludes the
proof of correctness of algorithm Basis. The complexity of Basis algorithm is
dominated by the cost O(mnrω−2) of PLE decomposition [12].

3.2 Quadratic algorithm
To compute a (σ,~s)-order basis, Algorithm M-Basis presented in [8] works iter-
atively by induction on the approximation order.

Proposition 2. Algorithm M-Basis is correct and runs in O(mωσ2) operations
in K.

Proof. Let us prove the correctness of Algorithm M-Basis by induction on the
order σ. The case σ = 1 is already proven as it corresponds to Algorithm Basis.
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Algorithm 2: M-Basis(F, σ,~s)
Input: F ∈ K[[x]]m×n, ~s ∈ Zm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Zm

1: P0, ~u0 = Basis(F mod x,~s )
2: for k = 1 to σ − 1 do
3: F ′ = (x−kPk−1F ) mod x
4: Mk, ~uk = Basis(F ′, ~uk−1)
5: Pk = MkPk−1
6: return Pσ−1, ~uσ−1

Assume Pk−1 is a (k,~s)-order basis of F , and let us prove that MkPk−1 is a
(k + 1, ~s)-order basis. By definition, F ′ ∈ Km×n is the first non-zero term of
Pk−1F . Since MkF

′ ≡ 0 mod x, Pk = MkPk−1 is a basis for (F, k + 1). One
needs to show that Pk is ~s-row reduced to finish the proof. By definition of
order basis, Pk−1 is ~s-row reduced and its ~s-row degree is ~uk−1. Similarly, Mk

is ~uk−1-row reduced and its ~uk−1-row degree is ~uk. So it follows directly from
Lemma 2 that Pk is ~s-row reduced and its ~s-row degree is ~uk.

The complexity of M-Basis is dominated by step 5 which computes at most
k + 1 products of m×m matrices. Hence, the cost of each loop is bounded by
O(mωk). Incorporating the latter cost into the ’for’ loop gives the announced
complexity for M-Basis.

3.3 Quasi-linear algorithm
A divide-and-conquer approach has been presented in [8], namely the PM-
Basis algorithm. The idea is similar to the ones used in [1, 17]: it reduces
the computation of one order basis of order σ to two order bases of order about
σ/2.

Algorithm 3: PM-Basis(F, σ, ~s)
Input: F ∈ K[[x]]m×n, ~s ∈ Zm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Zm

1: if σ = 1 then
2: return Basis(F mod x,~s )
3: else
4: Pl, ~ul = PM-Basis(F, bσ/2c, ~s )
5: F ′ = MP(Pl, F, bσ/2c+ 1, σ)
6: Ph, ~uh = PM-Basis(F ′, dσ/2e, ~ul)
7: return Ph · Pl, ~uh

As explained in [8], this strategy allows to reduce the arithmetic complexity
to O(mωM(σ) log(σ)), whereM denotes the arithmetic complexity of polynomial
multiplication. Note that the proof of correctness of PM-Basis is a direct impli-
cation of Lemma 2. Contrary to M-Basis, the recursive structure of PM-Basis
makes it difficult to enable early termination.
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4 Fast iterative order basis
In this section, we give a variant of PM-Basis more suited to early termination.
We present an original iterative variant iPM-Basis of the recursive algorithm
PM-Basis. Let k =

∑r
i=1 2ni be the binary decomposition of k with n1 < · · · <

nr. The valuation ν2(k) in 2 of positive k corresponds to n1. By convention,
ν2(0) = +∞.

