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Abstract

Based on the algorithmic proof of Lovász local lemma due to Moser and Tardos, the works
of Grytczuket al. on words, and Dujmović et al. on colorings, Esperet and Parreau developed a
framework to prove upper bounds for several chromatic numbers (in particular acyclic chromatic
index, star chromatic number and Thue chromatic number) using the so-calledentropy compres-
sion method.

Inspired by this work, we propose a more general framework and a better analysis. This leads
to improved upper bounds on chromatic numbers and indices. In particular, every graph with
maximum degree∆ has an acyclic chromatic number at most3

2
∆

4
3 + O(∆). Also every planar

graph with maximum degree∆ has a facial Thue choice number at most∆+O(∆
1
2 ) and facial

Thue choice index at most10.

1 Introduction

In the 70’s, Lovász introduced the celebratedLovász Local Lemma(LLL for short) to prove results
on 3-chromatic hypergraphs [11]. It is a powerful probabilistic method to prove the existence of
combinatorial objects satisfying a set of constraints. Since then, this lemma has been used in many
occasions. In particular, it is a very efficient tool in graphcoloring to provide upper bounds on sev-
eral chromatic numbers [1, 3, 13, 17, 21, 22, 27, 28]. Recently Moser and Tardos [29] designed an
algorithmic version of LLL by means of the so-calledEntropy Compression Method. This method
seems to be applicable whenever LLL is, with the benefits of providing tighter bounds. Using ideas
of Moser and Tardos [29], Grytczuket al.[20] proposed new approaches in the old field of nonrepet-
itive sequences. Inspired by these works, Dujmoviket al [9] gave a first application of the entropy
compression method in the area of graph colorings (on Thue vertex coloring and some of its game
variants). As the approach seems to be extendable to severalgraph coloring problems, Esperet and
Parreau [10] developed a general framework and applied it toacyclic edge-coloring, star vertex-
coloring, Thue vertex-coloring, each time improving the best known upper bound or giving very
short proofs of known bounds. In the continuity of these works, we provide a more general method
and give new tools to improve the analysis. As application ofthat method, we obtain some new
upper bounds on some invariants of graphs, such as acyclic choice number, facial Thue chromatic
number/index, ...

The paper is organized as follows. In Section 2, we present the method and apply it to acyclic
vertex coloring. It will be the occasion of providing improved bounds (in terms of the maximum

∗This research is partially supported by the ANR EGOS, under contract ANR-12-JS02-002-01.
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degree). Then, in Sections 3 and 4, we describe the general method and provide its analysis. Finally,
Section 5 is dedicated to the applications of that method.

2 Acyclic coloring of graphs

A proper coloringof a graph is an assignment of colors to the vertices of the graph such that two
adjacent vertices do not use the same color. Ak-coloring of a graphG is a proper coloring ofG
usingk colors ; a graph admitting ak-coloring is said to bek-colorable. An acyclic coloringof a
graphG is a proper coloring ofG such thatG contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. Letχa(G), called theacyclic chromatic number, be
the smallest integerk such that the graphG admits an acyclick-coloring.

Acyclic coloring was introduced by Grünbaum [18]. In particular, he proved that if the maximum
degree∆ of G is at most3, thenχa(G) ≤ 4. Acyclic coloring of graphs with small maximum degree
has been extensively studied [7, 8, 12, 14, 23, 25, 36, 37, 38]and the current knowledge is that graphs
with maximum degree∆ ≤ 4, 5, and6, respectively verifyχa(G) ≤ 5, 7, and11 [7, 25, 23]. For
higher values of the maximum degree, Kostochka and Stocker [25] showed thatχa(G) ≤ 1 +
⌊

(∆+1)2

4

⌋

. Finally, for large values of the maximum degree, Alon, McDiarmid, and Reed [2] used

LLL to prove that every graph with maximum degree∆ satisfiesχa(G) ≤
⌈

50∆4/3
⌉

. Moreover they

proved that there exist graphs with maximum degree∆ for whichχa = Ω
(

∆4/3

(log∆)4/3

)

. Recently,

the upper bound was improved to
⌈

6.59∆
4
3 + 3.3∆

⌉

by Ndreca et al. [30] and then to2.835∆
4
3 +∆

by Sereni and Volec [34].
We improve this upper bound (for large∆) by a constant factor.

Theorem 1 Every graphG with maximum degree∆ ≥ 24 is such that

χa(G) < min

{

3

2
∆

4
3 + 5∆− 14,

3

2
∆

4
3 +∆+

8∆
4
3

∆
2
3 − 4

+ 1

}

.

At the end of Section 2.2.1 (see Remark 9), we give a method to refine these upper bounds, improving
on Kostochka and Stocker’s bound as soon as∆ ≥ 27.

Alon, McDiarmid, and Reed [2] also considered the acyclic chromatic number of graphs having
no copy ofK2,γ+1 (the complete bipartite graph with partite sets of size 2 andγ + 1) in which
the two vertices in the first class are non-adjacent. LetKγ be the familly of such graphs. Such
structure contains many cycles of length4 and they are an obstruction to get an upper bound on the
acyclic chromatic number linear in∆. Again using LLL, they proved that every graphG ∈ Kγ with
maximum degree∆ satisfiesχa(G) ≤ ⌈32√γ∆⌉.

Using similar techniques as for Theorem 1, we obtain:

Theorem 2 Let γ ≥ 1 be an integer andG ∈ Kγ with maximum degree∆. We haveχa(G) ≤
1 + ∆

(

1 +
√
2γ + 4

)

.

As it is simpler, let us start with the proof of Theorem 2 that will serve as an educational example
of the entropy compression method.

2.1 Graphs with restrictions onK2,γ+1’s

We prove Theorem 2 by contradiction. Suppose there exists a graphG ∈ Kγ with maximum degree
∆ such thatχa(G) > 1+∆

(

1 +
√
2γ + 4

)

. We define an algorithm that “tries” to acyclically color
G with κ = 1 +∆

(

1 +
√
2γ + 4

)

colors. Define a total order≺ on the vertices ofG.
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2.1.1 The algorithm

Let V ∈ {1, 2, . . . , κ}t be a vector of lengtht, for some arbitrarily larget ≫ n = |V (G)|. Algo-
rithm ACYCLICCOLORINGGAMMA _G (see below) takes the vectorV as input and returns a partial
acyclic coloringϕ : V (G)→ {•, 1, 2, . . . , κ} of G (• means that the vertex is uncolored) and a text
file R that is called arecord in the remaining of the paper. The acyclic coloringϕ is necessarily
partial since we try to colorG with a number of colors less than its acyclic chromatic number. For a
given vertexv of G, we denote byN(v) the set of neighbors ofv.

Algorithm 1: ACYCLICCOLORINGGAMMA _G
Input : V (vector of lengtht).
Output : (ϕ, R).

1 for all v in V (G) do
2 ϕ(v)← •
3 R← newfile()
4 for i← 1 to t do
5 Let v be the smallest (w.r.t.≺) uncolored vertex ofG
6 ϕ(v)← V [i]
7 Write "Color \n" in R
8 if ϕ(v) = ϕ(u) for u ∈ N(v) then

// Proper coloring issue
9 ϕ(v)← •

10 Write "Uncolor, neighbor u \n" in R

11 else ifv belongs to a bicolored cycle of length2k (k ≥ 2), say(v = u1, . . . , u2k) then
// Bicolored cycle issue

12 for j ← 1 to 2k − 2 do
13 ϕ(uj)← •
14 Write "Uncolor, 2k-cycle (v = u1, . . . , u2k) \n" in R

15 return (ϕ, R)

Algorithm ACYCLICCOLORINGGAMMA _G runs as follows. Letϕi be the partial coloring ofG
afteri steps (at the end of theith loop). At Stepi, we first considerϕi−1 and we color the smallest
uncolored vertexv with V [i] (line 6 of the algorithm). We then verify whether one of the following
types bad events happens:

Event 1: G contains a monochromatic edgevu for someu (line 8 of the algorithm) ;

Eventk: G contains a bicolored cycle of length2k (v = u1, u2, . . . , u2k) (line 11 of the algorithm).

If such events happen, then we uncolor some vertices (including v) in order that none of the two
previous events remains. Clearly,ϕi is a partial acyclic coloring ofG. Indeed, since Event 1 is
avoided,ϕi is a proper coloring and since Event 2 is avoided,ϕi is acyclic.

