2-distance coloring of sparse graphs *

Marthe Bonamy ${ }^{\text {a, }}{ }^{1}$ Benjamin Lévêque ${ }^{\text {a }}$ Alexandre Pinlou ${ }^{\text {a,2 }}$
${ }^{\text {a }}$ LIRMM, Université Montpellier 2, CNRS
\{marthe.bonamy, benjamin.leveque, alexandre.pinlou\}@lirmm.fr

Abstract

A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at distance at most 2 receive distinct colors. We prove that every graph with maximum degree Δ at least 4 and maximum average degree less that $\frac{7}{3}$ admits a 2 -distance $(\Delta+1)$-coloring. This result is tight. This improves previous known results of Dolama and Sopena.

Keywords: 2-distance coloring; square coloring; maximum average degree.

1 Introduction

All the graphs we consider here are simple, finite and undirected. Let $G=$ (V, E) be a graph. For any subgraph H of G, we denote $V(H)$ and $E(H)$ the vertices and edges of H. For any vertex $v \in V$, the degree of v in G, denoted $d(v)$, is the number of neighbors of v in G. The maximum degree of G, denoted $\Delta(G)$, is $\max _{v \in V} d(v)$. The maximum average degree of G, denoted $\operatorname{mad}(G)$, is the maximum for every subgraph H of G of $\frac{2|E(H)|}{|V(H)|}$. A 2-distance coloring

[^0]of a graph G is a coloring of the vertices of G such that two vertices that are adjacent or have a common neighbor receive distinct colors. This is equivalent to a proper vertex-coloring of the square of G. We define $\chi^{2}(G)$ as the smallest k such that G admits a 2 -distance k-coloring. Note that any graph G satisfies $\chi^{2}(G) \geq \Delta(G)+1$. The girth $g(G)$ is the length of a shortest cycle in G. Two vertices x and y are p-linked if there exists a path $x-v_{1} \cdots \cdots-v_{p}-y$ such that vertices v_{1}, \ldots, v_{p} have degree 2 , and $v_{1} \cdots \cdots v_{p}$ is called a branch of x (or y).

Borodin, Ivanova and Neustroeva [1] studied sparse planar graphs, and prove the following result:
Theorem 1.1 ([1]) Every planar graph G with $g(G) \geq 15$ and $\Delta(G) \geq 4$ admits a 2-distance $(\Delta(G)+1)$-coloring.

Note that this result was later extended to list-coloring [2].
Dolama and Sopena [3] proved a more general result than Theorem 1.1, which is not restricted to planar graphs anymore. Theorem 1.2 however presents a slight loss in quality compared to Theorem 1.1: since for any planar graph $G,(\operatorname{mad}(G)-2)(g(G)-2)<4$, Theorem 1.2 implies only that Theorem 1.1 holds for $g(G) \geq 16$.
Theorem 1.2 ([3]) Every graph G with $\operatorname{mad}(G)<\frac{16}{7}$ and $\Delta(G) \geq 4$ admits a 2-distance $(\Delta(G)+1)$-coloring.

We aim at making the upper bound on the maximum average degree optimal, and prove the following.

Theorem 1.3 Every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ and $\Delta(G) \geq 4$ admits a 2 -distance $(\Delta(G)+1)$-coloring.

The bound we obtain is optimal. Indeed, as pointed out by Montassier [6], there is a graph G with $\operatorname{mad}(G)=\frac{7}{3}, \Delta(G)=4$ and $\chi^{2}(G)=6$ (see Figure 1).

Fig. 1. A graph G with $\operatorname{mad}(G)=\frac{7}{3}, \Delta(G)=4$ and $\chi^{2}(G)=6$.
When restricted to planar graphs, Theorem 1.3 is an improvement of Theorem 1.1 as it implies that Theorem 1.1 holds with $g(G) \geq 14$. It is not comparable to the more general result in [2], since we are not considering list-coloring.

We are going to use a discharging method to prove Theorem 1.3. We will prove that there are some configurations a minimal counter-example cannot contain, and, then use discharging rules to show that this graph does not exist.

