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On the Combinatorial Version of the Slepian–Wolf
Problem

Daniyar Chumbalov and Andrei Romashchenko

Abstract

We study the following combinatorial version of the Slepian–Wolf coding scheme. Two isolated Senders are given binary strings
X and Y respectively; the length of each string is equal to n, and the Hamming distance between the strings is at most αn. The
Senders compress their strings and communicate the results to the Receiver. Then the Receiver must reconstruct both strings X
and Y . The aim is to minimize the lengths of the transmitted messages.

For an asymmetric variant of this problem (where one of the Senders transmits the input string to the Receiver without
compression) with deterministic encoding a nontrivial bound was found by A. Orlitsky and K. Viswanathany, [15]. In our paper
we prove a new lower bound for the schemes with syndrome coding, where at least one of the Senders uses linear encoding of
the input string.

For the combinatorial Slepian–Wolf problem with randomized encoding the theoretical optimum of communication complexity
was found in [24], though effective protocols with optimal lengths of messages remained unknown. We close this gap and present
a polynomial time randomized protocol that achieves the optimal communication complexity.

Index Terms

coding theory, communication complexity, pseudo-random permutations, randomized encoding, Slepian–Wolf coding

I. INTRODUCTION

The classic Slepian–Wolf coding theorem characterizes the optimal rates for the lossless compression of two correlated data
sources. In this theorem the correlated data sources (two sequences of correlated random variables) are encoded separately;
then the compressed data are delivered to the receiver where all the data are jointly decoded, see the scheme in Fig. 1. We
denote the block codes used by the Senders (Alice and Bob) as CodeA and CodeB respectively; the block lengths are denoted
as |CodeA(X)| and |CodeB(Y )| respectively (these numbers are binary logarithms of the number of codewords in the block
codes for messages X and Y of a given length). The seminal paper [5] gives a very precise characterization of the profile

Alice: X 7→ CodeA(X)

Bob: Y 7→ CodeB(Y )

Charlie: 〈CodeA(X), CodeB(Y )〉 7→ 〈X,Y 〉

Fig. 1. Slepian–Wolf coding scheme

of accessible compression rates in terms of Shannon’s entropies of the sources. Namely, if the data sources are obtained as
X = (x1 . . . xn) and Y = (y1 . . . yn), where (xi, yi), i = 1, . . . , n is a sequence of i.i.d. random pairs, then all pairs of rates
satisfying the inequalities  |CodeA(X)|+ |CodeB(Y )| ≥ H(X,Y ) + o(n),

|CodeA(X)| ≥ H(X|Y ) + o(n),
|CodeB(Y )| ≥ H(Y |X) + o(n),

can be achieved (with a negligible error probability); conversely, if at least one of the inequalities |CodeA(X) + |CodeB(Y )| ≥ H(X,Y )− o(n),
|CodeA(X)| ≥ H(X|Y )− o(n),
|CodeB(Y )| ≥ H(Y |X)− o(n),

is violated, then the error probability becomes overwhelming. The areas of achievable and non-achievable rates are shown in
Fig. 2 (the hatched green area consists of achievable points, and the solid red area consists of non-achievable points; the gap
between these areas vanishes as n→∞).

A preliminary version of this paper (excluding Theorem 2 and Section 3) was presented at the MFCS 2015. This work was supported in part by ANR
under Grant RaCAF ANR-15-CE40-0016-01.
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|CodeA(x1 . . . xn)|/n

|CodeB(y1 . . . yn)|/n

H(xi|yi) H(xi, yi)

H(yi|xi)

H(xi, yi)

Fig. 2. The areas of achievable and non-achievable rates in the standard Slepian–Wolf theorem.

It is instructive to view the Slepian–Wolf coding problem in the general context of information theory. In the paper “Three
approaches to the quantitative definition of information”, [3], Kolmogorov compared a combinatorial (cf. Hartley’s combi-
natorial definition of information, [1]), a probabilistic (cf. Shannon’s entropy), and an algorithmic approach (cf. Algorithmic
complexity a.k.a. Kolmogorov complexity). Quite a few fundamental concepts and constructions in information theory have
parallel implementations in all three approaches. A prominent example of this parallelism is provided by the formal information
inequalities: they can be equivalently represented as linear inequalities for Shannon’s entropy, for Kolmogorov complexity, [10],
or for (logs of) cardinalities of finite sets, [14], [11]. It is remarkable that many results known in one of these approaches look
very similar to its homologues from the two other approaches, whereas the mathematical techniques and formal proofs behind
them are fairly different.

As for the multi-source coding theory, two homologue theorems are known: the Slepian–Wolf coding theorem in Shannon’s
framework (where the data sources are random variables, and the achievable rates are characterized in terms of the Shannon
entropies of the sources) and Muchnik’s theorem on conditional coding, [13], in Kolmogorov’s framework (where the data
sources are words, and the achievable rates are characterized in terms of the Kolmogorov complexities of the sources). What is
missing in this picture is a satisfactory “combinatorial” version of the Slepian–Wolf theorem (though several partial results are
known, see blow). We try to fill this gap; we start with a formal definition of the combinatorial Slepian–Wolf coding scheme
and then prove some bounds for the areas of achievable rates1.

We focus on the binary symmetric case of the problem. In our (combinatorial) version of the Slepian–Wolf coding problem
the data sources are binary strings, and the correlation between sources means that the Hamming distance between these strings
is bounded. More formally, we consider a communication scheme with two senders (let us call them Alice and Bob) and one
receiver (we call him Charlie). We assume Alice is given a string X and Bob is given a string Y . Both strings are of length
n, and the Hamming distance between X and Y is not greater than a threshold αn. The senders prepare some messages
CodeA(X) and CodeB(Y ) for the receiver (i.e., Alice computes her message given X and Bob computes his message given
Y ). When both messages are delivered to Charlie, he should decode them and reconstruct both strings X and Y . Our aim is
to characterize the optimal lengths of Alice’s and Bob’s messages.

This is the general scheme of the combinatorial version of the Slepian–Wolf coding problem. Let us place emphasis on the
most important points of our setting:
• Alice knows X but not Y and Bob knows Y but not X;
• one way communication: Alice and Bob send messages to Charlie without feedback;
• no communications between Alice and Bob;
• parameters n and α are known to all three parties.

In some sense, this is the “worst case” counterpart of the classic “average case” Slepian-Wolf problem.
It is usual for the theory of communication complexity to consider two types of protocols: deterministic communication

protocols (Alice’s and Bob’s messages are deterministic functions of X and Y respectively, as well as Charlie’s decoding
function) and randomized communication protocol (encoding and decoding procedures are randomized, and for each pair
(X,Y ) Charlie must get the right answer with only a small probability of error ε). In the next section we give the formal
definitions of the deterministic and the randomized versions of the combinatorial Slepian–Wolf scheme and discuss the known
lower and upper bounds for the achievable lengths of messages.

1I. Csiszar and J. Körner described the Slepian–Wolf theorem as “the visible part of the iceberg” of the multi-source coding theory; since the seminal
paper by Slepian and Wolf, many parts of this “iceberg” were revealed and investigated, see a survey in [23]. Similarly, Muchnik’s theorem has motivated
numerous generalizations and extensions in the theory of Kolmogorov complexity. Apparently, a similar (probably even bigger) “iceberg” should also exist in
the combinatorial version of information theory. However, before we explore this iceberg, we should understand the most basic multi-source coding models,
and a natural starting point is the combinatorial version of the Slepian–Wolf coding scheme.
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II. FORMALIZING THE COMBINATORIAL VERSION OF THE SLEPIAN–WOLF CODING SCHEME

In the usual terms of the theory of communication complexity, we study one-round communication protocols for three
parties; two of them (Alice and Bob) send their messages, and the third one (Charlie) receives the messages and computes
the final result. Thus, a formal definition of the communication protocol involves coding functions for Alice and Bob and the
decoding function for Charlie. We are interested not only in the total communication complexity (the sum of the lengths of
Alice’s and Bob’s messages) but also in the trade-off between the two sent messages. In what follows we formally define two
version of the Slepian–Wolf communication scheme — the deterministic and the probabilistic ones.

A. Deterministic communication schemes

In the deterministic framework the communication protocol for the combinatorial Slepian–Wolf coding scheme can be defined
simply as a pair of uniquely decodable mappings — the coding functions of Alice and Bob.

Definition 1: We say that a pair of coding mappings

CodeA : {0, 1}n → {0, 1}mA
CodeB : {0, 1}n → {0, 1}mB

is uniquely decodable for the combinatorial Slepian–Wolf coding scheme with parameters (n, α), if for each pair of images
cA ∈ {0, 1}mA , cB ∈ {0, 1}mB there exist at most one pairs of strings (x, y) such that dist(x, y) ≤ αn, and{

CodeA(x) = cA,
CodeB(y) = cB

(this means that the pair (X,Y ) can be uniquely reconstructed given the values of CodeA(X) and CodeB(Y )). If such a pair
of coding mappings exists, we say that the pair of integers (mA,mB) (the lengths of the codes) is a pair of achievable rates.