Proof of Theorem 2. Let us first note that the function defined by Algorithm ACYCLICCOLOR-
INGGAMMA _G is injective. This comes from the fact that from each output of the algorithm, one
can determine the corresponding input by Lemma 3. Now we obtain a contradiction by showing that
the number of possible outputs is strictly smaller than the number of possible inputs whent is chosen
large enough. The number of possible inputs is exactlyκt while the number of possible outputs is
o(κt), as it is at most(1+κ)n×o(κt). Indeed, there are at most(1+κ)n possible partialκ-colorings
of G and there are at mosto(κt) possible records by Lemma 4. Therefore, assuming the existence
of a counterexampleG leads us to a contradiction. That concludes the proof of Theorem 2. ✷

3



2.1.2 Algorithm analysis

Recall thatϕi denotes the partial acyclic coloring obtained afteri steps. Let us denote byϕi ⊂ V (G)
the set of vertices that are colored inϕi. Let alsovi, Ri andVi respectively denote the current vertex
v of the ith step, the recordR after i steps, and the input vectorV restricted to itsi first elements.
Observe that asϕi is a partial acyclicκ-coloring ofG, and asG is not acyclicallyκ-colorable, we
have thatϕi ( V (G), and thusvi+1 is well defined. This also implies thatR hast "Color" lines.
Finally observe thatRi corresponds to the lines ofR before the(i+ 1)th "Color" line.

Lemma 3 One can recoverVi from (ϕi, Ri).

Proof. By induction oni. Trivially, V0 (which is empty) can be recovered from(ϕ0, R0). Consider
now (ϕi, Ri) and let us try to recoverVi. It is thus sufficient to recoverRi−1, ϕi−1, andV [i].
As observed before, to recoverRi−1 from Ri it is sufficient to consider the lines before the last
(i.e. theith) "Color" line. Then readingRi−1, one can easily recoverϕi−1 and deducevi. Note
that in theith step we wrote one or two lines in the record: exactly one "Color" line followed
by either nothing, or one "Uncolor, neighbor" line, or one "Uncolor, 2k-cycle" line.
Indeed there cannot be an "Uncolor, 2k-cycle" line following an "Uncolor, neighbor"
line, asv would be uncolored by the algorithm before considering bicolored cycles passing through
v. Let us consider these three cases separately.

• If Stepi was a color step alone, thenV [i] = ϕi(vi) andϕi−1 is obtained fromϕi by uncoloring
vi.

• If the last line ofRi is "Uncolor, neighbor u", thenV [i] = ϕi(u) andϕi−1 = ϕi.

• If the last line ofRi is "Uncolor, 2k-cycle (u1, . . . , u2k)", thenV [i] = ϕi(u2k−1)
andϕi−1 is obtained fromϕi by coloring the verticesuj for 2 ≤ j ≤ 2k − 2 (which were
uncolored inϕi), in such a way thatϕi−1(uj) equalsϕi(u2k−1) if j ≡ 1 mod 2, or equals
ϕi(u2k) otherwise. Note that this is possible because in theith loop, the algorithm uncolored
neitheru2k−1 noru2k.

This concludes the proof of the lemma. ✷

Let us now bound the number of possible records.

Lemma 4 AlgorithmACYCLICCOLORINGGAMMA _G produces at mosto(κt) distinct recordsR.

Proof. Since Algorithm ACYCLICCOLORINGGAMMA _G fails to colorG, the recordR has ex-
actly t "Color" lines (i.e. the algorithm consumes the whole input vector). It contains also
"Uncolor" lines of different types: "neighbor" (type 1), "4-cycle" (type 2), "6-cycle"
(type 3), . . . "n-cycle" (type n

2 ). Let T =
{

1, 2, . . . , n
2

}

be the set of bad event types. Let denote
sj the number of uncolored vertices when a bad event of typej occurs. Observe that:

• For every "Uncolor, neighbor" step, the algorithm uncolors 1 previously colored vertex.
Hence sets1 = 1.

• For every "Uncolor, 2k-cycle" step, where the cycle has length2k, the algorithm un-
colors2k − 2 previously colored vertices. Hence setsk = 2k − 2 for 2 ≤ k ≤ ⌊n/2⌋.

To compute the total number of possible records, let us compute how many different entries,
denotedCj , an "Uncolor" step of typej can produce in the record. Observe that:

• An "Uncolor, neighbor" line can produce∆ different entries in the record, according to
the neighbor ofv (the vertex just colored by the algorithm) that shares the same color. Hence
setC1 = ∆.
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S(u): The α∆
4

3 highest
elements according to ≺u

≺u

u

N(u) N2(u)

N
(u

)
∩
N
(v
)

v

Figure 1: Example of a special couple(u, v).

• An "Uncolor, 2k-cycle" line involving a cycle of length2k can produce as many dif-
ferent entries in the record as the number of2k-cycles going throughv. Thus this number of
entries is at most12γ∆

2k−2 according to Lemma 3.2 of [2]. Hence setCk = 1
2γ∆

2k−2 for
2 ≤ k ≤ ⌊n/2⌋.

We complete the proof by means of Theorem 18 of Section 4 (see on page 18). Theorem 18
applies on Algorithm COLORING_G which is a generic version of Algorithm ACYCLICCOLOR-
INGGAMMA _G. Consequently, let us consider the following polynomialQ(x):

Q(x) = 1 +
∑

i∈T

Cix
si

= 1 +∆x+
∑

2≤i≤n
2

1

2
γ∆2i−2x2i−2

< 1 + ∆x+
γ∆2x2

2− 2∆2x2
for x <

1

∆

SettingX = 1
∆

√

2
γ+2 , we have:

Q(X)

X
< ∆

√

γ + 2

2

(

1 +

√

2

γ + 2
+ 1

)

= ∆
(

1 +
√

2γ + 4
)

≤ κ

Sinceγ ≥ 1, then 2
γ+2 < 1 and thus we have0 < X < 1

∆ ≤ 1. Therefore, Algorithm
ACYCLICCOLORINGGAMMA _G produces at mosto(κt) different records by Theorem 18. This
completes the proof. ✷

2.2 Graphs with maximum degree∆

To prove Theorem 1, we prove that, given a graphG with maximum degree∆, we haveχa(G) <
3
2∆

4
3 + 5∆− 14 for ∆ ≥ 24 in Section 2.2.1 and thatχa(G) < 3

2∆
4
3 +∆+ 8∆

4
3

∆
2
3 −4

+ 1 for ∆ ≥ 9

in Section 2.2.2.
The proof is made by contradiction. Suppose there exists a graphG with maximum degree∆

which is a counterexample to Theorem 1. Define a total order≺ on the vertices ofG. Let N(u)
andN2(u) be respectively the set of neighbors and distance-two vertices ofu. For each pair of
non-adjacent verticesu andv, let N(u, v) = N(u) ∩ N(v), and letdeg(u, v) = |N(u, v)|. For
each vertexu of G, let the order≺u onN2(u) be such thatv ≺u w if deg(u, v) < deg(u,w), or if
deg(u, v) = deg(u,w) butv ≺ w. A couple of vertices(u, v) with v ∈ N2(u) is specialif there are
less thanα∆

4
3 (α is a constant to be set later) verticesw such thatv ≺u w. That is,(u, v) is special

if and only if, v is in theα∆4/3 highest elements of≺u (see Figure 1). Note that the couple(u, v)
may be special while the couple(v, u) may be non-special. Let us denoteS(u) ⊆ N2(u) the set of

verticesv such that(u, v) is special. By definition,|S(u)| = min
{

α∆
4
3 , |N2(u)|

}

.
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Algorithm 2: ACYCLICCOLORING_G
Input : V (vector of lengtht).
Output : (ϕ, R).

1 for all v in V (G) do
2 ϕ(v)← •
3 R← newfile()
4 for i← 1 to t do
5 Let v be the smallest (w.r.t.≺) uncolored vertex ofG
6 ϕ(v)← V [i]
7 Write "Color \n" in R
8 if ϕ(v) = ϕ(u) for u ∈ N(v) then

// Proper coloring issue
9 ϕ(v)← •

10 Write "Uncolor, neighbor u \n" in R

11 else ifϕ(v) = ϕ(u) for u ∈ S(v) then
// Special couple issue

12 ϕ(v)← •
13 Write "Uncolor, special u \n" in R

14 else ifv belongs to a bicolored cycle of length4 (v = u1, u2, u3, u4) then
// Bicolored cycle issue

15 ϕ(v)← •
16 ϕ(u2)← •
17 Write "Uncolor, cycle (u1, u2, u3, u4) \n" in R

18 else ifv belongs to a bicolored path of length 6(u1, u2 = v, u3, u4, u5, u6) with u1 ≺ u3

then
// Bicolored path issue

19 ϕ(u1)← •
20 ϕ(v)← •
21 ϕ(u3)← •
22 ϕ(u4)← •
23 Write "Uncolor, path (u1, u2, u3, u4, u5, u6) \n" in R

24 return (ϕ, R)

2.2.1 First upper bound

By contradiction hypothesis,χa(G) ≥ 3
2∆

4
3 + 5∆ − 14. Let κ be the unique integer such that

3
2∆

4
3 + 5∆− 15 ≤ κ < 3

2∆
4
3 + 5∆− 14 (i.e. κ =

⌈

3
2∆

4
3 + 5∆− 15

⌉

).