Algorithm 4: iPM-Basis(F, σ,~s)
Input: F ∈ K[[x]]m×n, ~s ∈ Zm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Zm

1: F (∞) = F
2: M0, ~u0 = Basis(F mod x,~s )
3: for k = 1 to σ − 1 do
4: v = ν2(k), v′ = ν2(k − 2v)

5: M (v) = ((Mk−1 ·M (0)) ·M (1)) · · ·M (v−1)

6: F (v) = MP(M (v), F (v′), 2v + 1, 2v+1)

7: Mk, ~uk = Basis(F (v) mod x, ~uk−1)

8: Let
∑r
i=1 2ni be the binary decomposition of σ

9: M (n1) = ((Mσ−1 ·M (0)) ·M (1)) · · ·M (n1−1)

10: return (M (n1) ·M (n2)) · · ·M (nr), ~uσ−1

It is easy to add a stopping criteria to iPM-Basis in the ’for’ loop after line
7. When σ is a power of two, Algorithms PM-Basis and iPM-Basis perform the
same ordered sequence of polynomial matrix multiplication and call to Basis.
Note that these algorithms differ in terms of memory management. Besides,
our algorithm should store all the Mk in one variable M and all the ~uk in ~u but
these indexed variables will be useful in the proof.

Before proving that iPM-Basis is the iterative counterpart of PM-Basis, we
give some hindsight on iPM-Basis. The polynomial matrices Mk (of degree at
most 1) coincide with those of M-Basis. Our order basis output consists in their
product Mσ−1 · · ·M0, which is computed using the divide-and-conquer scheme
of PM-Basis. For this matter, we have the variables M (v) which store at step k
the product Mr−1 · · ·Mr−2v where r = k − (k mod 2v). We perform the same
products than a binary multiplication tree onM0, . . . ,Mσ−1 would do when σ is
a power of two. But our approach decomposes these computations in steps and
therefore yields an iterative variant of the binary multiplication tree recursive
algorithm.

Proposition 3. For any F,~s and t ∈ N, Algorithms
PM-Basis and iPM-Basis have the same output and perform the same compu-
tations on the input F, 2t, ~s.

Proof. We proceed by induction on t. When t = 0, both algorithms perform
only a call to Basis (F mod x,~s ).

Now recursively, suppose the result true for inputs F, 2r, ~s with r < t and
let us prove it for the input F, 2t, ~s. The program PMt := PM-Basis(F, 2t, ~s)
is made of 4 instructions, and we claim that they are mapped to subparts of
Itt := iPM-Basis(F, 2t, ~s) as follows:
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1. line 4 of PMt maps to the code Itt,beg of Itt from the beginning until line
5 for k = 2t−1;

2. line 5 of PMt corresponds to line 6, k = 2t−1 of Itt;
3. lines 6 and 7 of PMt are mapped to Itt,end defined by the code from line

7, k = 2t−1 to the end of Itt.
Our proposition follows from this former correspondence, which we now prove.
Note that since σ is a power of two, iPM-Basis outputs M (σ).

Proof of 1. First, the call to PMt−1 on line 4 of PMt corresponds to Itt−1
by the inductive hypothesis. The latter code and Itt share the same code until
line 7, k = 2t−1 − 1. Then Itt−1 outputs the product M (t−1) of line 9, which
corresponds to the product of Itt, line 5 for k = 2t−1.

Proof of 2. Let us prove that the inputs of both middle products are the
same. First, M (t−1) and Pl are equal because they are the respective outputs
of Itt−1 and PMt−1 which coincide by the inductive hypothesis. Concerning the
second input, F (v′) = F (∞) is equal to F because F (∞) has not been overwritten
since its definition F (∞) = F at line 1. So the middle products coincide and
their outputs F ′ and F (t−1) correspond.

Proof of 3. By recurrence hypothesis, line 6 of PMt corresponds to It′t−1 :=

iPM-Basis(F (t−1), 2t−1, ~u2t−1−1). Thus, we will prove the correspondence of It′t−1
followed by line 7 of PMt, with Itt,end. We split both of these programs in 4
parts: 1) we will see that the initialization F (∞) = F (t−1) of line 1 of It′t−1
is compensated by direct access to F (t−1) instead of F (∞) in Itt,end; 2) the
initialization of 2 of It′t−1 corresponds to line 7, k = 2t−1 of It′t−1; 3) we will
show later that respective ’for’ loops of the two programs correspond; 4) the
products of line 9 of It′t−1 and Itt,end differ only by one term, which corresponds
to line 7 of PMt.