2 Proof

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented, in white a vertex that might have other neighbors than the ones represented. When there is a label inside a white vertex, it is an indication on the number of neighbors it has. The label ' i ' means "exactly i neighbors', the label ' i^{+}' (resp. ' i^{-}') means that it has at least (resp. at most) i neighbors. Note that the white vertices may coincide with other vertices. The label ' $T(v, a)^{\prime}$ ' inside a vertex v means that $T(v, a)$ exists, as defined below.

A configuration $T\left(v, a_{4}\right)$ (see Figure 2), is inductively defined as a vertex v of degree 4 with neighbors $a_{1}, a_{2}, a_{3}, a_{4}$, where for $i \in\{1,2,3\}$, vertex v is 2 -linked by a path $v-a_{i}-b_{i}-w_{i}$ either to a vertex w_{i} of degree at most 3 or to a configuration $T\left(w_{i}, b_{i}\right)$.

Fig. 2. A $T\left(v, u_{4}\right)$.
Now we define configurations $\left(C_{1}\right)$ to $\left(C_{5}\right)$ (see Figure 3).

- $\left(C_{1}\right)$ is a vertex of degree 0 or 1 .
- $\left(C_{2}\right)$ is a vertex 3 -linked to a vertex not of maximal degree.
- $\left(C_{3}\right)$ is a vertex of degree 3 that is 2 -linked to two vertices of degree 3 , and 1 -linked to a vertex of degree at most 3 .
- $\left(C_{4}\right)$ is a vertex u of degree at most 3 that is 2 -linked by a path $u-y-x-v$ to a vertex v such that $T(v, x)$ exists.
- $\left(C_{5}\right)$ is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked by a path $u-x-v$ to a vertex v such that $T(v, x)$ exists.

Fig. 3. Forbidden configurations.
In the following lemma, we actually use k instead of $\Delta(G)$ in order to ensure that any subgraph of G admits a $(k+1)$-coloring even though Δ can decrease.

A graph is minimal for a property if it satisfies this property but none of its subgraphs does.

Lemma 2.1 Let $k \geq 4$ and G such that $\Delta(G) \leq k$ and G admits no 2-distance $(k+1)$-coloring, and G is minimal for this property. Then G does not contain any of Configurations $\left(C_{1}\right)$ to (C_{5}).

The following lemma will ensure that the discharging rules we introduce later are well-defined.

Lemma 2.2 In a graph G where $\left(C_{4}\right)$ is forbidden, and x and y are two vertices of degree 4 that are 2-linked by a path $x-a-b-y$, at most one of $T(x, a)$ and $T(y, b)$ exists.

We design discharging rules R_{1}, R_{2}, R_{3} (see Figure 4). We use them in the proof of Lemma 2.3, where the initial weight of a vertex equals its degree, and its final weight is shown to be at least $\frac{7}{3}$. For any two vertices x and y of degree at least 3 , with $d(x) \geq d(y)$,

- Rule R_{1} is when x and y are 1 -linked by a path $x-a-y$.
- $\left(R_{1.1}\right)$ If $d(x)=d(y)$, then both x and y give $\frac{1}{6}$ to a.
- ($R_{1.2}$) If $d(x)>d(y)$ and $T(x, a)$ exists, then both x and y give $\frac{1}{6}$ to a.
- $\left(R_{1.3}\right)$ If $d(x)>d(y)$ and $T(x, a)$ does not exist, then x gives $\frac{1}{3}$ to a.
- Rule R_{2} is when x and y are 2 -linked by a path $x-a-b-y$.
- $\left(R_{2.1}\right)$ If $d(x)=d(y)$ and neither $T(x, a)$ nor $T(y, b)$ exist, then x (resp. $y)$ gives $\frac{1}{3}$ to a (resp. b).
- ($R_{2.2}$) If $d(x)=d(y)$ and $T(y, b)$ exists, then x gives $\frac{1}{3}$ to a and both x and y give $\frac{1}{6}$ to b.
- $\left(R_{2.3}\right)$ If $d(x)>d(y)$, then x gives $\frac{1}{3}$ to a and both x and y give $\frac{1}{6}$ to b.
- Rule R_{3} is when x and y, both of degree at least 4 , are 3 -linked by a path $x-a-b-c-y$. Then x gives $\frac{1}{3}$ to a and $\frac{1}{6}$ to b, and symmetrically for y.