The algorithm

LetV ∈ {1, 2, . . . , κ}t be a vector of lengtht. Algorithm ACYCLICCOLORING_G (see below) takes
the vectorV as input and returns a partial acyclic coloringϕ : V (G)→ {•, 1, 2, . . . , κ} of G (recall
that•means that the vertex is uncolored) and a recordR.

Algorithm ACYCLICCOLORING_G runs as follows. Letϕi be the partial coloring ofG after
i steps (at the end of theith loop). At Stepi, we first considerϕi−1 and we color the smallest
uncolored vertexv with V [i] (line 6 of the algorithm). We then verify whether one of the following
types of bad events happens:

EventN (for neighbor):G contains a monochromatic edgevu for someu (line 8 of the algo-
rithm);

6



EventS (for special):G contains a special couple(v, u) with u andv having the same color
(line 11 of the algorithm);

EventC (for cycle): G contains a bicolored cycle of length 4(v = u1, u2, u3, u4) (line 14 of
the algorithm);

EventP (for path): G contains a bicolored path of length 6(u1, u2 = v, u3, u4, u5, u6) with
u1 ≺ u3 (line 18 of the algorithm).

If such events happen, then we modify the coloring (i.e. we uncolor some vertices as mentioned in
Algorithm ACYCLICCOLORING_G) in order that none of the four previous events remains. Note
that at some Stepi, for u andv two vertices ofG such that(u, v) is a special couple but(v, u) is
not, we may haveϕ(u) = ϕ(v); this means thatu has been colored beforev. Clearly,ϕi is a partial
acyclic coloring ofG. Indeed, since Event 1 is avoided,ϕi is a proper coloring ; since Events 3 and 4
are avoided,ϕi is acyclic.

Proof of Theorem 1.As in the proof of Theorem 2, we prove that the function definedby ACYCLIC-
COLORING_G is injective (see Lemma 5). A contradiction is then obtained by showing that the
number of possible outputs is strictly smaller than the number of possible inputs whent is chosen
large enough compared ton. The number of possible inputs is exactlyκt while the number of pos-
sible outputs iso(κt), as the number of possible(1 + κ)-colorings ofG is (1 + κ)n and the number
of possible records iso(κt) (see Lemma 6). ✷

Algorithm analysis

Recall thatϕi, vi, Ri, andVi respectively denote the partial acyclic coloring obtainedafter i steps,
the current vertexv of theith step, the recordR afteri steps, and the input vectorV restricted to its
i first elements.

We first show that the function defined by ACYCLICCOLORING_G is injective.

Lemma 5 Vi can be recovered from(ϕi, Ri).

Proof. First note that, at each step of Algorithm ACYCLICCOLORING_G, a "Color" line possibly
followed by an "Uncolor" line is appended toR. We will say that a step which only appends a
"Color" line is acolor step, and a step which appends a "Color" line followed by an "Uncolor"
line is anuncolor step. Therefore, by looking at the last line ofR, we know whether the last step
was a color step or an uncolor step.

We first prove by induction oni thatRi uniquely determines the set of colored vertices at Stepi
(i.e. ϕi). Observe thatR1 necessarily contains only one line which is "Color"; then v1 is the
unique colored vertex. Assume now thati ≥ 2. By induction hypothesis,Ri−1 (obtained fromRi

by removing the last line if Stepi was a color step or by removing the two last lines if Stepi was
an uncolor step) uniquely determines the set of colored vertices at Stepi − 1. Then at Stepi, the
smallest uncolored vertex ofG is colored. If one of Events 1 to 4 happens, then the last line of
Ri is an "Uncolor" line whose indicates which vertices are uncolored. Therefore,Ri uniquely
determines the set of colored vertices at Stepi.

Let us now prove by induction that the pair(ϕi, Ri) permits to recoverVi. At Step 1,(ϕ1, R1)
clearly permits to recoverV1: indeed,v1 is the unique colored vertex and thusV [1] = ϕ1(v1).
Assume now thati ≥ 2. The recordRi−1 gives us the set of colored vertices at Stepi− 1, and thus
we know what is the smallest uncolored vertexv at the beginning of Stepi. Consider the following
two cases:

• If Stepi was a color step, thenϕi−1 is obtained fromϕi in such a way thatϕi−1(u) = ϕi(u)
for all u 6= v andϕi−1(v) = •. By induction hypothesis,(ϕi−1, Ri−1) permits to recover
Vi−1 andV [i] = ϕi(v).

7



• If Step i was an uncolor step, then the last line ofRi allows us to determine the set of un-
colored vertices at Stepi and therefore, we can deduceϕi−1. Then by induction hypothesis,
(ϕi−1, Ri−1) permits to recoverVi−1. We obtainV [i] by considering the following cases:

– If the last line is of the form "Uncolor, neighbor u", thenV [i] = ϕi(u).

– If the last line is of the form "Uncolor, special u", thenV [i] = ϕi(u).

– If the last line is of the form "Uncolor, cycle (u1, u2, u3, u4)", thenV [i] = ϕi(u3).

– If the last line is of the form "Uncolor, path (u1, u2, u3, u4, u5, u6)", thenV [i] =
ϕi(u6).

This completes the proof. ✷

Lemma 6 AlgorithmACYCLICCOLORING_G produces at mosto(κt) distinct records.

Proof. As Algorithm ACYCLICCOLORING_G fails to colorG, the recordR has exactlyt "Color"
steps. It contains also "Uncolor" lines of different types: "neighbor" (type N ), "special"
(typeS), "cycle" (typeC), and "path" (typeP ). Let T = {N,S,C, P} be the set of bad event
types. Let denotesj the number of uncolored vertices when a bad event of typej occurs. Note that
each "Uncolor" step of type "neighbor" (resp. "special", "cycle", and "path") uncolors
1 (resp. 1, 2, 4) previously colored vertex. Hence setsN = 1, sS = 1, sC = 2 andsP = 4.

To compute the total number of possible records, let us compute how many different entries,
denotedCj , an "Uncolor" step of typej can produce in the record. By considering vertexv in
ACYCLICCOLORING_G, observe that:

• An "Uncolor" step of type "neighbor" can produce∆ different entries in the record,
according to the neighbor ofv that shares the same color; hence letCN = ∆.

• An "Uncolor" step of type "special" can produce|S(v)| ≤ α∆
4
3 different entries in the

record, according to the vertexu ∈ S(v) that shares the same color; hence letCS = α∆
4
3 .

• An "Uncolor" step of type "cycle" can produce as many different entries in the record
as the number of4-cycles going throughv and avoidingS(v). We do not consider bicolored
4-cycles going throughv and some vertexu ∈ S(v), since we would have an "Uncolor,

special u" step instead. Hence this number of entries is bounded by∆
8
3

8α according to the

next claim, and thus letCC = ∆
8
3

8α .

Claim 7 Given a graphG with maximum degree∆, for any vertexv of G, there are at most
∆

8
3

8α induced4-cycles going throughv and avoidingS(v).

Proof. There are at most∆2 edges betweenN(v) andN2(v). Let d be an integer such
that deg(v, u) ≥ d if and only if u ∈ S(v). Therefore, there are at leastd|S(v)| edges
betweenN(v) andS(v). Thus there are at most∆2−dα∆

4
3 edges betweenN(v) andS(v) =

N2(v) \ S(v), and

∑

u∈S(v)

deg(v, u) ≤ ∆2 − dα∆
4
3 (1)

One can see that the set of induced4-cycles passing throughv and through some vertexu ∈
N2(v) is in bijection with the pairs of edges{ux, uy}with x 6= y and{x, y} ⊆ N(v, u). Thus
there are

(

deg(v,u)
2

)

such cycles. Summing over all vertices inS(v), we can thus conclude
that this is less than the following valueK = 1

2

∑

u∈S(v) deg(v, u)
2. As this function is

quadratic indeg(v, u), and as heredeg(v, u) ≤ d, Equation (1) implies thatK ≤ K(d) for
K(d) = 1

2 (∆
2 − dα∆

4
3 )d. By simple calculation one can see that the polynomialK(d) is

8



maximal ford = ∆
2
3

2α and we thus have thatK ≤ K

(

∆
2
3

2α

)

= ∆
8
3

8α . This concludes the proof

of the claim. ✷

• An "Uncolor" step of type "path" can produce as many different entries in the record
as the number of6-pathsP = (u1, u2, u3, u4, u5, u6) with u2 = v andu1 ≺ u3. Hence
this number of entries is bounded by12∆(∆ − 1)4 according to the next claim, and thus let
CP = 1

2∆(∆− 1)4.

Claim 8 Given a graphG with maximum degree∆, for any vertexv of G, there are at most
1
2∆(∆− 1)4 paths(u1, u2, u3, u4, u5, u6) of length 6 withu2 = v andu1 ≺ u3.