If we are interested in effective constructions of the communication scheme, we can also explicitly introduce the decoding
function for Charlie

Decode : (CodeA(X), CodeB(Y )) 7→ (X,Y )

and investigate the computational complexities of these three mappings CodeA, CodeB and Decode.
We say that encoding in this scheme is linear (syndrome-coding), if both functions CodeA and CodeB in Definition 1 can

be understood as linear mappings over the field of 2 elements:

CodeA : Fn2 → FmA2 ,
CodeB : Fn2 → FmB2 .

Further, we say that an encoding is semi-linear, if at least one of these two coding functions is linear.

B. Probabilistic communication schemes

We use the following standard communication model with private sources of randomness:
• each party (Alice, Bob, and Charlie) has her/his own “random coin” — a source of random bits (rA, rB , and rC

respectively),
• the coins are fair, i.e., produce independent and uniformly distributed random bits,
• the sources of randomness are private: each party can access only its own random coin.

In this model the message sent by Alice is a function of her input and her private random bits. Similarly, the message sent by
Bob is a function of his input and his private random bits. Charlie reconstructs X and Y given both these messages and, if
needed, his own private random bits. (In fact, in the protocols we construct in this paper Charlie will not use his own private
random bits. The same time, the proven lower bounds remain true for protocols where Charlie employs randomness.) Let us
give a more formal definition.

Definition 2: A randomized protocol for the combinatorial Slepian–Wolf scheme with parameters (n, α, ε) is a triple of
mappings

CodeA : {0, 1}n × {0, 1}R → {0, 1}mA ,
CodeB : {0, 1}n × {0, 1}R → {0, 1}mB ,

and
Decode : {0, 1}mA+mB × {0, 1}R → {0, 1}n × {0, 1}n

such that for every pair of strings (X,Y ) satisfying dist(X,Y ) ≤ αn probability (over the choice of rA, rB , rC) of the event

Decode(CodeA(X, rA), CodeB(Y, rb), rc) = (X,Y ) (1)

is grater than 1− ε. Here mA is the length of Alice’s message and mB is the length of Bob’s message. The second argument
of the mappings CodeA, CodeB , and Decode should be understood as a sequence of random bits; we assume that each

3
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Fig. 3. The area of non-achievable rates.
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Fig. 4. Non-achievable rates for deterministic encoding.

party of the protocol uses at most R random bits (for some integer R). Condition (1) means that for each pair of inputs
(X,Y ) ∈ {0, 1}n × {0, 1}n satisfying dist(X,Y ) ≤ αn, the probability of the error is less than ε.

When we discuss efficient communication protocols, we assume that the mappings CodeA, CodeB , and Decode can be
computed in time polynomial in n (in particular, this means that only poly(n) random bits can be used in the computation).

There is a major difference between the classic probabilistic setting of the Slepian–Wolf coding and the randomized protocols
for combinatorial version of this problem. In the probabilistic setting we minimize the average communication complexity (for
typical pairs (X,Y )); and in the combinatorial version of the problem we deal with the worst case communication complexity
(the protocol must succeed with high probability for each pair (X,Y ) with bounded Hamming distance).

C. The main results

A simple counting argument gives very natural lower bounds for lengths of messages in the deterministic setting of the
problem:

Theorem 1 ([24]): For all 0 < α < 1/2, a pair (mA,mB) can be an achievable pair of rates for the deterministic combinatorial
Slepian–Wolf problem with parameters (n, α) only if the following three inequalities are satisfied
• mA +mB ≥ (1 + h(α))n− o(n),
• mA ≥ h(α)n− o(n),
• mB ≥ h(α)n− o(n),

where h(α) denotes Shannon’s entropy function,

h(α) := −α logα− (1− α) log(1− α).

Remark 1: The proof of Theorem 1 is a straightforward counting argument. Let us observe that the bound mA + mB ≥
(1 + h(α))n − o(n) (the lower bound for the total communication complexity) remains valid also in the model where Alice
and Bob can communicate with each other, and there is a feedback from Charlie to Alice and Bob (even if we do not count
the bits sent between Alice and Bob and the bits of the feedback from Charlie).
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Fig. 5. Non-achievable rates for deterministic linear encoding.

The asymptotic version of these conditions is shown in Fig. 3: the points in the area below the dashed lines are not
achievable. Notice that these bounds are similar to the classic Slepian–Wolf bounds, see Fig. 2. The correspondence is quite
straightforward: in Theorem 1 the sum of lengths of two messages is lower-bounded by the “combinatorial entropy of the pair”
(1 + h(α))n, which is basically the logarithm of the number of possible pairs (X,Y ) with the given Hamming distance; in
the classic Slepian–Wolf theorem the sum of two channel capacities is bounded by the Shannon entropy of the pair. Similarly,
in Theorem 1 the lengths of both messages are bounded by h(α)n, which is the “combinatorial conditional entropy” of X
conditional on Y or Y conditional on X , i.e., the logarithm of the maximal number of X’s compatible with a fixed Y and
vice-versa; in the standard Slepian–Wolf theorem the corresponding quantities are bounded by the two conditional Shannon
entropies.

Though the trivial bound from Theorem 1 looks very similar to the lower bounds in the classic Slepian–Wolf theorem and
in Muchnik’s conditional coding theorem, this parallelism cannot be extended further. In fact, the bound from Theorem 1 is
not optimal (for the deterministic communication protocols). Actually we cannot achieve any pairs of code lengths in Θ(n)-
neighborhoods of the points (n, h(α)n) and (h(α)n, n) (around the points PA and PB in Fig. 3). This negative result was
proven by Orlitsky and Viswanathany in [15], see also a discussion in [24]. More specifically, [15] analyzes an asymmetric
version of the Slepian–Wolf scheme and proves a lower bound for the length of CodeA(X) assuming that CodeB(Y ) = Y .
Technically, [15] shows that for some F (α) > h(α) the pair of rates (F (α)n, n) is not accessible (i.e., the point QA and its
symmetric counterpart QB in Fig. 4 are not achievable). The proof in [15] employs the techniques from coding theory (see
Proposition 8 in Appendix); the value of F (α) can be chosen as the best known lower bound for the rate of an error correcting
code that can handle the fraction of errors α.

Though this argument deals with only very special type of schemes where CodeB(Y ) = Y , it also implies some bound for
the general Slepian–Wolf problem. Indeed, since the points QA and QB are not achievable, we can conclude that all points
downwards and to the left from these points are non achievable either (by decreasing the rates we make the communication
problem only harder). So we can exclude two right triangles with a vertical and horizontal legs meeting at points QA and QB ,
see Fig. 4. Further, if some point (mA, n) is not achievable, than all points (mA, n

′) with n′ > n cannot be achievable either
(at the rate n Bob can communicate the entire value of Y , so increasing the capacity of Bob’s channel cannot help any more).
Hence, we can exclude the entire vertical stripe to the left from QA and symmetrically the entire horizontal stripe below QB ,
as shown in Fig. 4. Thus, the bound from Theorem 1 does not provide the exact characterization of the set of achievable pairs.
Here we see a sharp contrast with the classic Slepian–Wolf coding.

In this paper we prove another negative result for all linear and even for all semi-linear encodings:
Theorem 2: For every α ∈ (0, 1

4 ) there exists an α′ ∈ (α, 1
2 ) with the following property. For all pairs (mA,mB) achievable

for the semi-linear deterministic combinatorial Slepian–Wolf scheme with the distance α, it holds that

mA +mB ≥ (1 + h(α′))n− o(n). (2)

Moreover, the value of α′ can be defined explicitly as

α′ :=
1−
√

1− 4α

2
. (3)

The geometrical meaning of Theorem 2 is shown in Fig. 5: for every α < 1/4 all pairs of rates below the line mA +mB =
(1 + h(α′))n − o(n) are not achievable. This is a strictly better bound than the condition mA + mB ≥ (1 + h(α))n − o(n)
from Theorem 1. Notice that around the points QA and QB the bound from [15] remains stronger than (2) (we borrowed the
light red area from Fig. 4). This happens because the McEliece–Rodemich–Rumsey–Welch bound (plugged in the proof of the
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bound in [15]) is stronger than the Elias–Bassalygo bound (implicitly used in the proof of Theorem 2). The area where (2) is
better than any other known bound is shown in Fig. 5 in dark red color.

It is instructive to compare the known necessary and sufficient conditions for the achievable rates. If we plug some linear
codes approaching the Gilbert–Varshamov bound in the construction from [24, theorem 2], we obtain the following proposition.

Proposition 1: For each real α ∈ (0, 1
4 ) there exists a function δ(n) = o(n) such that and for all n, all pairs of integers

(mA,mB) satisfying
• mA +mB ≥ (1 + h(2α))n+ δ(n),
• mA ≥ h(2α)n+ δ(n),
• mB ≥ h(2α)n+ δ(n)

are achievable for the deterministic combinatorial Slepian–Wolf scheme with parameters (n, α). Moreover, these rates can be
achieved with some linear schemes (where encodings of Alice and Bob are linear).

In Fig. 6 we combine together the known upper and lower bounds: the points in the light red area are non-achievable
(for any deterministic scheme) due to Theorem 1 and [15]; the points in the dark red area are non-achievable (for linear and
semi-linear deterministic scheme) by Theorem 2; the points in the hatched green area are achievable due to Proposition 1. The
gap between the known sufficient and necessary conditions remains pretty large.

|CodeA(X)|/n

|CodeB(Y )|/n

h(α) 1 + h(α)

h(α)

1 + h(α′)

1

1

h(2α)

1 + h(2α)

Fig. 6. Achievable and non-achievable rates for deterministic linear encoding.
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|CodeB(X)|/n

h(α) 1 + h(α)

h(α)

1 + h(α)

PA

PB

1

1

Fig. 7. The areas of achievable and non-achievable rates for randomized protocols.

