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Introduction

All the graphs we consider here are simple, finite and undirected. Let G = (V, E) be a graph. For any subgraph H of G, we denote V (H) and E(H) the vertices and edges of H. For any vertex v ∈ V , the degree of v in G, denoted d(v), is the number of neighbors of v in G. The maximum degree of G, denoted ∆(G), is max v∈V d(v). The maximum average degree of G, denoted mad(G), is the maximum for every subgraph H of G of 2|E(H)|

|V (H)| . A 2-distance coloring of a graph G is a coloring of the vertices of G such that two vertices that are adjacent or have a common neighbor receive distinct colors. This is equivalent to a proper vertex-coloring of the square of G. We define χ 2 (G) as the smallest k such that G admits a 2-distance k-coloring. Note that any graph G satisfies

χ 2 (G) ≥ ∆(G) + 1. The girth g(G)
is the length of a shortest cycle in G.

Two vertices x and y are p-linked if there exists a path

x-v 1 -• • • -v p -y such that vertices v 1 , . . . , v p have degree 2, and v 1 -• • • -v p is called a branch of x (or y).
Borodin, Ivanova and Neustroeva [START_REF] Borodin | 2-distance coloring of sparse plane graphs[END_REF] studied sparse planar graphs, and prove the following result:

Theorem 1.1 ([1]) Every planar graph G with g(G) ≥ 15 and ∆(G) ≥ 4 admits a 2-distance (∆(G) + 1)-coloring.
Note that this result was later extended to list-coloring [START_REF] Borodin | List 2-distance (∆ + 1)coloring of planar graphs with given girth[END_REF]. Dolama and Sopena [START_REF] Dolama | On the maximum average degree and the incidence chromatic number of a graph[END_REF] proved a more general result than Theorem 1.1, which is not restricted to planar graphs anymore. Theorem 1.2 however presents a slight loss in quality compared to Theorem 1.1: since for any planar graph G, (mad(G) -2)(g(G) -2) < 4, Theorem 1.2 implies only that Theorem 1.1 holds for g(G) ≥ 16. We aim at making the upper bound on the maximum average degree optimal, and prove the following.

Theorem 1.3 Every graph G with mad(G) < 7 3 and ∆(G) ≥ 4 admits a 2-distance (∆(G) + 1)-coloring.

The bound we obtain is optimal. Indeed, as pointed out by Montassier [START_REF] Montassier | Personal Communication[END_REF], there is a graph G with mad(G) = 7 3 , ∆(G) = 4 and χ 2 (G) = 6 (see Figure 1). When restricted to planar graphs, Theorem 1.3 is an improvement of Theorem 1.1 as it implies that Theorem 1.1 holds with g(G) ≥ 14. It is not comparable to the more general result in [START_REF] Borodin | List 2-distance (∆ + 1)coloring of planar graphs with given girth[END_REF], since we are not considering list-coloring.

We are going to use a discharging method to prove Theorem 1.3. We will prove that there are some configurations a minimal counter-example cannot contain, and, then use discharging rules to show that this graph does not exist.

Proof

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented, in white a vertex that might have other neighbors than the ones represented. When there is a label inside a white vertex, it is an indication on the number of neighbors it has. The label 'i' means "exactly i neighbors", the label 'i + ' (resp. 'i -') means that it has at least (resp. at most) i neighbors. Note that the white vertices may coincide with other vertices. The label 'T (v, a)' inside a vertex v means that T (v, a) exists, as defined below.

A configuration T (v, a 4 ) (see Figure 2), is inductively defined as a vertex v of degree 4 with neighbors a 1 , a 2 , a 3 , a 4 , where for i ∈ {1, 2, 3}, vertex v is 2-linked by a path v-a i -b i -w i either to a vertex w i of degree at most 3 or to a configuration T (w i , b i ).

T (v, a 4 ) v a 1 b 1 3 -or T (w 1 , b 1 ) w 1 a 2 b 2 3 -or T (w 2 , b 2 ) w 2 a 3 b 3 3 -or T (w 3 , b 3 ) w 3 a 4 Fig. 2. A T (v, u 4 ).
Now we define configurations (C 1 ) to (C 5 ) (see Figure 3).

• (C 1 ) is a vertex of degree 0 or 1.

• (C 2 ) is a vertex 3-linked to a vertex not of maximal degree.

• (C 3 ) is a vertex of degree 3 that is 2-linked to two vertices of degree 3, and 1-linked to a vertex of degree at most 3.

• (C 4 ) is a vertex u of degree at most 3 that is 2-linked by a path u-y-x-v to a vertex v such that T (v, x) exists.

• (C 5 ) is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked by a path u-x-v to a vertex v such that T (v, x) exists.

(C 2 ) 1 - u (C 1 ) (k -1) - w 1 u 1 v u 2 w 2 v u 3 x 3 w 3 u 2 x 2 w 2 (C 3 ) u 1 3 - x 1 T (v, x) v (C 4 ) x y 3 -u T (v, x) v (C 5 ) x u y 2 z 2 a 2 y 1 z 1 a 1 Fig. 3. Forbidden configurations.
In the following lemma, we actually use k instead of ∆(G) in order to ensure that any subgraph of G admits a (k + 1)-coloring even though ∆ can decrease.