Proof. Given vertexv, there are
(

∆
2

)

possibilities to chooseu1 andu3, and then∆ − 1
candidates for being vertexui+1 onceui is known (i ≥ 3). This clearly leads to the given
upper bound. ✷

We complete the proof by means of Theoremm 18 of Section 4 (seeon page 18). Let us consider
the following polynomialQ(x):

Q(x) = 1 +
∑

i∈T

Cix
si

= 1 + CNxsN + CSx
sS + CCx

sC + CPx
sP

= 1 +∆x+ α∆
4
3x+

∆
8
3

8α
x2 +

1

2
∆(∆− 1)4x4

SettingX = 2
√
2α

∆
4
3

, we have:

Q(X)

X
=

(

1
√

2α
+ α

)

∆
4
3 +

(

8α
3
2
√

2 + 1
)

∆− 32α
3
2
√

2 +
8α

3
2

√

2

∆

(

6−
4

∆
+

1

∆2

)

(2)

In order to minimize 1√
2α

+ α, we setα = 1
2 , givingX = 2

∆
4
3

and we obtain:

Q(X)

X
=

3

2
∆

4
3 + 5∆− 16 +

24

∆
− 16

∆2
+

4

∆3
<

3

2
∆

4
3 + 5∆− 15 ≤ κ as soon as∆ ≥ 24

Since0 < X ≤ 1 for ∆ ≥ 24, Algorithm ACYCLICCOLORING_G produces at mosto(κt) different
records by Theorem 18. This completes the proof. ✷

Remark 9 For small values of∆, note that settingα = 1
2 is not optimal. Indeed the best choice

of α is the value minimizing the right term of Equation (2). For example, for∆ = 27, setting
α = 0.225 leads us to194 colors instead of242, already improving on Kostochka and Stocker’s

bound1 +
⌊

(∆+1)2

4

⌋

= 197. Actually one can observe in Table 1 that the optimal value ofα (for a

given∆) converges to12 rather slowly.

∆ 27 28 29 30 100 1000 10000 100000 1000000
α 0.225 0.225 0.226 0.226 0.25 0.32 0.384 0.434 0.465

Table 1: Optimal values ofα for some given∆.
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Algorithm 3: ACYCLICCOLORING-V2_G
Input : V (vector of lengtht).
Output : (ϕ, R).

1 for all v in V (G) do
2 ϕ(v)← •
3 R← newfile()
4 for i← 1 to t do
5 Let v be the smallest (w.r.t.≺) uncolored vertex ofG
6 ϕ(v)← V [i]
7 Write "Color \n" in R
8 if ϕ(v) = ϕ(u) for u ∈ N(v) then

// Proper coloring issue
9 ϕ(v)← •

10 Write "Uncolor, neighbor u \n" in R

11 else ifϕ(v) = ϕ(u) for u ∈ S(v) then
// Special couple issue

12 ϕ(v)← •
13 Write "Uncolor, special u \n" in R

14 else ifv belongs to a bicolored cycle of length2k (k ≥ 2), say(u1, u2 = v, u3, . . . , u2k)
with u1 ≺ u3 then

// Bicolored cycle issue
15 for j ← 1 to 2k − 2 do
16 ϕ(uj)← •
17 Write "Uncolor, cycle (u1, . . . , u2k) \n" in R

18 return (ϕ, R)

2.2.2 A better upper bound for large value of∆

The choice of the bad event types is important and considering two different sets of bad event types
(insuring the acyclic coloring property) may lead to different bounds. In the previous subsection,
we have considered four bad event types that insure a coloring to be acyclic. In this subsection, we
consider an other set of bad event types which leads to a better upper bound for large value of∆.

Algorithm ACYCLICCOLORING-V2_G (see above) is a variant of Algorithm ACYCLICCOLOR-
ING_G (see on page 6) based on the following set of three bad events:

EventN : G contains a monochromatic edgevu for someu (line 8 of the algorithm);

EventS: G contains a special couple(v, u) with u andv having the same color (line 11 of the
algorithm);

Eventk: G contains a bicolored cycle of length2k (u1, u2 = v, u3, . . . , u2k) (line 14 of the algo-
rithm);

This leads to the following upper bound when∆ ≥ 9:

χa(G) <
3

2
∆

4
3 +∆+

8∆
4
3

∆
2
3 − 4

+ 1.

Letκ be the unique integer such that3
2∆

4
3 +∆+ 8∆

4
3

∆
2
3 −4
≤ κ < 3

2∆
4
3 +∆+ 8∆

4
3

∆
2
3 −4

+1 and letα = 1
2 .

We now briefly sketch the proof. LetT =
{

N,S, 2, 3, 4, . . . , n
2

}

be the set of bad event types. Note
that each "Uncolor" step of type "neighbor" (resp. "special" and "2k-cycle")) uncolors1
(resp.1, 2k − 2) previously colored vertex. Hence setsN = 1, sS = 1 andsk = 2k − 2.

10



By consideringv in Algorithm ACYCLICCOLORING-V2_G, observe that:

• An "Uncolor" step of type "neighbor" can produce∆ different entries in the record. Set
CN = ∆.

• An "Uncolor" step of type "special" can produce|S(v)| ≤ 1
2∆

4
3 different entries in the

record, according to the vertexu ∈ S(v) that shares the same color. SetCS = 1
2∆

4
3 .

• Now consider cycles of length2k, k ≥ 2. For cycles of length 4, there are at most1
4∆

8
3

induced 4-cycles going throughv and avoidingS(v) (see Claim 7); we setC2 = 1
4∆

8
3 .

Letk ≥ 3. Let us upper bound the number of2k-cycles going throughv that may be bicolored.
To do so, we count the number of2k-cycles(u1, u2, u3, . . . , u2k) with u2 = v, u1 ≺ u3 such
that(u1, u2k−1) or (u2k−1, u1) is not special (if both(u1, u2k−1) and(u2k−1, u1) are special,
thenu1 andu2k−1 cannot receive the same color). There are at most∆2k− 4

3 such cycles
according to Claim 10. We setCk = ∆2k− 4

3 .

Claim 10 For k ≥ 3, there are at most∆2k− 4
3 2k-cycles(u1, u2, u3, . . . , u2k) going through

v with v = u2 andu1 ≺ u3 such that(u1, u2k−1) or (u2k−1, u1) is not special.

Proof. As u1 ≺ u3, givenv, there are
(

∆
2

)

possible(u1, u3). Then knowingui, there are
at most∆ possible choices forui+1, 3 ≤ i ≤ 2k − 2. Now let (r, s) be a non-special pair
being either(u1, u2k−1) or (u2k−1, u1). Hences ∈ N2(r)\S(r). Let d be the highest value
of deg(r, u) for u ∈ N2(r)\S(r). Therefore, there are at leastd|S(r)| edges betweenN(r)

andS(r), and so at most∆2 − d
2∆

4
3 edges betweenN(r) andN2(r) \ S(r). It follows that

d is at most2∆
2
3 . Hence, there are at most2∆

2
3 possible choices foru2k. This leads to the

given upper bound. ✷

Let us consider the following polynomialQ(x):

Q(x) = 1 +
∑

i∈T

Cix
si

= 1 + CNxsN + CSx
sS + C2x

s2 +

⌊n/2⌋
∑

k≥3

Ckx
sk

= 1 +∆x+
1

2
∆

4
3x+

1

4
∆

8
3 x2 +

⌊n/2⌋
∑

k≥3

∆2k− 4
3x2k−2

< 1 + ∆x+
1

2
∆

4
3x+

1

4
∆

8
3 x2 +

∆
14
3 x4

1−∆2x2
for x <

1

∆

SettingX = 2

∆
4
3

, we haveX ≤ 1
∆ as soon as∆ ≥ 9 and thus:

Q(X)

X
<

3

2
∆

4
3 +∆+

8∆
4
3

∆
2
3 − 4

≤ κ

Algorithm ACYCLICCOLORING-V2_G produces at mosto(κt) different records by Theorem 18.
This completes the sketch of the proof.

3 General method

In the previous section, we gave upper bounds on the acyclic chromatic number of some graph
classes. To do so, we precisely analyzed the randomized procedure for a specific graph class and a

11



Algorithm 4: COLORING_G

Input : V = {1, 2, . . . , κ}t (vector of lengtht).
Output : (ϕ, R).

1 for all v in V (G) do
2 ϕ(v)← •
3 R← newfile()
4 for i← 1 to t do
5 v ← NextUncoloredElement(ϕ)
6 ϕ(v)← V [i]
7 Write "Color \n" in R
8 if ϕ ∈ F(v) then
9 j ← BadEventType(v, ϕ)

10 k ← BadEventClassj(v, ϕ)
11 for ∀u ∈ UncolorSetBadEventj(v, ϕ, k) do
12 ϕ(u)← •
13 Write "Uncolor, Bad Event j, k \n" in R

14 return (ϕ, R)

specific graph coloring. The aim of this section is to providea general method that can be applied to
several graph classes and many graph colorings (some applications of our general method are given
in Section 5).