Our proof of Theorem 2 (see Section III) is inspired by the classic proof of the Elias–Bassalygo bound from coding theory,
[4]. Our usage of the Elias–Bassalygo bound is not black-box: we use the proofs rather than the statement of these theorems.
This explains why we cannot employ instead of the Elias–Bassalygo bound any other bound from coding theory, and therefore
there is no simple way to improve (3). Also, we do not know whether this bound holds for non-linear encodings. This seems
to be an interesting question in between coding theory and communication complexity theory.

Thus, we see that the solution of the deterministic version of the combinatorial Slepian–Wolf problem of is quite different
from the standard Slepian–Wolf theorem. What about the probabilistic version? The same conditions as in Theorem 3 hold for
the probabilistic protocols:

Theorem 3 ([24]): For all ε ≥ 0 and 0 < α < 1/2, a pair (mA,mB) can be an achievable pair of rates for the probabilistic
combinatorial Slepian–Wolf problem with parameters (n, α, ε) only if the following three inequalities are satisfied

6



• mA +mB ≥ (1 + h(α))n− o(n),
• mA ≥ h(α)n− o(n),
• mB ≥ h(α)n− o(n).

Remark 2: The bounds from Theorem 3 holds also for the model with public randomness, where all the parties access a
common source of random bits.

In the contrast to the deterministic case, for the probabilistic setting the sufficient conditions for achievable pairs are very
close to the basic lower bound above. More precisely, for every ε > 0, all pairs in the hatched (green) area in Fig. 7 are
achievable for the combinatorial Slepian–Wolf problem with parameters (n, α, ε), see [24]. The gap between known necessary
and sufficient conditions (the hatched and non-hatched areas in the figure) vanishes as n tends to infinity. Thus, for randomized
protocols we get a result similar to the classic Slepian–Wolf theorem.

So, the case of randomized protocol for the combinatorial Slepian–Wolf problem seems closed: the upper and lower
bounds known from [24] (asymptotically) match each other. The only annoying shortcoming of the result in [24] was
computational complexity. The protocols in [24] require exponential computations on the senders and the receiver sides.
In this paper we improve computational complexity of these protocols without degrading communication complexity. We
propose a communication protocol with (i) optimal trade-off between the lengths of senders messages and (ii) polynomial time
algorithms for all parties. More precisely, we prove the following theorem2:

Theorem 4: There exists a real d > 0 and a function δ(n) = o(n) such that for all 0 < α < 1/2 and all integers n, every
pair (mA,mB) that satisfies three inequalities
• mA +mB ≥ (1 + h(α))n+ δ(n),
• mA ≥ h(α)n+ δ(n),
• mB ≥ h(α)n+ δ(n),

is achievable for the combinatorial Slepian–Wolf coding problem with parameters (n, α, ε(n) = 2−Ω(nd)) (in the communication
model with private sources of randomness). Moreover, all the computations in the communication protocol can be done in
polynomial time.
Poly-time protocols achieving the marginal pairs (n, h(α)n + o(n)) and (h(α)n + o(n), n) were originally proposed in [19]
and later in [22]. We generalize these results: we construct effective protocols for all points in hatched area in Fig. 7. In fact,
our construction uses the techniques proposed in [19] and [20].

By definition of the combinatorial Slepian–Wolf coding problem, our proof of Theorem 4 provides a pair of randomized
codes and a decoding function, which succeed with high probability on every pair of valid inputs (i.e., on every pair of inputs
with bounded Hamming distance). If we fix the random bits used in our encoding, we obtain a deterministic scheme that
succeeds on most pairs of inputs. Moreover, we can fix the values of these random bits to a simply computable sequence,
so that the resulting deterministic scheme succeeds on most pairs of inputs, and the encoding and decoding procedures can
be performed in polynomial time. Such a scheme gives a solution for the classic (probabilistic) Slepian–Wolf problem with
asymptotically optimal communication complexity, though the constants hidden in the small-o notation would be worse than
in most known constructions. In particular, the resulting o(n)-terms would worse that those from the poly-time computable
scheme in [12] discussed below. However, the main challenge of our proof is to construct a scheme that work well not for the
majority but for all pairs of inputs.

The rest of this paper is organized as follows. In section III we discuss a non-trivial lower bound for communication
complexity of the deterministic version of the combinatorial Slepian–Wolf coding scheme (a proof of Theorem 2). The argument
employs binary Johnson’s bound, similarly to the proof of the well known Elias–Bassalygo bound in coding theory.

In Section IV we provide an effective protocol for the randomized version of the combinatorial Slepian–Wolf coding scheme
(a proof of Theorem 4). Our argument combines several technical tools: reduction of one global coding problem with strings
of length n to many local problems with strings of length log n (similar to the classic technique of concatenated codes);
Reed–Solomon checksums; pseudo-random permutations; universal hashing. Notice that a similar technique of concatenated
codes combined with syndrome encoding was used in [12] to construct an efficient version of the classic Slepian–Wolf scheme
(which is allowed to fails on a small fraction of input pairs). Our construction is technically more involved since we need to
succeed on all valid pairs of inputs. The price that we pay for this is a slower convergence to the asymptotical limits: the
remainder terms o(n) from our proof are larger than those from [12].

In conclusion we discuss how to make the protocol from Theorem 4 more practical — how to simplify the algorithms
involved in the protocol. The price for this simplification is a weaker bound for the probability of error.

D. Notation

Through this paper, we use the following notation:

2Not surprisingly, the inequalities in Theorem 3 and Theorem 4 are very similar. The gap between necessary and sufficient conditions for achievable pairs
is only o(n).
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• we denote h(α) := α log(1/α)+(1−α) log 1/(1−α), and use the standard asymptotic bound for the binomial coefficients:(
n
αn

)
= 2h(α)n+O(logn),

• we denote by ω(x) the weight (number of 1’s) in a binary string x,
• for a pair of binary strings x, y of the same length we denote by x⊕ y their bitwise sum modulo 2,
• we denote by dist(v, w) the Hamming distance between bit strings v and w (which coincides with ω(x⊕ y)),
• For an n-bits string X = x1 . . . xn and a tuple of indices I = 〈i1, . . . , is〉 we denote XI := xi1 . . . xis .

III. LOWER BOUNDS FOR DETERMINISTIC PROTOCOLS WITH SEMI-LINEAR ENCODING

In this section we prove Theorem 2. We precede the proof of this theorem by several lemmas. First of all, we define the
notion of list decoding for the Slepian–Wolf scheme (similar to the standard notion of list decoding from coding theory).

Definition 3: We say that a pair of coding mappings

CodeA : {0, 1}n → {0, 1}mA
CodeB : {0, 1}n → {0, 1}mB (4)

is L-list decodable for the combinatorial Slepian–Wolf coding scheme with parameters (n, α), if for each pair of images
cA ∈ {0, 1}mA , cB ∈ {0, 1}mB there exist at most L pairs of strings (x, y) such that dist(x, y) ≤ αn, and{

CodeA(x) = cA,
CodeB(y) = cB .

The lengths of codewords of poly(n)-decodable mappings must obey effectively the same asymptotical bounds as the
codewords of uniquely decodable mappings. Let us formulate this statement more precisely.

Lemma 1: If (mA,mB) is an achievable pair of integers for the combinatorial Slepian–Wolf scheme with parameters (n, α)
with list decoding (with the list size L = poly(n)), then
• mA +mB ≥ (1 + h(α))n− o(n),
• mA ≥ h(α)n− o(n),
• mB ≥ h(α)n− o(n).

The lemma follow from a standard counting argument. The lower bounds in this lemma are asymptotically the same as the
bounds for the schemes with unique decoding in Theorem 3. The difference between the right-hand side of the inequalities in
this lemma and in Theorem 3 is only logL, which is negligible (an o(n)-term) as L = poly(n).

We will use the following well known bound from coding theory.
Lemma 2 (Binary Johnson’s bound): Let α and α′ be positive reals satisfying (3). Then for every list of n-bits strings vi,

v1, . . . , v2n+1 ∈ {0, 1}n

with Hamming weights at most α′n (i.e., all vi belong to the ball of radius α′n around 0 in Hamming’s metrics), there exists
a pair of strings vi, vj (i 6= j) such that

dist(vi, vj) ≤ 2αn.

Comment: Johson’s bounds were suggested in [2] as limits on the size of error-correcting codes. Several extensions and
generalizations of these bounds were found in subsequent works, see [16]. An elementary and self-contained proof of Lemma 2
can be found also in [21].

Now we are ready to prove the main technical lemma: every pair of mappings that is uniquely decodable for the Slepian–Wolf
scheme with parameters (n, α) must be also poly(n)-decodable with parameters (n, α′) with some α′ > α. The next lemma
is inspired by the proof of Elias–Bassalygo’s bound.