Let us prove that both respective ’for’ loops of It′t−1 and Itt,end read the
same variables. Let 1 6 k 6 2t−1 − 1 be the indices of the first ’for’ loop and
k′ = k + 2t−1 the corresponding indices inside Itt,end. Notice that v = ν2(k) =
ν2(k′). Similarly v′ = ν2(k − 2v) = ν2(k′ − 2v) except if k = 2r in which case
ν2(k − 2v) = ∞ and ν2(k′ − 2v) = t − 1. Therefore the variables (M (i))06i6v
and F (v′) that both program read coincide. Note that the variables F (v′) also
coincide when k = 2r because they both point to F (t−1).

Corollary 1. Algorithm iPM-Basis outputs a (σ,~s) order basis P of F and its
~s-row degree ~u in O(mωM(σ) log(σ)) operations in K.

Proof. Proposition 3 proves both the complexity and correctness statements
of iPM-Basis, but only for orders σ that are powers of two. We deduce our
complexity estimate for general σ from the case σ = 2r. Concerning correctness,
we will prove that we match the output of M-Basis. The variables Mk and
~uk of iPM-Basis coincide with those of M-Basis because PM-Basis and iPM-
Basis perform the same computations when σ = 2r and PM-Basis performs the
same calls to Basis as M-Basis.

It remains to prove that we output Mσ−1 · · ·M0 like M-Basis to conclude.
Let σ =

∑r
i=1 2ni be the binary decomposition of σ with ν2(σ) = n1 < · · · < nr.

For 0 6 j 6 r, we define ϕ(k, j) =
∑r
i=r−j+1 2ni as the sum of the jth highest

bits of k. Then at the end of the algorithm, the variables M (ni) equal to
Mϕ(k,r−i+1)−1 · · ·Mϕ(k,r−i) when 1 6 i 6 r and their product is Mσ−1 · · ·M0

as claimed.
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5 Online order basis algorithm
The (σ,~s)-order basis Mσ−1 · · ·M0 of F is a function of F mod xσ; this can be
seen easily on Algorithm M-Basis. Moreover, during the intermediate steps of
M-Basis(F, σ,~s), only F mod xk+1 is read to compute Mk. Therefore M-Basis
allows for savings both on the input and on the computations in case of early
termination.

This is not the case for the fast algorithms of the family of PM-Basis.
The speed of these algorithms is attained by performing computations in ad-
vance, which in turn require more knowledge on F . Consider the computation
PM-Basis(F, 2r, ~s) and let us focus on its intermediate steps which are made
explicit in iPM-Basis. Then for any t 6 r and any intermediate step k such that
2t−1 < k 6 2t, Algorithm iPM-Basis reads F mod x2

t

to compute Mk (see line
6 for k = 2t−1 where F (v′) = F ).

In some applications, such as the block Wiedemann method, the cost of
computing the input F is dominant (see Section 6) and minimizing its required
precision can have a practical impact. The purpose of this section is to give
an algorithm that requires minimal knowledge on F at each intermediate step
while keeping a quasi-optimal complexity in the order σ. Note that Algorithm
M-Basis satisfies the first condition but not the second, and that PM-Basis (and
iPM-Basis) is in the opposite situation.

5.1 Online algorithms
Let A be an algorithm, i be one of its inputs and o its only output. Assume
that both i = [i0, . . . , in] and o = [o0, . . . , on] are given as sequences. We say
that A is an online algorithm with respect to its input i if it reads at most
i0, . . . , ij when computing oj for any 0 6 j 6 n. This notion, first defined by
[9], was popularized in the domain of Computer Algebra in [10] under the name
of relaxed algorithms.