In the remaining of this section,G is an arbitrarily chosen graph. The aim of the general method
is to prove the existence of a particular coloring ofG usingκ colors, for someκ. A partial col-
oring of G is a mappingϕ : V (G) → {•, 1, 2, . . . , κ} (• means that the vertex is uncolored). We
assume by contradiction thatG does not admit such a coloring. In that case, we will show that
Algorithm COLORING_G (see Algorithm 4) defines an injective mapping (Corollary17) fromκt

different inputs (for somet) to o(κt) different outputs (Theorem 18), a contradiction. Given a partial
coloringϕ, letϕ denotes the set of vertices colored inϕ.

3.1 Description of Algorithm COLORING _G

Given a vertexv of G, let F(v) denote the set offorbidden partial colorings anchored atv. This
set is such that the vertexv is colored for anyϕ ∈ F(v). For example, Algorithm ACYCLICCOL-
ORINGGAMMA _G (see Algorithm 1) is a special case of Algorithm COLORING_G, where, for any
vertexv, the setF(v) consists of the partial colorings wherev and one of its neighbor have the same
color, orv belongs to a properly bicolored cycle.

A partial coloringϕ of G is said to beallowed, if and only if,

1. eitherϕ is empty (none of the vertices is colored),

2. or there exists a colored vertexv such thatϕ /∈ F(v) and uncoloringv yields to an allowed
coloring.

Algorithm COLORING_G constructs a partial coloringϕ of G. A crucial invariant of Algo-
rithm COLORING_G is that the partial coloringϕ considered at the beginning of each iteration of
the main loop is allowed.

At the beginning of each iteration, Algorithm COLORING_G starts with an allowed coloringϕ
and chooses an uncolored vertexv by NextUncoloredElement.

• NextUncoloredElement(ϕ): This function takes the set of colored vertices ofG in ϕ as
input and outputs an uncolored vertex (unless all vertices are colored).

12



Then Algorithm COLORING_G colorsv using the next color from vectorV . This new coloringϕ
either verifiesϕ /∈ F(v) and consequentlyϕ is allowed, orϕ ∈ F(v) and in that caseϕ is an “almost”
allowed coloring since uncoloringv yields an allowed coloring. Hence, let us define these forbidden
colorings that can be produced by Algorithm COLORING_G.

A partial coloringϕ of G is said to be abad event anchored atv, if ϕ ∈ F(v) and if the partial
coloringϕ′, obtained fromϕ by uncoloringv, is such that

• ϕ′ is an allowed coloring,

• v is the vertex output byNextUncoloredElement(ϕ′).

We denoteB(v) the set of bad events anchored atv. It is clear thatB(v) ⊆ F(v). Hence, the
coloringsϕ considered at line 8 of the algorithm are either allowed or belong toB(v). Therefore, the
test at line 8 is thus equivalent to testing whetherϕ ∈ B(v).

Before going further into the description of COLORING_G, let us introduce the following refine-
ments of the setsB(v). For some setT , each setB(v) is partitioned into|T | setsBj(v) where
j ∈ T . We call the bad events ofBj(v) the typej bad events. We now refine again each setBj(v).
We partition eachBj(v) into different classesBk

j (v) wherek belongs to some setC j(v) of cardi-
nality at mostCj , for some valueCj (depending only on typej). The partition into classes must be
sufficiently refined in order to allow some properties of the functionRecoverBadEvent (see below).

After coloringv in the main loop, if the current coloringϕ does not belong toB(v), then COL-
ORING_G proceeds to the next iteration. Observe that in that caseϕ remains allowed as expected.

Suppose now that after coloringv, the current coloringϕ belongs toB(v). In that case, COLOR-
ING_G determines the valuesj andk such thatϕ ∈ Bk

j (v). That is done using the following two
functions:

• BadEventType(v, ϕ): Whenϕ is a bad event ofB(v), this function outputs the elementj ∈ T

such thatϕ is a bad event belonging toBj(v).

• BadEventClassj(v, ϕ) for somej ∈ T : Whenϕ is a bad event ofBj(v), this function
outputs the elementk ∈ C j(v) such thatϕ is a bad event belonging toBk

j (v).

Then COLORING_G uncolors the vertices given byUncolorSetBadEvent, and proceeds to the
next iteration. A key property ofUncolorSetBadEvent is to ensure that the obtained coloring (i.e.
obtained after uncoloring the vertices given byUncolorSetBadEvent) is allowed as expected.

• UncolorSetBadEventj(v, ϕ, k) for somej ∈ T : For any bad eventϕ of Bk
j (v) (with colored

verticesϕ), this function outputs a subsetS of ϕ of sizesj (for some valuesj depending only
on typej), such that uncoloring the vertices ofS in ϕ yields an allowed coloring.

Often the property of leading to an allowed coloring is easy to fulfill (see Lemma 11). A setX of
partial colorings ofG is closed upward(resp.closed downward) if starting from any partial coloring
of X , coloring (resp. uncoloring) any uncolored (resp. colored) vertex leads to another coloring of
X .

Lemma 11 If every setF(u) is closed upward, then the set of allowed colorings is closeddownward.
Hence in that case, for anyϕ ∈ B(v), uncoloring a setS of vertices containingv, leads to an allowed
coloring.

Proof. Let us first prove the first statement. Assume for contradiction that the set of allowed
colorings is not closed downward, that is there exist an allowed coloringϕ and a non-empty set
S ⊂ ϕ, such that uncoloring the vertices inS leads to a non-allowed coloringϕ′. As ϕ is allowed,
there exists an orderingv1, . . . , vp, with p = |ϕ|, of the vertices inϕ such that the restriction ofϕ
to verticesv1, . . . , vi, denotedϕi, does not belong toF(vi), for any i ≤ p. Let us denoteϕ′

i the
coloring obtained fromϕi by uncoloring the vertices ofS (if colored). Asϕ′ is not allowed, there
exists a value1 ≤ j ≤ p such thatϕ′

j ∈ F(vj). But asF(vj) is closed upwards, this contradicts the
fact thatϕj /∈ F(vj).
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Consider now the second statement. For anyϕ ∈ B(v), uncoloringv leads to an allowed coloring
(by definition ofB(v)). Then the proof follows from the fact that allowed colorings are closed
downward. ✷

Finally, to prove the injectivity of COLORING_G, we need that the following function exists.

• RecoverBadEventj(v,X, k, ϕ′) whereX ⊆ V (G), k ∈ C j(v), andϕ′ is a partial coloring
of G: The function outputs a bad eventϕ ∈ Bk

j (v), such that (1)ϕ = X and (2) uncolor-
ing UncolorSetBadEventj(v, ϕ, k) from ϕ one obtainsϕ′, if such partial coloringϕ exists.
Moreover, the partition into classes ofBj(v) must be sufficiently refined so that at most one
bad eventϕ fulfills these conditions.

Example

Let us illustrate our general method with the proofs of Section 2 on acyclic vertex-coloring.
Observe that Algorithm 1 corresponds to Algorithm 4 for the following settings. For any vertex

v, the setF(v) contains every partial coloring ofG with a monochromatic edge or with a bicolored
cycle involvingv. Then one type (type1) corresponds to monochromatic edges, and several types
(type k, for k ≥ 2) correspond to bicolored cycles, one per possible length ofthe cycles. Then
each type is partitionned into classes, each of them corresponding to one monochromatic edge or
to one bicolored cycle, respectively. For the uncoloring process, one can notice that the number of
uncolored vertices only depends on the type of bad events,s1 = 1 andsk = 2k − 2, and that the set
of uncolored vertices only depend on the class (i.e. the monochromatic edge or the bicolored cycle).
Furthermore, as the setsF(v) are closed upward and as the current vertex is always uncolored, at the
end of each iteration the partial colorings are always allowed (by Lemma 11). Finally, as described
in Subsection 2.1 there exists a functionRecoverBadEventj for each type of bad eventj.

Similarly, Algorithm 2 also corresponds to Algorithm 4. Here,F(v) contains every partial color-
ing of G with a monochromatic edgevu, a monochromatic special pair(v, u), a properly bicolored
4-cycle(v, u1, u2, u3) or a properly bicolored6-path(u1, v, u3, u4, u5, u6) with u1 ≺ u3.

3.2 Algorithm COLORING _G and its analysis

From the previous subsection, we have that forj ∈ T , Cj andsj respectively denote the number of
typej bad event classes, and the number of vertices to be uncoloredwhen a typej bad event occurs.
We set

Q(x) = 1 +
∑

j∈T

Cjx
sj

In this subsection, we prove the following:

Theorem 12 The graphG admits an allowedκ-coloring for any integerκ such that

κ ≥ min
0<x≤1

Q(x)

x
.

Before going further to prove Theorem 12, let us state the twofollowing remarks.