A graph is minimal for a property if it satisfies this property but none of its subgraphs does. The following lemma will ensure that the discharging rules we introduce later are well-defined. We design discharging rules R 1 , R 2 , R 3 (see Figure 4). We use them in the proof of Lemma 2.3, where the initial weight of a vertex equals its degree, and its final weight is shown to be at least 7 3 . For any two vertices x and y of degree at least 3, with d(x) ≥ d(y),

• Rule R 1 is when x and y are 1-linked by a path xay.

• (R 1. 3 to a and both x and y give 1 6 to b. • Rule R 3 is when x and y, both of degree at least 4, are 3-linked by a path

xabcy. Then x gives 1 3 to a and 1 6 to b, and symmetrically for y. 

R 1.1 R 1.2 R 1.3 R 2.1 R 2.2 R 2.3
Rule 1: x and y are 1-linked Rule 2: x and y are 2-linked We use these discharging rules to prove the following lemma:

Lemma 2.3 A graph G that does not contain Configurations (C 1 ) to (C 5 ) verifies mad(G) ≥ 7 3 .
Proof of Theorem 1.3

We prove a stronger version of Theorem 1.3 by contradiction. For k ≥ 4, let G be a minimal graph such that ∆(G) ≤ k, mad(G) < 7 3 and G does not admit a (k + 1)-coloring. Graph G is also a minimal graph such that ∆(G) ≤ k and G does not admit a (k + 1)-coloring (all its proper subgraphs verify ∆ ≤ k and mad < 7 3 , so they admit a (k + 1)-coloring). By Lemma 2.1, graph G cannot contain (C 1 ) to (C 5 ). Lemma 2.3 implies that mad(G) ≥ 7 3 . Contradiction.

Conclusion

We actually proved a slightly stronger result than Theorem 1.3. However, the addition, namely that every graph G with mad(G) < 7 3 and ∆(G) ≤ 3 admits a 2-distance 5-coloring, can be derived from a result of Dvořák, Škrekovski and Tancer [START_REF] Dvořák | List-Coloring squares of sparse subcubic graphs[END_REF].

Note that the proof of Theorem 1.3 also provides an O(|V | 3 ) algorithm to find a 2-distance coloring of a graph G with ∆(G) + 1 colors if G verifies the hypothesis of Theorem 1.3: indeed Lemma 2.3 proves that every graph G with mad(G) < 7 3 contains (C 1 ), (C 2 ), ... or (C 5 ). Consequently, we can find a (C i ) in G, remove the corresponding vertices, and extend the coloring to the initial graph using the proof of Lemma 2.1.

As it was conjectured by Kostochka and Woodall [START_REF] Kotsochka | Choosability conjectures and multicircuits[END_REF] that 2-distance listcoloring requires exactly as many colors as 2-distance coloring, future work could aim at extending Theorem 1.3 to list-coloring.

Theorem 1 . 2 (

 12 [START_REF] Dolama | On the maximum average degree and the incidence chromatic number of a graph[END_REF]) Every graph G with mad(G) < 16 7 and ∆(G) ≥ 4 admits a 2-distance (∆(G) + 1)-coloring.

Fig. 1 .

 1 Fig. 1. A graph G with mad(G) = 7 3 , ∆(G) = 4 and χ 2 (G) = 6.

Lemma 2 . 1

 21 Let k ≥ 4 and G such that ∆(G) ≤ k and G admits no 2-distance (k + 1)-coloring, and G is minimal for this property. Then G does not contain any of Configurations (C 1 ) to (C 5 ).

Lemma 2 . 2

 22 In a graph G where (C 4 ) is forbidden, and x and y are two vertices of degree 4 that are 2-linked by a path x-a-b-y, at most one of T (x, a) and T (y, b) exists.

1 )

 1 If d(x) = d(y), then both x and y give 1 6 to a. • (R 1.2 ) If d(x) > d(y) and T (x, a) exists, then both x and y give 1 6 to a. • (R 1.3 ) If d(x) > d(y) and T (x, a) does not exist, then x gives 1 3 to a. • Rule R 2 is when x and y are 2-linked by a path xaby. • (R 2.1 ) If d(x) = d(y) and neither T (x, a) nor T (y, b) exist, then x (resp. y) gives 1 3 to a (resp. b). • (R 2.2 ) If d(x) = d(y) and T (y, b) exists, then x gives 1 3 to a and both x and y give 1 6 to b. • (R 2.3 ) If d(x) > d(y), then x gives 1

  ) = d(y) d(x) > d(y) d(x) > d(y) d(x) = d(y) d(x) = d(y) d(x) > d(y)

Rule 3 :

 3 x and y are 3-linked.

Fig. 4 .

 4 Fig. 4. Discharging rules R 1 , R 2 , R 3 .
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