Rule 1: x and y are 1-linked Rule 2: x and y are 2-linked

Rule 3: x and y are 3-linked.

Fig. 4. Discharging rules R_{1}, R_{2}, R_{3}.
We use these discharging rules to prove the following lemma:
Lemma 2.3 A graph G that does not contain Configurations $\left(C_{1}\right)$ to (C_{5}) verifies $\operatorname{mad}(G) \geq \frac{7}{3}$.

Proof of Theorem 1.3
We prove a stronger version of Theorem 1.3 by contradiction. For $k \geq 4$, let G be a minimal graph such that $\Delta(G) \leq k, \operatorname{mad}(G)<\frac{7}{3}$ and G does not admit a $(k+1)$-coloring. Graph G is also a minimal graph such that $\Delta(G) \leq k$ and G does not admit a ($k+1$)-coloring (all its proper subgraphs verify $\Delta \leq k$ and $\operatorname{mad}<\frac{7}{3}$, so they admit a ($k+1$)-coloring). By Lemma 2.1, graph G cannot contain $\left(C_{1}\right)$ to $\left(C_{5}\right)$. Lemma 2.3 implies that $\operatorname{mad}(G) \geq \frac{7}{3}$. Contradiction.

3 Conclusion

We actually proved a slightly stronger result than Theorem 1.3. However, the addition, namely that every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ and $\Delta(G) \leq 3$ admits a 2 -distance 5 -coloring, can be derived from a result of Dvořák, Škrekovski and Tancer [4].

Note that the proof of Theorem 1.3 also provides an $O\left(|V|^{3}\right)$ algorithm to find a 2-distance coloring of a graph G with $\Delta(G)+1$ colors if G verifies the hypothesis of Theorem 1.3: indeed Lemma 2.3 proves that every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ contains $\left(C_{1}\right),\left(C_{2}\right), \ldots$ or $\left(C_{5}\right)$. Consequently, we can find a $\left(C_{i}\right)$ in G, remove the corresponding vertices, and extend the coloring to the initial graph using the proof of Lemma 2.1.

As it was conjectured by Kostochka and Woodall [5] that 2-distance listcoloring requires exactly as many colors as 2-distance coloring, future work could aim at extending Theorem 1.3 to list-coloring.

References

[1] Borodin, O. V., A. O. Ivanova and N. T. Neustroeva, 2-distance coloring of sparse plane graphs (in russian), Siberian Electronic Mathematical Reports 1 (2004), pp. 76-90.
[2] Borodin, O. V., A. O. Ivanova and N. T. Neustroeva, List 2-distance ($\Delta+1$)coloring of planar graphs with given girth, Journal of Applied and Industrial Mathematics 2 (2008), pp. 317-328.
[3] Dolama, M. H. and É. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Mathematics and Theoretical Computer Science 7 (2005), pp. 203-216.
[4] Dvořák, Z., R. Škrekovski and M. Tancer, List-Coloring squares of sparse subcubic graphs, SIAM Journal on Discrete Mathematics 22 (2008), pp. 139159.
[5] Kotsochka, A. V., and D. R. Woodall, Choosability conjectures and multicircuits, Discrete Mathematics 240 (2001), pp. 123-143.
[6] Montassier, M., Personal Communication.

[^0]: * Research partially supported by the ANR GRATOS, contract ANR-09-JCJC-0041-01.

 1 École Normale Supérieure de Lyon
 ${ }^{2}$ Second affiliation: Département MIAp, Université Paul-Valéry, Montpellier 3