Lemma 3: Let α and α′ be positive reals as in (3). If a pair of integers (mA,mB) is achievable for the combinatorial
semi-linear Slepian–Wolf scheme with parameters (n, α) (with unique decoding), then the same pair is achievable for the
combinatorial Slepian–Wolf scheme for the greater distance α′ with (2n)-list decoding. The value of α′ can be explicitly
defined from (3).

Proof: Let as fix some pair of encodings

CodeA : {0, 1}n → {0, 1}mA ,
CodeB : {0, 1}n → {0, 1}mB

that is uniquely decodable for pairs (x, y) with the Hamming distance αn. We assume that at least one of these mappings (say,
CodeA) is linear. To prove the lemma we show that the same pair of encodings is list poly(n)-list decodable for the pairs of
strings with a greater Hamming distance α′n.

Let us fix some cA ∈ {0, 1}mA and cB ∈ {0, 1}mB , and take the list of all CodeA- and CodeB-preimages of these points:
• let {xi} be all strings such that CodeA(xi) = cA, and
• let {yj} be all strings such that CodeB(yj) = cB .
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Our aim is to prove that the number of pairs (xi, yj) such that dist(xi, yj) ≤ α′n is not greater than 2n. Suppose for the sake
of contradiction that the number of such pairs is at least 2n+ 1.

For each pair (xi, yj) that satisfies dist(xi, yj) ≤ α′n we take their bitwise sum, v := xi⊕ yj . Since the Hamming distance
between xi and yj is not greater than α′n, the weight of v is not greater than α′n. Thus, we get at least 2n + 1 different
strings vs with Hamming weights not greater than α′n. From Lemma 2 it follows that there exist a pair of strings vs1 , vs2
(say, vs1 = xi1 ⊕ yj1 and vs2 = xi2 ⊕ yj2 ) such that dist(vs1 , vs2) ≤ 2αn. Hence, there exists a string w that is (αn)-close to
both vs1 and vs2 , i.e.,

dist(vs1 , w) ≤ αn and dist(vs2 , w) ≤ αn.

We use this w as a translation vector and define

z1 := xi1 ⊕ w and z2 := xi2 ⊕ w.

For the chosen w we have
dist(z1, yj1) = ω(xi1 ⊕ w ⊕ yi1) = dist(vs1 , w) ≤ αn

and
dist(z2, yj2) = ω(xi2 ⊕ w ⊕ yi2) = dist(vs2 , w) ≤ αn.

Further, since CodeA(xi1) = CodeA(xi2) = cA and the mapping CodeA is linear, we get CodeA(xi1⊕w) = CodeA(xi2⊕w).
Hence,

CodeA(z1) = CodeA(xi1 ⊕ w) = CodeA(xi2 ⊕ w) = CodeA(z2).

Thus, we obtain two different pairs of strings (z1, yj1) and (z2, yj2) with the Hamming distances bounded by αn, such that{
CodeA(z1) = CodeA(z2),
CodeB(yj1) = CodeB(yj2).

This contradicts the assumption that the codes CodeA and CodeB are uniquely decodable for pairs at the distance αn. The
lemma is proven.

Now we can prove Theorem 2. Assume that a pair of integers (mA,mB) is achievable for the combinatorial Slepian–Wolf
coding scheme with unique decoding for a distance αn. From Lemma 3 it follows that the same pair is achievable for the
combinatorial Slepian–Wolf coding scheme with (2n)-list decoding with a greater distance α′n. Then, we apply the first
inequality of Lemma 1 and get the required bound for mA and mB .

IV. RANDOMIZED POLYNOMIAL TIME PROTOCOL

A. Some technical tools

In this section we summarize the technical tools that we use to construct an effective randomized protocol.
1) Pseudo-random permutations:
Definition 4: For a pair of distributions ρ1, ρ2 on a finite set S we call by the distance between ρ1 and ρ2 the sum∑

x∈S
|ρ1(x)− ρ2(x)|

(which is the standard l1-distance, if we understand the distributions as vectors whose dimension is equal to the size of S).
A distribution on the set Sn of permutations of {1, . . . , n} is called almost t-wise independent if for every tuple of indices

1 ≤ i1 < i2 < . . . < it ≤ n, the distribution of (π(i1), π(i2), . . . , π(it)) for π chosen according to this distribution has distance
at most 2−t from the uniform distribution on t-tuples of t distinct elements from {1, . . . , n}.

Proposition 2 ([18]): For all 1 ≤ t ≤ n, there exists an integer T = O(t log n) and an explicit map Π : {0, 1}T → Sn,
computable in time poly(n), such that the distribution Π(s) for random s ∈ {0, 1}T is almost t-wise independent.

2) Error correcting codes:
Proposition 3 (Reed-Solomon codes): Assume m + 2s < 2k. Then we can assign to every sequence of m strings X =

〈X1, . . . , Xm〉 (where Xj ∈ {0, 1}k for each j) a string of checksums Y = Y (X) of length (2s+ 1)k,

Y : {0, 1}km → {0, 1}(2s+1)k

with the following property. If at most s strings Xj are corrupted, the initial tuple X can be uniquely reconstructed given the
value of Y (X). Moreover, encoding (computation X 7→ Y (X)) end decoding (reconstruction of the initial values of X) can
be done in time poly(2k).

Proof: The required construction can be obtained from a systematic Reed–Solomon code with suitable parameters (see,
e.g., [7]). Indeed, we can think of X = 〈X1, . . . , Xm〉 as of a sequence of elements in a finite field F = {q1, q2, . . . , q2k}.
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Then, we interpolate a polynomial P of degree at most m− 1 such that P (qi) = Xi for i = 1, . . . ,m and take the values of
P at some other points of the field as checksums:

Y (X) := 〈P (am+1), P (am+2), . . . , P (am+2s+1)〉.

The tuple
〈X1, . . . , Xm, P (am+1), P (am+2), . . . , P (am+2s+1)〉

is a codeword of the Reed–Solomon code, and we can recover it if at most s items of the tuple are corrupted. It is well known
that the error-correction procedure for Reed–Solomon codes can be implemented in polynomial time.

3) Universal hashing:
Proposition 4 (universal hashing family, [8]): There exists a family of poly-time computable functions

hashi : {0, 1}n → {0, 1}k

such that ∀x1, x2 ∈ {0, 1}n, x1 6= x2 it holds

probi[hashi(x1) = hashi(x2)] = 1/2k,

where index i ranges over {0, 1}O(n+k) (i.e., each hash function from the family can be specified by a string of length O(n+k)
bits).

Such a family of hash functions can be constructed explicitly: the value of hashi(x) can be computed in polynomial time
from x and i.

The parameter k in Proposition 4 is referred to as the length of the hash.
The following claim is an (obvious) corollary of the definition of a universal hashing family. Let hashi(x) be a family of

functions satisfying Proposition 4. Then for every S ⊂ {0, 1}n, for each x ∈ S,

probi[∃x′ ∈ S s.t. x′ 6= x and hashi(x) = hashi(x
′)] <

|S|
2k
.

This property allows to identify an element in S by its hash value.
4) The law of large numbers for t-independent sequences: The following version of the law of large numbers is suitable

for our argument:
Proposition 5 (see [17], [9], [19]): Assume ξ1, . . . , ξm are random variables ranging over {0, 1}, each with expectation at

most µ, and for some c < 1, for every set of t = mc indices i1, . . . , it we have

prob[ξi1 = . . . = ξit = 1] ≤ µt.

If t� µm, then

prob

[
m∑
i=1

ξi > 3µm

]
= 2−Θ(mc).

More technically, we will use the following lemma:
Lemma 4: (a) Let ρ be a positive constant, k(n) = log n, and δ = δ(n) some function of n. Then for each pair of subsets

∆, I ⊂ {1, . . . , k} such that |∆| = k and |I| = ρn, for a k-wise almost independent permutation π : {1, . . . , n} → {1, . . . , n},

µ := probπ
[ ∣∣ |π(I) ∩∆| − ρk

∣∣ > δk
]

= O

(
1

δ2k

)
.

(b) Let {1, . . . , n} = ∆1 ∪ . . . ∪∆m, where ∆j are disjoint sets of cardinality k (so m = n/k). Also we let t = mc (for
some c < 1) and assume t� µm. Then, for a (tk)-wise almost independent permutation π, the probabilities

probπ
[ ∣∣π(I) ∩∆j

∣∣ > (ρ+ δ)k for ≥ 3µm different j
]

and
probπ

[ ∣∣π(I) ∩∆j

∣∣ < (ρ− δ)k for ≥ 3µm different j
]

are both not greater than 2−Θ(mc).
(The proof is deferred to Section IV-F.)

Notice that a uniform distribution on the set of all permutation is a special case of a k-wise almost independent permutation.
So the claims of Lemma 4 can be applied to a uniformly chosen random permutation.
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B. Auxiliary communication models: shared and imperfect randomness
The complete proof of Theorem 4 involves a few different technical tricks. To make the construction more modular and

intuitive, we split it in several possibly independent parts. To this end, we introduce several auxiliary communication models.
The first two models are somewhat artificial; they are of no independent interest, and make sense only as intermediate steps
of the proof of the main theorem. Here is the list of our communication model:
Model 1. The model with partially shared sources of perfect randomness: Alice and Bob have their own sources of
independent uniformly distributed random bits. Charlie has a free access to Alice’s and Bob’s sources of randomness (these
random bits are not included in the communication complexity); but Alice and Bob cannot access the random bits of each
other.
Model 2. The model with partially shared sources of T -non-perfect randomness: Alice and Bob have their own (independent
of each other) sources of randomness. However these sources are not perfect: they can produce T -independent sequences of
bits and T -wise almost independent permutations on {1, . . . , n}. Charlie has a free access to Alice’s and Bob’s sources of
randomness, whereas Alice and Bob cannot access the random bits of each other.
Model 3. The standard model with private sources of perfect randomness (our main model): In this model Alice and
Bob have their own sources of independent uniformly distributed random bits. Charlie cannot access random bits of Alice and
Bob unless they include these bits in their messages.