In our context of order basis algorithms, we consider the input F as the
sequence of its power series coefficients [Fi]i<σ and the output to be the sequence
[Mi]i<σ. To put it differently, we say that an order basis algorithm is online if
it requires minimal knowledge on F , that is if it reads at most F0, . . . , Fk when
computing Mk.

We have seen that M-Basis is an online order basis algorithm. Our objective
in this section is to derive a fast online order basis algorithm from iPM-Basis.
We have noticed that the middle product of step 6 of iPM-Basis may read more
entries of F than necessary. Therefore, we need to perform this step differently.

5.2 Shifted online middle product
Throughout this section, we will denote by R a ring and M a left R-module.
Let A ∈ R[x] and B ∈ M [x] with A of degree less than d. This theoretical
framework is meant to allow for the multiplication of A by B in our special case
R = Km×m and M = Km×n.

We are interested in computing the middle product C = MP(A,B, d, h)
under the following constraint: we cannot use the polynomial coefficients Ai+d
or Bi+d before we have computed the coefficients C0, . . . , Ci of C. Compared to
online algorithms, there is a shift in the indices of A and B due to the fact that
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the ith coefficient of MP(A,B, d, h) is the (i+ d− 1)-th coefficient of A ·B. We
will call such an algorithm a shifted online algorithm for the middle product.

Note that for our problem, the reading constraint affects only B since Ai+d =
0 by definition. Therefore, we are only interested in algorithms for the middle
product that are shifted online with respect to B. Algorithms that are (shifted)
online with respect to only one input out of two are called (shifted) half-line
algorithms.

Let us focus on the balanced case h = 2d − 1 for the rest of this section,
where deg(MP(A,B, d)) < d. As in the offline (not online) case, we have a naive
algorithm for the middle product which consists in computing (A·B) mod x2d−1

and removing the unnecessary lower terms. We denote by H(d) the number of
R-module operations onM necessary to multiply two power series at precision d
(i.e. modulo xd) by a half-line algorithm. Similarly to offline multiplication, we
suppose that H is super-linear, i.e. that rH(s) 6 H(rs) for any r, s ∈ N. The cost
of the naive shifted online middle product algorithm is therefore SMPNaive(d) :=
H(2d− 1).

We now propose a dedicated shifted online algorithm sMiddleProduct for
the middle product that will save asymptotically a factor 2 in the complexity
compared to the naive algorithm.

Algorithm 5: sMiddleProduct(A,B, d)
Input: A ∈ R[x] of degree < d, B ∈M [x]
Output: MP(A,B, d) ∈M [x]

1: C = (A0...d ·B0...d) div xd−1

2: for k = 1 to d− 1 do
3: m = ν2(k)

4: C = C + MP(A0...2m+1−1, Bd+k−2m...d+k, 2
m) xk

5: return C

The scheme of computation of our algorithm is given in Figure 1 when d = 8.
Decompose C = MP(A,B, d) in two parts C = L + xU where L = (A0...d ·
B0...d) div xd−1 and U = (A0...d−1 ·Bd...2d−1) mod xd−1. At the first step of our
algorithm, we are allowed to use A0...d and B0...d in order to compute C0 = L0.
We chose to anticipate some computations and compute the whole L via a classic
offline multiplication algorithm at cost M(d).

Let B′ := Bd...2d−1. For the computation of U , the reading constraint trans-
lates into the following: the computation of Ui must read at most the coefficients
B′i of B′. So we can use a half-line multiplication algorithm for this task, at
cost H(d − 1). Finally the addition C = L + xU costs O(d). Altogether, Al-
gorithm requires SMPGL(d) R-module operations on M where SMPGL(d) :=
M(d) + H(d− 1) + O(d) . Since d� M(d)� H(d) and 2H(d− 1) 6 H(2d− 1),
we deduce

SMPGL(d) 6 (1/2 + o(1))SMPNaive(d).

In Figure 1 and Algorithm sMiddleProduct (see lines 3-4), we use the half-line
multiplication of [11] due to its good performances.