Remark 13 One can observe that the bound obtained when allsj = 1, namely
κ ≥ 1 +

∑

j∈T
Cj , is the same as the one obtained by a simple greedy coloring. Indeed, while

coloring the current vertexv, the bad events of typej “forbid” at most Cj colors for v, and so
1 +

∑

j∈T
Cj colors suffice to color the graph greedily.

Remark 14 One can observe that the polynomialQ(x) only depends on the valuesXk =
∑

j s.t. sj=k

Cj .

One could thus merge the bad event types having the same valuesj .
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From now on, we assume thatG does not admit an allowedκ-coloring, this will lead to a con-
tradiction. LetV ∈ {1, 2, . . . , κ}t be a vector of lengtht for some arbitrarily larget. The algo-
rithm COLORING_G (see Algorithm 4) takes the vectorV as input and returns an allowed partial
coloringϕ of G and a text fileR (called therecord). Letϕi, vi, Ri, andVi respectively denote the
partial coloring obtained by Algorithm COLORING_G afteri steps, the current vertexv of the ith

step, the recordR after i steps, and the input vectorV restricted to itsi first elements. Note that
the algorithm and especially the properties ofUncolorSetBadEventj(v, ϕ, k) ensure that eachϕi

is allowed. Asϕi is an allowed partialκ-coloring ofG and sinceG has no allowedκ-coloring by
hypothesis, we have thatϕi ( V (G) and that vertexvi+1 is well defined. This also implies thatR
hast "Color" lines. Finally note thatRi corresponds to the lines ofR before the(i+1)th "Color"
line.

Lemma 15 One can recovervi andϕi fromRi.

Proof. By induction oni. Trivially, ϕ0 = ∅ andv0 does not exist. Consider nowRi+1 and
let us show that we can recovervi+1 andϕi+1. To recoverRi from Ri+1 it is sufficient to con-
sider the lines before the last (i.e. the(i + 1)th) "Color" line. By induction hypothesis, one can
recoverϕi from Ri. Observe thatvi+1 = NextUncoloredElement(ϕi). Let X = ϕi + vi+1.
If the last line ofRi+1 is a "Color" line, thenϕi+1 = X . Otherwise, the last line ofRi+1

is an "Uncolor" line of the form "Uncolor, Bad Event j, k". Then, we haveϕi+1 =
X \ UncolorSetBadEventj(vi+1, X, k). That completes the proof. ✷

Lemma 16 One can recoverVi from (ϕi, Ri).

Proof. By induction oni. Trivially, V0 (which is empty) can be recovered from(ϕ0, R0). Consider
now (ϕi+1, Ri+1) and let us try to recoverVi+1. By induction, it is thus sufficient to recoverRi,
ϕi, and the valueV [i + 1]. As previously seen in the proof of Lemma 15, we can deduceRi from
Ri+1. By Lemma 15, we knowϕi and we havevi+1 = NextUncoloredElement(ϕi). Note that in
the(i+ 1)th step of Algorithm COLORING_G, we wrote one or two lines in the record: exactly one
"Color" line followed either by nothing, or by one "Uncolor, Bad Event j, k" line. Let us
consider these two cases separately:

• If Stepi+1 was a color step alone, thenV [i+1] = ϕi+1(vi+1) andϕi is obtained fromϕi+1

by uncoloringvi+1.

• If the last line of Ri+1 is "Uncolor, Bad Event j, k", then the function
RecoverBadEventj(vi+1, ϕi, k, ϕi+1) outputs the bad eventϕ′

i that occured during this step
of the algorithm. Then we have thatV [i+1] = ϕ′

i(vi+1) and thatϕi corresponds to the partial
coloring obtained fromϕ′

i by uncoloringvi+1.

This concludes the proof of the lemma. ✷

Corollary 17 The mappingV → (ϕ,R) defined by AlgorithmCOLORING_G is injective.

Proof of Theorem 12. First observe that Algorithm COLORING_G can produce at mosto(κt)
distinct outputs(ϕ,R); indeed, there are at most(1 + κ)n partial coloringsϕ of G and at most
o(κt) recordsR (by Theorem 18, see Section 4). This is less than theκt possible inputs (for a
sufficiently larget), and thus contradicts the injectivity of Algorithm COLORING_G (Corollary 17).
This concludes the proof. ✷
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3.3 Extension to list-coloring

Given a graphG and a list assignmentL(v) of colors for every vertexv of G, we say thatG admits
aL-coloring if there is a vertex-coloring such that every vertexv receives its color from its own list
L(v). A graph isk-choosableif it is L-colorable for any list assignmentL such that|L(v)| ≥ k for
everyv. The minimum integerk such thatG is k-choosable is called thechoice numberof G. The
usual coloring is a particular case ofL-coloring (all the lists are equal) and thus the choice number
upper bounds the chromatic number. This notion naturally extends to edge-coloring and chromatic
index.

Until now, our methods were developed for usual colorings (i.e. without lists). Every algorithm
takes a vector of colorsV as input and, at each Stepi, a vertexv is colored with colorV [i] (line
6 of Algorithm COLORING_G). It is easy to slightly modify our procedure to extend allour results
to list-coloring. To do so, the input vectorV is no longer a vector of colors but a vector of indices.
Then, at each Stepi, the current vertexv is colored with theV [i]th color ofL(v). We then adapt
the proof of Lemma 16 so thatV [i + 1] is no longerϕi+1(vi+1) (or ϕ′

i(vi+1)) but instead it is the
position ofϕi+1(vi+1) (orϕ′

i(vi+1)) in L(vi+1).

Therefore, Theorems 1, 2, and 12 extend to list-coloring.

4 Bounding the number of records

The aim of this section is to prove one of our main theorems, namely Theorem 18, that upper bounds
the number of possible records produced by Algorithm COLORING_G.

Let us define a class of recordsR which includes the records that Algorithm COLORING_G
could produce in a real execution. In this section, letn = |V (G)| be the order of the graphG, T

be a set of bad event types, andsj andCj be positive integers for allj ∈ T , corresponding to the
number of uncolored vertices and the number of classes associated to the bad events of typej.

A recordR ∈ R is a sequence of "Color" and "Uncolor, Bad Event j, k" lines, where
j ∈ T andk ∈ {1, . . . , Cj}. TheDyck pathsare defined as staircase lattice paths on a square grid,
from the lower-left corner to the upper-right corner, whichdo not go below the diagonal. We say that
a Dyck path ispartial when it does not end in the upper-right corner. Thesizeof a (partial) Dyck
path is its number of up-steps. Observe that a recordR ∈ R can be seen as apartial Dyck path
where

• each up-step corresponds to a "Color" line,

• each descent (maximal sequence of consecutive down-steps)of lengthℓ is annotated with a
couple(j, k) and corresponds to an "Uncolor, Bad Event j, k" line whereℓ = sj .

Observe Figure 2 which gives an example of such an annotated partial Dyck path wheresj1 = 1,
sj2 = 2, sj3 = 1, andsj4 = 2.

From now on, the termrecordrefers to both a record produced by Algorithm COLORING_G and
its corresponding annotated partial Dyck path.

At a given step, it is clear that the level of the record corresponds to the number of colored vertices
in G (for example, at Step8 of Figure 2, the graphG has3 colored vertices). Thus the ending level
of the record should be between0 andn. Let us define the subclassB ⊆ R of the records ending
at level 0. In the following, usual Dyck paths will be callednon-partialDyck path to emphasize the
difference between Dyck paths and partial Dyck paths. Hence,B is the set of non-partial Dyck paths
ofR.

It is clear that the size of a record ofR is the number of "Color" lines. Letrt (resp.bt) be the
number of records of sizet in R (resp.B) for anyt ≥ 0. We thus define the generating functions of
R andB as

R(y) =
∑

t≥0

rty
t and B(y) =

∑

t≥0

bty
t.
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Figure 2: (a) A record and (b) its corresponding annotated partial Dyck path.

LetRℓ ⊆ R be the set of records ofR ending at levelℓ. Since during the execution of Algo-
rithm COLORING_G, every "Uncolor" line follows a "Color" line, a recordR ∈ Rℓ can be split
into ℓ up-steps (which correspond to the last up-steps between level i andi+1, for each0 ≤ i ≤ ℓ−1)
andℓ + 1 records{B1, B2, . . . , Bℓ+1} ⊆ B (See Figure 3). Hence, the generating function ofRℓ is
Rℓ(y) = yℓB(y)ℓ+1. Therefore,

R(y) =
∑

0≤ℓ≤n

Rℓ(y) =
∑

0≤ℓ≤n

yℓB(y)ℓ+1 (3)

ℓ = 4

∅ ∅
B4 B5B1 B2 B3

Figure 3: Splitting a partial Dyck path of levelℓ into ℓ+ 1 non-partial Dyck paths andℓ up-steps.