We stress that we variate only the rules of access to the auxiliary random bits; in all these models, Alice and Bob access
their own inputs (strings x and y) but cannot access the inputs of each other.

We show that in all these models the profile of achievable pairs of rates is the same as in Theorem 3 (the hatched area in
Fig. 7). We start with an effective protocol for Model 1, and then extend it to Model 2, and at last to Model 3.

C. An effective protocol for Model 1 (partially shared sources of perfect randomness)
In this section we show that all pairs of rates from the hatched area in 4 are achievable for Model 1. Technically, we prove

the following statement.
Proposition 6: The version of Theorem 4 holds for the Communication Model 1.
Remark 1. Our protocol involves random objects of different kinds: randomly chosen permutations and random hash functions

from a universal family. In this section we assume that the used randomness is perfect. This means that all permutations are
chosen with the uniform distribution, and all hash functions are chosen independently.

1) Parameters of the construction: Our construction has some “degrees of freedom”; it involves several parameters, and
values of these parameters can be chosen in rather broad intervals. In what follows we list these parameters, with short
comments.
• λ is any fixed number between 0 and 1 (this parameter controls the ratio between the lengths of messages sent by Alice

and Bob);
• κ1, κ2 (some absolute constants that control the asymptotic of communication complexity hidden in the o(·)-terms in the

statements of Theorem 4 and Proposition 7);
• k(n) = log n (we will cut strings of Alice and Bob in “blocks” of length k; we can afford the brute force search over all

binary strings of length k, since 2k is polynomial in n);
• m(n) = n/k(n) (when we split n-bits strings into blocks of length k, we get m blocks);
• r(n) = O(log k) = O(log log n) (this parameter controls the chances to get a collision in hashing; we choose r(n) so

that 1� r(n)� k);
• δ(n) = k−0.49 = (log n)−0.49 (the threshold for deviation of the relative frequency from the probability involved in the

law of large numbers; notice that we choose δ(n) such that 1√
k
� δ(n)� k);

• σ = Θ( 1
(logn)c ) for some constant c > 0 (in our construction σn is the length of the Reed-Solomon checksum; we chose

σ such that σ → 0);
• t (this parameter characterize the quality of the random bits used by Alice and Bob; accordingly, this parameter is involved

in the law(s) of large numbers used to bound the probability of the error; we let t(n) = mc for some c > 0).
2) The scheme of the protocol: Alice’s part of the protocol:

(1A) Select at random a tuple of λn indices I = {i1, i2, . . . , iλn} ⊂ {1, . . . , n}. Technically, we may assume that Alice chooses
at random a permutation πI on the set {1, 2, . . . , n} and lets I := πI({1, 2, . . . , λn}).

(2A) Send to the receiver the bits XI = xi1 . . . xiλn , see Fig. 8.
(3A) Choose another random permutation πA : {1, . . . , n} → {1, . . . , n} and permute the bits of X , i.e., let3 X ′ = x′1 . . . x

′
n :=

xπA(1) . . . xπA(n) (see Fig. 9). Further, divide X ′ into blocks of length k(n), i.e., represent X ′ as a concatenation X ′ =
X ′1 . . . X

′
m, where X ′j := x′(j−1)k+1x

′
(j−1)k+2 . . . x

′
jk for each j (see Fig. 10).

3In what follows we consider also the πA-permutation of bits in Y and denote it Y ′ = y′1 . . . y
′
n := yπA(1) . . . yπA(n). Thus, the prime in the notation

(e.g., X′ and Y ′) implies that we permuted the bits of the original strings by πA.
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X : x1 x2 x3 x4 x5 . . . xn−1 xn

λn randomly chosen bits

Alice Charlie
x5 . . . xnx4x2

x2x1 . . . xn

λn

Fig. 8. Steps 1A and 2A: Alice selects λn bits in X and sends them to Charlie.

X : x1 x2 x3 . . . xn

X ′ : x7 xn x1 . . . x3

πA :

Fig. 9. Step 3A: πA permutes the bits of X = x1x2 . . . xn and obtains X′

(4A) Then Alice computes hash values of these blocks. More technically, we consider a universal family of hash functions

hashAl : {0, 1}k → {0, 1}h(α)(1−λ)k+κ1δk+κ2 log k+r.

With some standard universal hash family, we may assume that these hash functions are indexed by bit strings l of length
O(k), see Proposition 4. Alice chooses at random m indices l1, . . . , lm of hash functions. Then Alice applies each hashlj
to the corresponding block X ′j and sends to Charlie the resulting hash values hashAl1(X ′1), . . . ,hashAlm(X ′m), see Fig. 10.

(5A) Compute the Reed-Solomon checksums of the sequence X ′1, . . . , X
′
m that are enough to reconstruct all blocks X ′j if most

σm of them are corrupted, and send them to Charlie. These checksums make a string of O(σmk) bits, see Proposition 3.
Summary: Alice sends to Charlie three tranches of information,
(i) λn bits of X selected at random,

(ii) hashes for each of m = n/k blocks in the permuted string X ′,
(iii) the Reed–Solomon checksums for the blocks of X ′.

Bob’s part of the protocol:
(1B) Choose at random permutation πB : {1, . . . , n} → {1, . . . , n} and use it to permute the bits of Y , i.e., let4 Y ′′ =

y′′1 . . . y
′′
n := yπB(1) . . . yπB(n), see Fig. 11.

Further, divide Y ′′ into blocks of length k, and represent Y ′′ as a concatenation Y ′′ = Y ′′1 . . . Y ′′m, where Y ′′j :=
y′′(j−1)k+1y

′′
(j−1)k+2 . . . y

′′
jk for each j, see Fig. 12.

(2B) Then choose at random m hash functions hashBlj from a universal family of hash functions

hashBl : {0, 1}k → {0, 1}(1−λ)k+h(α)λk+κ1δk+κ2 log k+r

(we assume that lj are (T/k)-independent) and send to Charlie random hash values hashBl1(Y ′′1 ), . . . ,hashBlm(Y ′′m), see
Fig. 12.
Similarly to (4A), we may assume that these hash functions are indexed by bit strings l of length O(k), see Proposition 4.

4Similarly, in what follows we apply this permutation to the bits of X and denote X′′ = x′′1 . . . x
′′
n := xπB(1) . . . xπB(n). Thus, the double prime in the

notation (e.g., X′′ and Y ′′) implies that we permuted the bits of the original strings by πB .
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x′1 . . . x′k x′k+1
. . . x′2k . . . x′n−k . . . x′n

X ′1 X ′2 X ′m

τA bits hash τA bits hash . . . τA bits hash

hashAl1(X ′1) hashAl2(X ′2) hashAlm(X ′m)

Fig. 10. Step 4A: hashing the blocks of X′; the length of each hash is equal to τA := h(α)(1− λ)k + κ1δk + κ2 log k + r.

Y : y1 y2 y3 . . . yn

Y ′′ : y4 yn−1 y1 . . . y2

πB :

Fig. 11. Step 1B : πB permutes the bits of Y = y1y2 . . . yn and obtains Y ′

(3B) Compute the Reed-Solomon checksums of the sequence Y ′′1 , . . . , Y
′′
m, that are enough to reconstruct all blocks Y ′′j , if at

most σm of them are corrupted, and send them to Charlie. These checksums should be a string of length O(σmk) bits,
see Proposition 3.

Summary: Bob sends to Charlie two tranches of information,
(i) hashes for each of m = n/k blocks in the permuted string Y ′′,

(ii) the Reed–Solomon checksums for the blocks of Y ′′.

Charlie’s part of the protocol:
(1C) Apply Bob’s permutation πB to the positions of bits selected by Alice, and denote the result by I ′′, i.e.,

I ′′ = {πB(i1), . . . , πB(iλn)}.

Then split indices of I ′′ into m disjoint parts corresponding to the different intervals Intj = {(j − 1)k + 1, (j − 1)k +
2, . . . , jk}, and I ′′j := I ′′ ∩ Intj (the red nodes in Fig. 13). Further, for each j = 1, . . . ,m denote by XI′′j

the bits sent
by Alice, that appear in the interval Intj after permutation πB . (We will show later that the typical size of XI′′j

is close
to λk.)

(2C) For each j = 1, . . . ,m try to reconstruct Y ′′j . To this end, find all bit strings Z = z1 . . . zk that satisfy a pair of conditions
(Cond1) and (Cond2) that we formulate below.
We abuse notation and denote by ZI′′j the subsequence of bits from Z that appear at the positions determined by I ′′j . That
is, if

I ′′j = {(j − 1)k + s1, · · · , (j − 1)k + sl},

where
(j − 1)k + s1 < (j − 1)k + s2 < · · · < (j − 1)k + sl,

then ZI′′j = zs1zs2 . . . zsl . With this notation we can specify the required property of Z:
(Cond1) dist(XI′′j

, ZI′′j ) ≤ (α+ δ)|I ′′j |, see Fig. 14,
(Cond2) hashBlj (Z) must coincide with the hash value hashBlj (Y

′′
j ) received from Bob.