It turns out that the middle product of line 6 of iPM-Basis is unbalanced
and does not exactly fit the settings of this section. However, the same ideas
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Figure 1: Shifted online middle product MP(A,B, 8)

apply; we can cut the middle product into two parts, and then apply an offline
multiplication on the lowest part and an half-line algorithm on the highest part.

5.3 Online order basis
For the purpose of a fast online order basis algorithm, we will use the lazy data
structure to encode our polynomial matrices as in [3, 10]. In this data structure,
polynomials are given as a promise, and the evaluation of its coefficients is
delayed.

We assume that we dispose of a class OsMiddleProduct that performs the shifted
online middle product using the lazy data structure. In this setting, step k of
Algorithm sMiddleProduct is performed when the kth coefficient of the middle
product is asked for. By computing the middle product in this fashion, we
obtain an online order basis algorithm oPM-Basis.

Algorithm 6: oPM-Basis(F, σ,~s)
Input: F ∈ K[[x]]m×n, ~s ∈ Zm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Zm

1: F (∞) = F
2: M,~u0 = Basis(F mod x,~s )
3: for k = 1 to σ − 1 do
4: v = ν2(k), v′ = ν2(k − 2v)

5: M (v) = ((M ·M (0)) ·M (1)) · · ·M (v−1)

6: F (v) = OsMiddleProduct(M
(v), F (v′), 2v + 1, 2v+1)

7: M,~uk = Basis(F (v) mod x, ~uk−1)

8: Let
∑r
i=1 2ni be the binary decomposition of σ

9: M (n1) = ((M ·M (0)) ·M (1)) · · ·M (n1−1)

10: return (M (n1) ·M (n2)) · · ·M (nr), ~uσ−1

Proposition 4. Algorithm oPM-Basis is correct and online. It runs in O(mωM(σ) log2(σ))
operations in K.

10



Proof. Noticing that F (v) = (Mk−1 · · ·M0F )k...k+2v , we deduce that the call to
(F (v) mod x) on line 7 will read at most the entries F0, . . . , Fk of F at step k.

The cost analysis is similar to the one of PM-Basis, except that middle
products now cost H(d) = O(M(d) log(d)) instead of M(d) [10]. Thus, Algorithm
oPM-Basis requires O(mωH(σ) log(σ)) = O(mωM(σ) log2(σ)) operations in K,
which is quasi-linear in σ.

6 Application to block Wiedemann
Let A ∈ KN×N be a sparse matrix, which means that it has O(N log(N)C)
non-zero entries for a constant C > 0. Block Wiedemann methods are useful
for handling such matrices, and especially for linear systems solving [5] or for
computing their rank [19]. The main ingredient of block Wiedemann algorithms
is the computation of the left minimal matrix generating polynomial ΠAV

U ∈
K[x]m×m of the matrix sequence S = (Si)i∈N where Si = (UAiV ) ∈ Km×n and
m > n. Here U ∈ Km×N and V ∈ KN×n are chosen randomly. Note that A can
be preconditioned to ensure structural properties (e.g. generic rank profile, no
nilpotent blocks of size greater than one in its Jordan form) [4] and then allow
a good probability of success for block Wiedemann method.

Definition 1. The matrix Π =
∑d
i=0 Πix

i ∈ K[x]m×m is a left matrix gener-
ating polynomial of S if

d∑
i=0

ΠiSi+j = 0m×n, ∀j > 0,

and det(Π) 6= 0. It is said to be minimal if it is row reduced and deg det(Π) is
minimal. Furthermore, it is unique if it is in Popov form [16].

As described in [18, 21], one can obtain ΠAV
U from a (σ,~s) order basis P of the

matrix series F = [
∑σ
i=0 S

T
i x

i | Im]T ∈ K[[x]]2m×n where ~s = [0m, 1m]. It is well
known since Coppersmith’s work [5] that an order σC = dN/me+ dN/ne+O(1)
is sufficient in most cases. However, this bound may be loose for rank deficient
matrices, as experimented in [6].