Let Bj ⊆ B be the set of records ofB ending with a descent annotated(j, k) for somek (note
thatk may takeCj distinct possible values by definition). Therefore, a record R ∈ Bj ends with a
last up-step and a last descent of lengthsj . The subpathR′ obtained fromR by removing the last
up-step and the last descent belongs toRsj−1. Hence, the generating function ofBj is Bj(y) =
Rsj−1(y)× yCj = ysjCjB(y)sj . Therefore, since a recordR ∈ B is either empty (i.e. of size 0) or
ends with a descent annotated(j, k), we have:

B(y) = 1 +
∑

j∈T

Bj(y) = 1 +
∑

j∈T

Cjy
sjB(y)sj (4)

We are now ready to prove the following theorem.
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Theorem 18 AlgorithmCOLORING_Gproduces at mosto

(

(

Q(x)
x

)t
)

distinct records witht "Color"

lines whereQ(x) = 1 +
∑

j∈T
Cjx

sj and for anyx ∈]0, 1].

In practice, our aim is to minimize the value ofQ(x)
x . Observe that:

Remark 19 In Theorem 18, the minimum value ofQ(x)
x is as follows:

• If sj = 1 for all j ∈ T , then the minimum is reached forx = 1 and
Q(x)

x
= 1 +

∑

j∈T

Cj .

• Otherwise, the minimum is reached for the unique positive root of the polynomialP (x) =

−1 +
∑

j∈T

(sj − 1)Cjx
sj .

Proof of Theorem 18.Let λ = min
0<x≤1

Q(x)

x
. Let us prove that Algorithm COLORING_G produces

at mosto(λt) distinct records: it suffices to boundrt (the number of records of sizet ofR) by o(λt).

If sj = 1 for all j ∈ T , thenbt =
(

∑

j∈T
Cj

)t

= (λ− 1)t by Equation (4). It follows thatrt =
∑

0≤ℓ≤n

(

t
ℓ

)

(λ− 1)
t−ℓ for sufficiently larget by Equation (3). Finally,rt < (n+ 1)tn+1 (λ− 1)

t

and thereforert = o(λt).
From now on, we consider the case wheresj ≥ 2 for somej ∈ T . As observed by Esperet

and Parreau [10, Lemma 6], there is a constantC (depending only on the lengths of the descents)
such thatrt ≤ bt+C . It suffices hence to show thatbt = o(λt). For that purpose we make use
of thesmooth implicit-function schema1 (SIFS for short) of Meir and Moon [26] (see also Flajolet
and Sedgewick’s book [15, Section VII.4.1]). FunctionB(y) does not satisfy the SIFS and we thus
introduce the functionA(y) defined byA(y) = B(y

1
d )− 1 whered = gcd{sj | j ∈ T }. We prove

in the following thatA(y) satisfies the SIFS. Note that the size of Dyck paths ofB is multiple ofd.
Therefore, we have:

B(y) =
∑

t≥0

bty
t =

∑

t multiple of d

bty
t.

ThusB(y
1
d ) = 1+

∑

t≥1 bdty
t. HenceA(y) =

∑

t≥0 aty
t with a0 = 0 andat = bdt for t ≥ 1. Thus

A(y) is analytic at 0,a0 = 0, andat ≥ 0 for all t ≥ 0. Furthermore, note that for any sufficiently
larget, the integerdt can be written as a sum which summands belong to{sj | j ∈ T }. Hence
at = bdt > 0 for any sufficiently larget > 0. It follows thatA(y) is aperiodic2. By Equation (4),
we haveA(y) = G(y,A(y)) for the bivariate functionG defined by

G(y, z) =
∑

j∈T

Cjy
sj/d (z + 1)

sj .

Observe that

G(y, z) =
∑

j∈T

∑

0≤i≤sj

(

sj
i

)

Cjy
sj/dzi,

and henceG(y, z) is a bivariate power series satisfying the following conditions:

(a) G(y, z) is analytic in the domain|y| < +∞ and|z| < +∞.

(b) SettingG(y, z) =
∑

m,n≥0 gm,ny
mzn, the coefficients ofG satisfy gm,n ≥ 0, g0,0 = 0,

g0,1 = 0, andg sj
d ,sj

> 0 for thej ∈ T such thatsj ≥ 2.

1The smooth implicit-function schema is given in A.
2Aperiodic is used in the usual sense of Definition IV.5 of Flajolet-Sedgewick’s book [15]. Equivalently, there exist three

indicesi < j < k such thataiajak 6= 0 andgcd(j − i, k − i) = 1.
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(c) There exist two positive numbersr ands satisfying the system of equations3

G(r, s) = s and Gz(r, s) = 1.

Indeed, by settingX = r1/d(s+ 1), these two equations respectively become
∑

j∈T

CjX
sj = s and

∑

j∈T

sjCjX
sj = s+ 1.

By substracting the first one to the second one, we obtain thatX is the unique positive root
of P (x) (see Remark 19) which exists. The first equation hence clearly definess. In this
first equation adding 1 to both sides, and then multiplying them both byr1/d, one obtains that
r = (X/Q(X))

d.

HenceA(y) =
∑

t≥0 aty
t satisfies asmooth implicit-function schemawith characteristic system

(r, s), see Definition 33 of A. By Theorem 34, we have thatat = O
(

t−
3
2 r−t

)

. It follows that

at = o (r−t) andbt = o
(

r−t/d
)

= o

(

(

Q(X)
X

)t
)

. As X is the unique positive root ofP (x), this

concludes the proof. ✷

5 Some applications of the method to graph coloring problems

In this section, we apply the framework described in Section3 to different coloring problems. We
improve several known upper bounds by at least an additive constant and sometimes also by a con-
stant factor. More importantly, this framework allows simpler proofs with only few calculations.
Indeed, directly using Theorem 12, one avoids the calculations made in Section 4.

5.1 Non-repetitive coloring

In a vertex (resp. edge) colored graph, a2j-repetitionis a path on2j vertices (resp. edges) such that
the sequence of colors of the first half is the same as the sequence of colors of the second half. A
coloring with no2j-repetition, for anyj ≥ 1, is callednon-repetitive. Letπ(G) be thenon-repetitive
chromatic numberof G, that is the minimum number of colors needed for any non-repetitive vertex-
coloring ofG. By extension, letπl(G) be thenon-repetitive choice numberof G. These notions
were introduced by Alonet al. [1] inspired by the works on words of Thue [35]. See [19] for a
survey on these parameters. Dujmović et al. [9] proved that every graphG with maximum degree

∆ satisfiesπl(G) ≤
⌈(

1 + 1

∆
1
3 −1

+ 1

∆
1
3

)

∆2

⌉

= ∆2 + 2∆
5
3 + O(∆

4
3 ) colors. However, their

technique could provide tighter bounds from the second termon [24]. Here, we provide a simple
and short proof of the following bound.

Theorem 20 LetG be a graph with maximum degree∆ ≥ 3. We have:

πl(G) ≤
⌈

∆2 +
3

2
2
3

∆
5
3 +

2
2
3∆

5
3

∆
1
3 − 2

1
3

⌉

= ∆2 +
3

2
2
3

∆
5
3 +O(∆

4
3 ) (Note that

3

2
2
3

≈ 1.89)

Proof. To do this, let us use the framework as follows. LetG be any graph with maximum degree
∆, and letn denote its number of vertices. In this application, the setsF(v) are closed upward.
We directly proceed to the description of the bad eventsB(v) and the description of the required
functions. Then, from the setB(v), we define the setF(v) as its upward closure.

• Let ≺ be any total order on the vertices ofG. NextUncoloredElement(ϕ) returns the first
uncolored vertex according to≺.

3 Gz denotes the derivative ofG with respect to its second variable.
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• Let B(v) be the set of bad eventsϕ anchored atv such that vertexv belongs to a repetition
in ϕ. The setB(v) is partitioned into subsetsBj(v), for 1 ≤ j ≤ n/2, in such a way that in
everyϕ ∈ Bj(v) the vertexv belongs to a2j-repetition. LetC j(v) be the set of2j-vertex
paths going throughv. Each setBj(v) is partitioned into subsetsBP

j (v) according to the path
P ∈ C j(v) supporting the repetition. If in a bad eventϕ ∈ B(v) the vertexv belongs to
several repetitions, then one of the repetitions is chosen arbitrarily to set the valuej and the
pathP such thatϕ ∈ BP

j (v). LetCj = j∆2j−1 as this upper bounds|C j(v)|. Indeed, there
are∆2j−1 possible paths on2j vertices wherev has a given position, and2j possible positions
for v, but in that case every path is counted twice.

Let us prove that any partial allowed coloringϕ is a non-repetitive coloring. We proceed by
induction on the number of colored vertices ofϕ. If there is no colored vertex, thenϕ is clearly
non-repetitive. Otherwise, there exists a colored vertexv such thatϕ 6∈ F(v) and uncoloringv leads
to a partial allowed coloringϕ′. By induction,ϕ′ is non-repetitive. Thus, ifϕ contains a repetition,
thenv is necessarily involved. In such a case, we would haveϕ ∈ F(v), a contradiction.