If there is a unique Z that satisfies these two conditions, then take it as a candidate for Y ′′j ; otherwise (if there is no such
Z or if there exist more than one Z that satisfy these conditions) we say that the procedure of reconstruction of Y ′′j fails.
Remark 1: The requirement from (Cond1) makes sense since in a typical case the indices from I ′′ are somehow uniformly
distributed.
Remark 2: There can be two kinds of troubles at this stage. First, for some blocks Y ′′j reconstruction fails (this happens when
Charlie gets no or more than one Z that satisfy (Cond1) and (Cond2)). Second, for some blocks Y ′′j the reconstruction
procedure seemingly completes, but the obtained result is incorrect (Charlie gets a Z which is not the real value of Y ′′j ).
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y′′1 . . . y′′k y′′k+1
. . . y′′2k . . . y′′n−k . . . y′′n

Y ′′1 Y ′′2 Y ′′m

τB bits hash τB bits hash . . . τB bits hash

hashBl1(Y ′′1 ) hashBl2(Y ′′2 ) hashBlm(Y ′′m)

Fig. 12. Step 2B : hashing the blocks of X′; the length of each hash is equal to τB := (1− λ)k + h(α)λk + κ1δ · k + κ2 log k + r.

X ′′j :

Y ′′j :

. . . x42 ? ? x357 ? . . . x73 . . .

≈ λk bits are received from Alice

. . . ? ? ? ? ? . . . ? . . .

Fig. 13. Step 6C : for each block X′′
j Charlie typically gets from Alice ≈ λk bits

In what follows we prove that both events are rare. In a typical case, at this stage most (but not all!) blocks Y ′′j are
correctly reconstructed.

(3C) Use Reed-Solomon checksums received from Bob to correct the blocks Y ′′j that we failed to reconstruct or reconstructed
incorrectly at step (2C).
Remark 3: Below we prove that in a typical case, after this procedure we get correct values of all blocks Y ′′j , so
concatenation of these blocks gives Y ′′.

(4C) Apply permutation π−1
B to the bits of Y ′′ and obtain Y .

(5C) Permute bits of Y and XI using permutation πA.
(6C) For each j = 1, . . . ,m try to reconstruct X ′j . To this end, find all bit strings W = w1 . . . wk such that
(Cond3) at each position from I ′ ∩ Intj the bit from X ′ (in the j-th block) sent by Alice coincides with the corresponding

bit in W ,
(Cond4) dist(Y ′Intj\I′j

,WIntj\I′j ) ≤ (α+ δ)|Intj \ I ′j |
(Cond5) hashAlj (W ) coincides with the hash value hashAlj (X

′
j) received from Alice.

If there is a unique W that satisfies these conditions, then take this string as a candidate for X ′j ; otherwise (if there is no
such W or if there exist more than one W satisfying these conditions) we say that reconstruction of X ′j fails.
Remark: We will show that in a typical case, most (but not all) blocks X ′j will be correctly reconstructed.

(7C) Use Reed-Solomon checksums received from Alice to correct the blocks X ′j that were incorrectly decoded at step (6C).
Remark: We will show in a typical case, after this procedure we get correct values of all blocks X ′j , so concatenation of
these blocks gives X ′.

(8C) Apply permutation π−1
A to the positions of bits of X ′ and obtain X .

The main technical result of this section (correctness of the protocol) follows from the next lemma.
Lemma 5: In Communication Model 1, the protocol described above fails with probability at most O(2−m

d

) for some d > 0.
(The proof is deferred to Section IV-F.)

3) Communication complexity of the protocol.: Alice sends λn bits at step (2A), h(α)(1 − λ)k + O(δ)k + O(log k) + r
for each block j = 1, . . . ,m at step (3A), and σmk bits of the Reed-Solomon checksums at step (4A). So the total length of
Alice’s message is

λn+ (h(α)(1− λ)k +O(δ)k +O(log k) + r) ·m+ σn.

For the values of parameters that we have chosen above (see Section IV-C1), this sum can be estimated as λn + h(α)(1 −
λ)n+ o(n). Bob sends (1− λ)k + h(α)λk +O(δ)k +O(log k) + r bits for each block j = 1, . . . ,m at step (1B) and σmk
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X ′′j :

Z :

x42 ? ? x357 ? . . . x73

¬x42 ? ? x357 ? . . . ¬x73

Fig. 14. Alice sends to Charlie ≈ λk bits of the block X′′
j (red nodes); to construct a Z, Charlie inverts ≈ α ·λk bits of xi in the “red” positions, and then

choose the other bits arbitrarily.

bits of the Reed-Solomon checksums at step (2B). This sums up to

((1− λ)k + h(α)λk +O(δ)k +O(log k) + r) ·m+ σn

bits. For the chosen values of parameters this sum is equal to (1−λ)n+h(α)λn+ o(n). When we vary parameter λ between
0 and 1, we variate accordingly the lengths of both messages from h(α)n+ o(n) to (1 + h(α))n+ o(n), whereas the sum of
Alice’s and Bob’s messages always remains equal to (1 + h(α))n+ o(n). Thus, varying λ from 0 to 1, we move in the graph
in Fig. 7 from PB to PA.

It remains to notice that algorithms of all participants require only poly(n)-time computations. Indeed, all manipulations with
Reed-Solomon checksums (encoding and error-correction) can be done in time poly(n), with standard encoding and decoding
algorithms. The brute force search used in the decoding procedure requires only the search over sets of size 2k = poly(n)).
Thus, Proposition 6 is proven.

D. An effective protocol for Model 2

In this section we prove that the pairs of rates from Fig. 7 are achievable for Communication Model 2. Now the random
sources of Alice and Bob are not perfect: the random permutations are only t-wise almost independent and the chosen hash
functions are t-independent (for a suitable t).

Proposition 7: The version of Theorem 4 holds for Communication Model 2 (with parameter T = Θ(nc log n)).
To prove Proposition 7 we do not need a new communication protocol — in fact, the protocol that we constructed for Model 1
in the previous section works for Model 2 as well. The only difference between Proposition 6 and Proposition 7 is a more
general statement about the estimation of the error probability:

Lemma 6: For Communication Model 2 with parameter T = Θ(nc log n) the communication protocol described in sec-
tion IV-C fails with probability at most O(2−m

d

) for some d > 0.
(The proof is deferred to Section IV-F.)

Since the protocol remains the same, the bounds for the communication and computational complexity, proven in Proposi-
tion 6, remain valid in the new setting. With Lemma 6 we get the proof of Proposition 7.

E. The model with private sources of perfect randomness

Proposition 7 claims that the protocol from Section IV-C works well for the artificial Communication Model 2 (with non-
perfect and partially private randomness). Now we want to modify this protocol and adapt it to Communication Model 3.

Technically, we have to get rid of (partially) shared randomness. That is, in Model 3 we cannot assume that Charlie access
Alice’s and Bob’s random bits for free. Moreover, Alice and Bob cannot just send their random bits to Charlie (this would
dramatically increase the communication complexity). However, we can use the following well-known trick: we require now
that Alice and Bob use pseudo-random bits instead of truly uniformly random bits. Alice and Bob take short seeds for pseudo-
random generators at random (with the truly uniform distribution) expand them to longer sequences of pseudo-random bits,
and feed these pseudo-random bits in the protocol described in the previous sections. Alice and Bob transmit the random seeds
of their generators to Charlie (the seeds are rather short, so they do not increase communication complexity substantially); so
Charlie (using the same pseudo-random generators) expands the seeds to the same long pseudo-random sequences and plug
them into his side of the protocol.

More formally, we modify the communication protocol described in Section IV-C. Now Alice and Bob begin the protocol
with the following steps:

(0A) Alice chooses at random the seeds for pseudo-random generators and send them to Charlie.
(0B) Bob chooses at random the seeds for pseudo-random generators and also send them to Charlie.
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When these preparations are done, the protocol proceeds exactly as in Section IV-C (steps (1A)–(5A) for Alice, (1B)–(3B) for
Bob, and (1C)–(8C) for Charlie). The only difference that all random objects (random hash functions and random permutations)
are now pseudo-random, produces by pseudo-random generators from the chosen random seeds.

It remains to choose some specific pseudo-random generators that suits our plan. We need two different pseudo-random
generators — one to generate indices of hash functions and another to generate permutations. Constructing a suitable sequence
of pseudo-random hash-functions is simple. Both Alice and Bob needs m random indices li of hash functions, and the size
of each family of hash functions is 2O(k) = 2O(logn). We need the property of t-independency of li for t = mc (for a small
enough c). To generate these bits we can take a random polynomial of degree at most t− 1 over F2O(logn) . The seed of this
“generator” is just the tuple of all coefficients of the chosen polynomial, which requires O(t log n) = o(n) bits. The outcome
of the generator (the resulting sequence of pseudo-random bits) is the sequence of values of the chosen polynomial at (some
fixed in advance) m different points of the field. The property of t-independence follows immediately from the construction:
for a randomly chosen polynomial of degree at most t− 1 the values at any t points of the field are independent.