Theorem 2.12 of [15] gives a tighter bound by looking at the invariant factors
of the characteristic matrix xIN − A. Let µ be the sum of the degrees of the
n largest invariant factors of xIN − A. Then a minimal matrix generating
polynomial of S can be derived from an order basis at precision σKV = dµ/me+
dµ/ne+O(1) [15, 19]. Note that µ gives a bound on the degree of the determinant
of ΠAV

U .
When the values of µ and σKV are not known, and assuming µ � N , early

termination is a good strategy to stop the course of the order basis algorithm.
We use a heuristic method to detect that we have reached order σKV. For
example, we can test if the m smallest values of the ~s-row degree of P remain
unchanged for a few consecutive orders. This condition is similar to getting
consecutive zero discrepancies in the Berlekamp-Massey algorithm [14].

We will from now on set ourselves in the context of early termination in
the block Wiedemann algorithm. We have three candidate algorithms for order
basis in block Wiedemann that allow for early termination : the two online
algorithms M-Basis and oPM-Basis, and the offline algorithm iPM-Basis. In the
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following, we only consider the sequential case as the analysis is equivalent in
the parallel setting. Indeed, using t processors with t divides m will divide the
cost for computing the sequence elements by t. The gain is similar for parallel
computation of order basis.

We demonstrate below that the online algorithms M-Basis
and oPM-Basis can improve offline block Wiedemann complexity by a constant
factor, up to 2, under some conditions. Whereas this gain can only be observed
with M-Basis when the ratio µ/N is small, we show that this is always the case
with oPM-Basis whenever N is big. For the sake of simplicity we now assume
that m = n.
Computing S has dominant cost. Let δ be the minimal value such that a
(δ, ~s)-order basis of F contains ΠAV

U . We know that 2µ/m < δ 6 σKV 6 σC [15].
We will assume that our heuristic stops the order basis algorithm at order δ.

We now compare the complexity of the first two steps of the block Wiede-
mann algorithm : 1) computing the sequence S and 2) computing the (δ, ~s)-order
basis, depending on the choice of order basis algorithm (M-Basis, iPM-Basis or
oPM-Basis). We denote these complexities respectively by CM-Basis, CiPM-Basis
and CoPM-Basis.

M-Basis and oPM-Basis are both online algorithms that only require the first
δ coefficients of F . On the contrary, iPM-Basis requires the first 2t coefficients
of F when 2t−1 < δ 6 2t. Let X be the cost of computing one coefficient of the
sequence F , i.e. UAiV = U(A(Ai−1V )), that is X = Θ(mN(m + log(N)C)).
Then

CM-Basis = δX +O(mωδ2),

CiPM-Basis = 2tX +O(mωδ log(δ)),

CoPM-Basis = δX +O(mωδ log2(δ)).

Proposition 5. The ratio CiPM-Basis/CM-Basis tends to 2t/δ when µ/N tends to
zero.

Proof. First, one has CiPM-Basis
CM-Basis

= 2t/δ+O(ε1)
1+O(ε2)

where ε1 := mω log(δ)/X and ε2 :=

mωδ/X . Since ε1 = O(ε2), it is enough to prove that ε2 tends to 0 to imply that
CiPM-Basis/CM-Basis tends to 2t/δ when µ/N tends to 0.
Using X = Ω(m2N) and δ = O(µ/m), we get that ε2 = O(mω−3µ/N) which
tends to 0 as claimed.

Proposition 6. The ratio CiPM-Basis/CoPM-Basis tends to 2t/δ when N tends to
infinity.

Proof. The proof is similar but with ε2 := mω log2(δ)/X . From ε2 = O(mω−2 log2(δ)/N)
and using δ = O(N) and m = O(log(N)), we deduce that ε2 = O(log3(N)/N)
which tends to 0 when N tends to infinity.