The construction of a pseudo-random permutation is more involved. We use the construction of a pseudo-random permutation
from [18]. We need the property of t-wise almost independence; by Proposition 2 such a permutation can be effectively produced
by a pseudo-random generator with a seed of length O(t log n). Alice and Bob chose seeds for all required pseudo-random
permutations at random, with the uniform distribution.

The seeds of the generators involved in our protocol are much shorter than n, so Alice and Bob can send them to Charlie
without essentially increasing communication complexity.

The probability of the error remains the same is in Section IV-D, since we plugged in the protocol the pseudo-random bits
which are T -wise independent. Hence, we can use the bound from Proposition 7. This concludes the proof of Theorem 4.

F. Proofs of the probabilistic lemmas

In this section we prove the technical probabilistic propositions used to estimate the probability of the failure in our
communication protocols.

Proof of Lemma 4 (a): First we prove the statement for a uniformly independent permutations. Let I = {i1, . . . , iρn}.
We denote

ξs =

{
1, if π(is) ∈ ∆,
0, otherwise.

We use the fact that the variables ξs are “almost independent”. Since the permutation π is chosen uniformly, we have prob[ξs =
1] = |∆|/n = k/n for each s. Hence, E(

∑
ξs) = ρk. Let us estimate the variance of this random sum.

For s1 6= s2 we have

prob[ξs1 = ξs2 = 1] =
k

n
· k − 1

n− 1
=

(
k

n

)2

+O(k/n2).

So, the correlation between every two ξs is very weak. We get

var
(∑

ξs

)
= E

(∑
ξs

)2

−
(
E
∑

ξs

)2

=
∑
s

Eξs +
∑
s1 6=s2

Eξs1ξs2 −

(
E
∑
s

ξs

)2

= O(k).

Now we apply Chebyshev’s inequality

probπ
[ ∣∣∑ ξs − ρk

∣∣ > δk
]
<

var(
∑
ξs)

(δk)2
= O

(
1

δ2k

)
, (5)

and we are done.
For a k-wise almost independent permutation we should add to the right-hand side of (5) the term O(2−k), which does not

affect the asymptotic of the final result.
Before we prove Lemma 4 (b), let us formulate a corollary of Lemma 4 (a).
Corollary 1: Let ∆1, . . . ,∆t be some disjoint subsets in {1, . . . , n} such that |∆j | = k for each j. Then for a uniformly

random or (kt)-wise almost independent permutation π : {1, . . . , n} → {1, . . . , n},

probπ
[ ∣∣π(I) ∩∆j

∣∣ > (ρ+ δ)k for all j
]
≤ µt

and
probπ

[ ∣∣π(I) ∩∆j

∣∣ < (ρ− δ)k for all j
]
≤ µt.
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Proof of Corollary: (sketch) For a uniform permutation it is enough to notice that the events “there are too few π-images
of I in ∆j” are negatively correlated with each other. That is, if we denote

Ej :=
{
π
∣∣∣ ∣∣π(I) ∩∆j1

∣∣ < (ρ− δ(n))k
}
,

then

probπ
[
Ej1

]
> probπ

[
Ej1

∣∣∣ Ej2 ]
> probπ

[
Ej1

∣∣∣ Ej2 and Ej3
]
> . . .

It remains to use the bound from (a) for the unconditional probabilities.
Similarly to the proof of Lemma 4 (a), in the case of almost independent permutations the difference of probabilities is

negligible.
Proof of Lemma 4 (b): Follows immediately from the Corollary 1 and Proposition 5.
Proof of Lemma 5 and Lemma 6: We prove directly the statement of Lemma 6 (which implies of course Lemma 5). Let

us estimate probabilities of errors at each step of Charlie’s part of the protocol.
Step (1C): No errors.
Step (2C): We should estimate probabilities of errors in reconstructing each block Y ′′j .
1st type error: the number of Alice’s bits xi1 , . . . , xiλn that appear in the block Y ′′j is less than (λ− δ)k. Technically, this

event itself is not an error of decoding; but it is undesirable: we cannot guarantee the success of reconstruction of Y ′′j if we
get in this slot too few bits from Alice. Denote the probability of this event (for a block j = 1, . . . ,m) by pB1 . By the law of
large numbers, pB1 → 0 if δ � 1/

√
k. This fact follows from Lemma 4(a).

2nd type error: 1st type error does not occur but

dist(XI′′j
, YI′′j ) > (α+ δ)|I ′′j |.

Denote the probability of this event (for a block j = 1, . . . ,m) by pB2 . Again, by the law of large numbers, pB2 → 0 if
δ � 1/

√
k. Technically, we apply Lemma 4(a) with ρ = α and δ = 1/k0.49.

3rd type error: 1st and 2nd type errors do not occur but there exist at least two different strings Z satisfying (1) and (2).
We choose the length of hash values for hashBl so that this event happens with probability less than pB3 = 2−r. Let us explain
this in more detail.

All the positions of Intj are split into two classes: the set I ′′j and its complement Intj \ I ′′j . For each position in I ′′j Charlie
knows the corresponding bit from X ′′ sent by Alice. To get Z, we should
(i) invert at most (α+ δ)|I ′′j | of Alice’s bits (here we use the fact that the 2nd type error does not occur), and

(ii) choose some bits for the positions in Intj \ I ′′j (we have no specific restrictions for these bits).
The number of all strings that satisfy (i) and (ii) is equal to

SB :=

(α+δ)|I′′j |∑
s=0

(
|I ′′j |
s

)
· 2|Intj\I

′′
j | = 2h(α)λk+(1−λ)k+O(δ)k+O(log k).

(In the last equality we use the assumption that the 1st type error does not occur, so |Intj \ I ′′j | ≤ (1− α+ δ)k.) We set the
length of the hash function hashBl to

LB = logSB + r = (1− λ)k + h(α)λk + κ1δ · k + κ2 log k + r

(here we choose suitable values of parameters κ1 and κ2). Hence, from Proposition 4 it follows that the probability of the 3rd
type error is at most 1/2r.

We say that a block Yj is reconstructible, if the errors of type 1, 2, and 3 do not occur for this j. For each block Y ′′j ,
probability to be non-reconstructible is at most pB1 + pB2 + pB3 . This sum can be bounded by some threshold µB = µB(n),
where µB(n)→ 0. For the chosen parameters δ(n) and r(n) we have µB(n) = 1/(log n)c for some c > 0.

Since for each j = 1, . . . ,m the probability that Y ′′j is non-reconstructible is less than µ, we conclude that the expected
number of non-reconstructible blocks is less than µm. This is already good news, but we need a stronger statement — we
want to conclude that with high probability the number of non-reconstructible blocks is not far above the expected value.

Since random permutations in the construction are (mc · k)-wise almost independent and the indices of hash functions are
mc-independent, we can apply Proposition 5 and Lemma 4(b) and bound the probability that the fraction of non-reconstructible
blocks is greater than 3µB . We conclude that this probability is O(2−m

c

) for some c > 0.
We conclude that on stage (2C) with probability 1−O(2−m

c

) Charlie decodes all blocks of Y ′′j except for at most 3µB(n)·m
of them.

(3C) Here Charlie reconstructs the string Y ′′, if the number of non-reconstructible blocks Y ′′j (at the previous step) is less
than 3µB(n) · m. Indeed, 3µB(n) · m is just the number of errors that can be corrected by the Reed-Solomon checksums.
Hence, the probability of failure at this step is less than O(2−m

c

). Here we choose the value of σ: we let σ = 3µ.
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Steps (4C) and (5C): No errors.
Step (6C) is similar to step (2C). We need to estimate the probabilities of errors in the reconstruction procedures for each

block X ′j .
1st type error: the number of Alice’s bits xi1 , . . . , xiλn is less than (λ− δ)k. (We cannot guarantee a correct reconstruction of
a block X ′j if there are too few bits from Alice in this slot). We denote the probability of this event by pA1 . From Lemma 4(a)
it follows that pA1 → 0 since δ = 1/k0.49 � 1/

√
k.

2nd type error: 1st type error does not occur but

dist(X ′Intj\I′j
, Y ′Intj\I′j

) > (α+ δ)|Intj \ I ′j |.

Denote the probability of this event by pA2 . Again, from Lemma 4(a) it follows that pA2 → 0 since δ � 1/
√
k.

3rd type error: 1st and 2nd type errors do not occur but there exist at least two different strings W satisfying (Cond3)
and (Cond4). All the positions Intj are split into two classes: the set I ′j and its complement Intj \ I ′j . For each position in
I ′j Charlie knows the corresponding bit from X ′ sent by Alice. For the other bits Carlie already knows the bits of Y ′j , but not
the bits of X ′j . To obtain Z, we should invert at most (α+ δ) · |Intj \ I ′j | bits of Y ′Intj\I′j . The number of such candidates is
equal to

SA :=

(α+δ)|Intj\I′j |∑
s=0

(
|Intj \ I ′j |

s

)
· 2|Intj\I

′′
j | = 2h(α)(1−λ)h(α)k+O(δ)k+O(log k).