Analysis of the gain due to online algorithms. We will now assume that
either we are using M-Basis and µ/N is small, or we are using oPM-Basis and
N is large. Therefore, Propositions 5 and 6 state that we gain a constant factor
Kδ = 2t/δ compared to offline block Wiedemann. This constant depends on
δ and satisfies 1 6 Kδ < 2. The upper bound is tight as it is easy to find δ
such that Kδ is arbitrarily close to 2. The following proposition states that the
average gain is larger than 1.
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Proposition 7. Let δ be a random variable uniformly distributed between 1 and
σC = 2r. Then the expected value of Kδ tends to 2 ln 2 ' 1.39 when r tends to
infinity.

Proof. If δ were a random variable uniformly distributed between 2t−1 + 1 and
2t, the mean value of Kδ would be

K(t) :=
1

2t−1

2t∑
δ=2t−1+1

Kδ =

2t∑
δ=2t−1+1

2

δ
−−−→
t→∞

2 ln 2.

The actual mean value of Kδ is

1

2r
(K1 +

r∑
i=1

2i−1K(i)) =
K1

2r
+

r∑
j=1

2−jK(r+1−j) −−−→
r→∞

2 ln 2.

7 Practical performance
In this section, we discuss the implementation of our algorithms. The code is
developed and distributed in the LinBox library (www.linalg.org). All the
following benchmarks have been done on an Intel Core i7-4960HQ @ 2.6GHZ
with 16Gb RAM and 4 cores. Only the computations of the block Wiedemann
sequences have been done in parallel as it is the primary motivation for this
approach.

7.1 Polynomial matrix multiplication
Our fast implementation of polynomial matrix multiplication relies on several
optimizations. First, we use the FFLAS package, available through the LinBox
library, as a primitive for matrix multiplication. This allows to reach the proces-
sor’s peak performance for matrix multiplication over word size prime fields [7].
Second, we provide cache friendly DFT transforms for polynomials, which use
SIMD vectorization, i.e. SSE4 instructions. As both matrices and polynomials
must be stored contiguously to be cache friendly, we therefore implement two
data structures, namely matrix of polynomials as well as polynomial of matrices,
and efficient conversions between them.

Table 1 gives a quick preview of the performance of our code. For compar-
ison purposes, we provide the times of two standard libraries: FLINT (www.
flintlib.org) and Mathemagix (www.mathemagix.org). Our code provides
similar or better performance than these reference libraries. In particular, our
optimizations on DFT are close to the ones of Mathemagix, which are known
to be efficient. On the other side, for large matrices, our code performs even
better thanks to the use of optimized BLAS libraries, which rely on the recent
AVX2 instructions set of our processor. Note that Mathemagix does not yet
provide such a support in their matrix_naive type. This emphasizes the benefit
of the FFLAS approach, which always makes use of the most recent technology.
Regarding FLINT’s performance, we explain the gap in performance by our use
of both cache friendly storage and vectorization.
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m, log2(d) Mathemagix FLINT 2.4 our code
16, 10 0.02s 0.26s 0.03s
16, 11 0.04s 0.70s 0.06s
16, 12 0.09s 1.68s 0.13s
16, 13 0.20s 4.52s 0.28s
128, 9 1.00s 26.21s 0.82s
256, 8 4.00s 36.71s 1.75s
512, 9 69.19s 465.66s 19.64s
1024, 6 71.36s 115.52s 13.95s
2048, 5 298.27s 263.88s 48.90s

Table 1: Computation times of polynomial matrix multiplication in Fp[x]
m×m.

Here, p is a 23-bit FFT prime and matrices have degree d.
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Figure 2: Relative performance of two middle products against polynomial matrix
multiplication over Fp[x]

16×16 for p a 23-bit prime.

7.2 Online middle product
Our fast shifted online middle product relies on the half-line product of [11].
Such a choice is driven by its complexity, roughly 1

4M(σ) log(σ), and its simplic-
ity of implementation requiring only an efficient offline middle product. There-
fore, we readily benefit from the optimizations of our polynomial matrix multi-
plication implementation.

Figure 2 illustrates the ratio of timings of the offline and shifted online
middle product algorithms with respect to polynomial matrix multiplication.
As expected, the offline middle product behaves exactly as polynomial matrix
multiplication and the shifted online ratio behaves like 1/4 · log(σ).

7.3 Online order basis
As described in Sections 3 to 5, fast order basis algorithms reduce to polynomial
matrix multiplication. Our implementations of iPM-Basis and oPM-Basis follow
this reduction and therefore mainly use the online middle products of Section 7.2
and the polynomial matrix multiplication of Section 7.1. In practice, for small
values of σ, it appears not surprisingly that using a fast order basis algorithm
is not relevant, and that switching to a quadratic one as M-Basis improves the
performance. From our experiments, we observe that this is always the case for
σ 6 32. In order to speed up order basis implementations, we therefore use an
x32-adic version of our algorithms. For iPM-Basis this corresponds to stopping
the recursion at σ = 32, while for oPM-Basis this comes down to incrementing
k by 32 in the ’for’ loop. For both of them, the calls to Basis are then replaced
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with calls to M-Basis on the input series mod x32.
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Figure 3: Relative performance of two online order basis algorithms against polyno-
mial matrix multiplication. The input matrix power series are in Fp[x]
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23-bit prime.

In Figure 3, we report the relative performance of online order basis, i.e. M-
Basis and oPM-Basis, against the fast offline order basis iPM-Basis. From this
figure, one can first see that a quadratic approach, such as M-Basis , is not
competitive w.r.t. its fast counterpart as soon as σ > 128. The high efficiency
of our polynomial matrix operations (multiplication and middle product) makes
it possible to use the fast variant very early. Furthermore, the larger the matrix
dimensions the earlier fast variants outperform M-Basis.

As shown in Figure 3, oPM-Basis almost keeps up with the performance of
iPM-Basis. The ratio of timings stays below 2 in the given range of orders, de-
spite its theoretical logarithmic behavior. This makes our oPM-Basis algorithm
an interesting approach when online computation makes sense, for example when
computing the matrix power series coefficients is very expensive.

7.4 Block Wiedemann algorithms
As demonstrated in Section 6, using early termination strategy in block Wiede-
mann should benefit in practice from online order basis calculation. In order to
exhibit such a behavior in practice, we compare the timings of computing both
the required sequence elements UAiV and the corresponding order basis for any
approximation order up to a given bound. We characterize which algorithm is
best suited depending on how early the algorithm terminates.

We use a random sparse matrix A ∈ M217(F6946817) with 20 elements per
row and two random dense matrices U, V T ∈ M16×217(F6946817). To give a
fair benchmark, we perform the calculation of the sequence elements UAiV in
parallel (on the columns of V ) while order basis calculation is done sequentially.
Order basis could also benefited from parallel computations but this only affects
the result by a constant factor and does not change our observation.

Figure 4 illustrates the measured times for the first two steps of block Wiede-
mann with early termination using the offline iPM-Basis and online M-Basis,
oPM-Basis algorithms. Note that σ = 214 corresponds to the classic bound
2N/m.

One sees on this figure that whenever early termination leads us to stop at
a value δ smaller than the a priori bound σC, online algorithms can improve
performance. Of course, this is only the case when δ is not close to a power of
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two, where iPM-Basis still remains the fastest. In other cases, M-Basis improves
the performance only for very small approximant orders, which is a consequence
of Proposition 5. As soon as δ is getting larger, the quadratic complexity of M-
Basis is not competitive with the quasi-linearity of iPM-Basis, even with its extra
UAiV ’s.

In the case of oPM-Basis, most of the possible values for δ allow to be faster
than using the fast offline approach. Indeed, it is almost always true that the
extra log(δ) of oPM-Basis is negligible compared to few extra UAiV ’s needed
by iPM-Basis. Except for very few cases around powers of two, this makes
oPM-Basis always the fastest algorithm, as predicted by Proposition 6.
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