We set the length of the hash function hashAl to

LA = logSA + r = (1− λ)h(α)λk + κ1δ · k + κ2 log k + r

From Proposition 4 it follows that the probability of the 2nd type error pA3 ≤ 1/2r.

We say that block X ′j is reconstructible, if the errors of type 1, 2, and 3 do not happen. For each block X ′j , probability to be
non-reconstructible is at most pA1 (j) + pA2 (j) + pA3 (j). This sum is less than some threshold µA = µA(n), where µA(n)→ 0.
For the chosen values of parameters we have µA(n) = 1/(log n)c for some c > 0.

Since the random permutations in the construction are (mc ·k)-wise almost independent and the indices of hash functions are
mc-independent, Proposition 5 and Lemma 4 give an upper bound for the probability that the fraction of non-reconstructible
blocks is greater than 3µA: we conclude that this probability is not greater than O(2−m

c

). Thus, with probability 1−O(2−m
c

)
Charlie decodes on this stage all blocks of X ′j except for at most 3µA ·m of them.

Step (7C) is similar to step (3C). At this step Charlie can reconstructs X ′ if the number of non-reconstructible blocks X ′j (at
the previous step) is less than 3µA ·m (this is the number of errors that can be corrected by the Reed-Solomon checksums).
Hence, the probability of failure at this step is less than O(2−m

c

).
Step (8C): No errors at this step.
Thus, with probability 1−O(2−m

d

) (for some d < c) Charlie successfully reconstructs strings X and Y .

V. CONCLUSION

Possible applications. We believe that the protocols suggested in the paper (or their extensions) can be employed in
combinatorial versions of the omniscience problem and the problem of multiparty secret key agreement.

Practical implementation. The coding and decoding procedures in the protocol from Theorem 4 run in polynomial time.
However, in the present form this protocol is not quite suitable for practical applications (at least for reasonably small n). Its
most time-consuming part is the use of the KNR generator from Proposition 2, which involves rather sophisticated computations.
A simpler and more practical protocol can be implemented if we substitute t-wise almost independent permutations (the KNR
generator) by 2-independent permutation (e.g., a random affine mapping). The price that we pay for this simplification is
only a weaker bound for the probability of error, since with 2-independent permutations we have to employ Chebyshev’s
inequality instead of stronger versions of the law of large numbers (applicable to nc-wise almost independent series of random
variables). (A similar technique was used in [22] to simplify the protocol from [19].) In the simplified version of the protocol,
the probability of error ε(n) tends to 0, but not exponentially fast.

Convergence to the optimal rate. We have proved that the communication complexity of our protocol is asymptotically
optimal, though the convergence to optimal rate is rather slow (the o(·)-terms in Theorem 4 are not so small). This is a general
weakness of the concatenated codes and allied techniques, and there is probably no simple way to remedy it.

Open problem: Characterize the set of all achievable pairs of rates for deterministic communication protocols.
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APPENDIX

For the convenience of the readers and for the sake of self-containment, we proof in Appendix two results that appeared
implicitly in preceding papers, see the discussion in Section II.

Proof of Proposition 1: To prove the proposition, it is enough to show that for every λ ∈ (0, 1) there exists a linear
encoding scheme with messages of length

mA = (λ+ h(2α))n+ o(n),
mB = (1− λ+ h(2α))n+ o(n).

We use the idea of syndrome encoding that goes back to [6]. First of all, we fix linear code with codewords of length n that
achieves the Gilbert–Varshamov bound. Denote H = (hij) (i = 1 . . . n, j = 1 . . . k for k ≤ h(2α)n+ o(n)) the parity-check
matrix of this code. So, the set of codewords Z = z1 . . . zn of this code consists of all solutions of the system if uniform
equations 

h11z1 + h12z2 + . . .+ h1nzn = 0,
h21z1 + h22z2 + . . .+ h2nzn = 0,

. . .
hk1z1 + hk2z2 + . . .+ hknzn = 0

(a linear system over the field of 2 elements). W.l.o.g. we assume that the rank of this system is equal to k, and the last k
columns of H make up a minor of maximal rank (if this is not the case, we can eliminate the redundant rows and re-numerates
the columns of the matrix).

Remark: The assumption above guarantees that for every sequence of binary values h0
1, . . . h

0
k and for any z1, . . . , zn−k we

can uniquely determine zn−k+1, . . . , zn satisfying the linear system
h11z1 + h12z2 + . . .+ h1nzn = h0

1,
h21z1 + h22z2 + . . .+ h2nzn = h0

2,
. . .

hk1z1 + hk2z2 + . . .+ hknzn = h0
k

(in other words, z1, . . . , zn−k are the free variables of this linear system, and zn−k+1, . . . , zn are the dependent variables).
Now we are ready describe the protocol. Denote s = bλ · (n− k)c.
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Alice’s message: given X = x1 . . . xn, send to Charlie the bits x1, x2, . . . , xs and the syndrome of X , i.e., the product
H ·X⊥.

Bob’s message: given Y = y1 . . . yn, send to Charlie the bits ys+1, ys+2, . . . , yn−k and the syndrome of Y , i.e., the product
H · Y ⊥.

Let us show that Charlie can reconstruct X and Y given these two messages. First of all, given the syndromes H ·X⊥ and
H · Y ⊥, Charlie obtains H · (X + Y )⊥, which is the syndrome of the bitwise sum of X and Y . Since the distance between
X and Y is not greater than αn, the bitwise sum X + Y contains at most αn ones. The code defined by matrix H corrects
αn errors, so Charlie can reconstruct all bits of X + Y given the syndrome H · (X + Y )⊥.

Now Charlie knows the positions i where xi 6= yi, and the bits x1x2 . . . xs, and ys+1ys+2 . . . yn−k. This information is
enough to reconstruct the first n − k bits in both strings X and Y . Further, given the first (n − k) bits of X and Y and the
syndromes of these strings, Charlie reconstructs the remaining bits of X and Y (see the remark above).

The following proposition was implicitly proven in [15].
Proposition 8: For every small enough α > 0 there exists a δ > 0 such that for all large enough n, for the deterministic

combinatorial Slepian–Wolf schemes with parameters (α, n) there is no achievable pairs of rates (mA,mB) in the (δn)-
neighborhoods of the points (n, h(α)n) and (h(α)n, n) (points PA and PB in Fig. 4).

Proof: At first we remind the argument from [15, theorem 2]. It concerns an asymmetric version of the Slepian–Wolf
scheme and it proves a lower bound for the length of CodeA(X) assuming that CodeB(Y ) = Y . Here is the idea of the
proof: for each value cA, the set of pre-images Code−1

A (cA) is a set of strings with pairwise distances greater than 2αn, i.e.,
these pre-images make up an error correcting code that corrects αn errors. So we can borrow from coding theory a suitable
bound for the binary codes and use it to bound the number of pre-images of cA. Then, we obtain a lower bound for the
number of values of CodeA(X) and, accordingly, for the length of CodeA(X). Technically, if we know from coding theory
that for a binary code that corrects αn errors the number of codewords cannot be greater than (1− F (α))n for some specific
function F (α), then this argument implies that the length of CodeA(X) cannot be less than F (α)n. For example, in the well
known Elias–Bassalygo bound F (α) = h( 1

2 −
1
2

√
1− 2α), which is stronger than the trivial volume bound (1− h(α))n, [4].

Alternatively, we can take the McEliece–Rodemich–Rumsey–Welch bound.
Though this argument deals with only very special type of schemes where CodeB(Y ) = Y , it also implies some bound for

the general Slepian–Wolf problem. Indeed, assume there exists a deterministic Slepian–Wolf scheme for string X and Y of
length n with dist(X,Y ) ≤ T for some threshold T = αn. Denote the lengths of Alice’s and Bob’s messages by

mA = (h(α) + δ2)n,
mB = (1− δ1)n

respectively. We will prove that the pair of parameters (δ1, δ2) cannot be too close to zero. Notice that strings X and Y of
any length n′ < n can be padded (by a prefix of zeros) to the length n. Hence, the given communication scheme (originally
used for pairs of strings of length n, with the Hamming distance T ) can be used also for the Slepian–Wolf problem with
shorter strings of length n′ = (1 − δ1)n and the same distance between words T (which can be represented as T = α′n for
α′ = α

(1−δ1) ). Thus, for the Slepian–Wolf problem with parameters (n′, α′) we have a communication scheme with messages
of the same lengths mA and mB , which can be represented now as

mA = h(α)+δ2
1−δ1 n′,

mB = n′.

We apply the explained above Orlitsky–Viswanathan bound to this scheme and obtain

h(α) + δ2
1− δ1

≥ F
(

α

(1− δ1)

)
(for any suitable bound F (x) from coding theory). It follows that

δ2 ≥ (1− δ1)F

(
α

(1− δ1)

)
− h(α). (6)

The functions F (x) from the Elias–Bassalygo bound and from the McEliece–Rodemich–Rumsey–Welch bound are a continuous
functions, and for small positive x they are bigger than h(x). Hence, (6) implies that for every fixed α the values of δ1 and
δ2 cannot be very small simultaneously.

We do not discuss here the exact shape of this forbidden zone for values of (δ1, δ2); we only conclude that small
neighborhoods around the point (h(α)n, n) and (from a symmetric argument) (n, h(α)n) cannot be achieved, which concludes
the proof of the proposition.
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