• The functionUncolorSetBadEventj(v, ϕ, P ) outputs the half ofP containingv, and thus
sj = j. By Lemma 11, this function fulfills all the requirements.

• GivenP and the sequence of colors of one half ofP (which is colored inϕ′), it is easy to
recover the sequence of colors of the other half ofP , and soRecoverBadEventj(v,X, P, ϕ′)
is well-defined.

Consider now

Q(x) = 1 +
∑

1≤j≤n/2

Cjx
sj = 1 +

∑

1≤j≤n/2

j∆2j−1xj

< 1 +
∆x

(∆2x− 1)2
if x <

1

∆2

By settingX = 1
∆2 −

(

2
∆7

)
1
3 (X > 0 as∆ ≥ 3), one obtains that

Q(X)

X
< ∆2 +

3

2
2
3

∆
5
3 +

2
2
3∆

5
3

∆
1
3 − 2

1
3

By Theorem 12,G admits an allowed coloring (hence a non-repetitive coloring) with ⌈Q(X)/X⌉
colors. This concludes the proof of the theorem. ✷

An edge-coloring is callednon-repetitiveif, for every path with an even number of edges, the
sequence of colors of the first half differs from the sequenceof colors of the second half. The
minimim number of colors needed to have such a coloring on theedges ofG is called theThue index
of G, and is denoted byπ′(G). By extension, letπ′

l(G) be theThue choice indexof G. Alon et al.[1]
proved that every graphG with maximum degree∆ satisfiesπ′(G) ≤ c∆2 with c = 2e16 + 1. We
can prove:

Theorem 21 LetG be a graph with maximum degree∆ ≥ 3. Then

π′
l(G) ≤ ∆2 + 2

4
3∆

5
3 +O(∆

4
3 ).

The only difference with the vertex case is thatCj = 2j∆2j−1.
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5.2 Facial Thue vertex-coloring

We consider in this subsection a slight variation of non-repetitive coloring which applies to plane
graphs (i.e. embedded planar graphs). Here the restrictionon repetitions only applies on facial
paths. More formally, consider a plane graphG. A facial pathof G is a path on consecutive vertices
on the boundary walk of some face ofG. A vertex-coloring ofG is said to befacially non-repetitive
if none of the facial paths is a repetition. The notion can be extended to list coloring. Letπf (G)
(resp. πfl(G)) denote thefacial Thue chromatic number(resp. facial Thue choice number) that
is the minimum integerk such thatG is facially non-repetitivelyk-colorable (resp.k-choosable).
Barát and Czap [6] proved that for any plane graphG, πf (G) ≤ 24. Whether the facial Thue
choice number of plane graphs could be bounded from above by aconstant is still an open question.
Recently Przybyłoet al. [32] proved that, ifG is a plane graph of maximum degree∆, thenπfl(G) ≤
5∆, and asymptotically,πfl(G) ≤ (2 + o(1))∆. We improve these upper bounds as follows:

Theorem 22 LetG be a plane graph with maximum degree∆ ≥ 2. Then,

πfl(G) ≤
⌈

∆+ 4
√
∆+ 3

⌉

Proof. Let G be a plane graph with maximum degree∆. In this application, the setsF(v) are
closed upward. We directly proceed to the description of thebad eventsB(v) and the description of
the required functions. Then, from the setB(v), we define the setF(v) as its upward closure.

• As previously, let≺ be any total order on the vertices ofG. NextUncoloredElement(ϕ)
returns the first uncolored vertex according to≺.

• For 1 ≤ j ≤ ⌊n/2⌋ = p, letBj(v) be the set of bad eventsϕ such that vertexv belongs to a
repetition on a facial2j-vertex pathP . Let C j(v) be the set of facial2j-vertex paths going
throughv. Each setBj(v) is partitioned into setsBP

j (v), for everyP ∈ C j(v), according
to the pathP supporting the repetition. The number of obtained classes is such that we set
C1 = ∆ andCj = 2j∆ for j ≥ 2. Indeed, there are at most∆ possible faces for containing
P , and2j positions forv in P .

Let us prove that any partial allowed coloringϕ is a facial non-repetitive coloring. Proceed by
induction on the number of colored vertices ofϕ. Eitherϕ has no colored vertex and it is facially
non-repetitive, or there exists a colored vertexv such thatϕ 6∈ F(v) and uncoloringv leads to a
partial allowed coloringϕ′, that is hence facial non-repetitive. Thus, ifϕ contains a facial repetition,
thenv is necessarily involved. In such a case, we would haveϕ ∈ F(v), a contradiction.

• The functionUncolorSetBadEventj(v, ϕ, P ) outputs the half of the pathP containingv,
and thussj = j. By Lemma 11, this function fulfills all the requirements.

• GivenP and the sequence of colors of the colored half ofP , it is easy to recover the sequence
of colors of the uncolored half ofP , and soRecoverBadEventj(v,X, P, ϕ′) is well-defined.

Consider now

Q(x) = 1 +
∑

1≤j≤n/2

Cjx
sj = 1 +∆x+

∑

2≤j≤p

2j∆xj

< 1 + ∆x+ 2∆x2 2− x

(x − 1)2
for x < 1

By settingX = 1
2
√
∆

, and as∆ ≥ 2 one obtains that

Q(X)

X
< ∆+ 4

√
∆+ 3
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By Theorem 12,G admits an allowed coloring (hence a facial non-repetitive coloring) with⌈Q(X)/X⌉
colors. This concludes the proof of the theorem. ✷

Piotr Micek recently announced that this theorem can be improved asymptotically as for any
plane graphG, πfl(G) ≤ O(log∆) [24].

5.3 Facial Thue edge-coloring

Consider thefacial Thue choice indexπ′
fl(G) of a plane graphG, that is the minimum integerk

such thatG is facially non-repetitively edgek-choosable. Schreyer and Škrabul’áková [33] proved
that plane graphs have bounded facial Thue choice index, more preciselyπ′

fl(G) ≤ 291. Recently
Przybyło [31] improved that bound to 12. To obtain that upperbound with our framework, it is
sufficient to consider as bad events the partial colorings having a facial2j-repetition (for anyj ≥ 1)
with costsCj = 4j since an edge belongs to at most4j facial2j-edge paths.

Let us explain a way to improve that upper bound. The idea is that at each step the algorithm
chooses the edgee to be colored in such a way thate is facially adjacent to an uncolored edgee′.
Therefore, if at some step the algorithm colors such an edgee, then this edge belongs to at most
1 + 2j facial 2j-edge paths going through colored edges (one path in the faceincident toe ande′

and2j paths on the other face incident toe). However, such an edgee does not always exist. For
example if the algorithm has colored all the graphG but one edge, then this edge may belong to4j
colored facial2j-edge paths. We manage to use this trick to obtain the improved bound of 10.

We will need the following definition. Given a plane graphG, its medial graphM(G) is defined
as follows:

• its vertex set is the set of edges ofG;

• there is an edgeuv between the verticesu andv of M(G) if and only if the corresponding
edges inG are facially adjacent (i.e. adjacent and both incident to the same face).

Theorem 23 For any plane graphG, any edgee∗ of G, and any assignment of lists of size9, there
exists a partial facial Thue edge-coloring ofG where all the edges excepte∗ are colored.

Proof. Let G be a plane graph with maximum degree∆, and lete∗ be any edge ofG. In this
application, we want to ensure that at each iteration of the main loop the current edge to color is
facially adjacent to (at least) one uncolored edge. This leads us to setsF(e) that are not closed
upward. Hence they need to be described with care. For a givenedgee, the setF(e) contains
the partial colorings with a facial repetition involvinge, and the partial colorings where the set of
uncolored edges (i.e. vertices ofM(G)), including e∗, induces a disconnected graph inM(G).
Hence the set of allowed colorings is the set of partial colorings with no facial repetition, and where
uncolored edges, includinge∗, induce a connected graph inM(G).

We conveniently defineNextUncoloredElement in order to avoid bad events dealing with the
case where uncolored edges induce a disconnected graph inM(G).

• For any setX ⊆ E(G) such thate∗ ∈ X , and such thatM(G)[X ] is connected, the edge
e = NextUncoloredElement(E(G) \ X) must be such thatM(G)[X − e] is connected.
Hence,e may be chosen among leaves of a spanning tree ofM(G)[X ] rooted ate∗.

Hence with that definition ofNextUncoloredElement we have that for a given edgee, the set of
bad eventsB(e) contains the partial colorings with a facial repetition involving e, wheree is facially
adjacent to an uncolored edgee′ (its parent in the spanning tree described above, which might be
e∗), and where the set of uncolored edges induces a connected graph inM(G). Let us introduce the
bad event types and classes:

• For 1 ≤ j ≤ p = ⌊n/2⌋, let Bj(e) be the set of bad events anchored ate such thate has an
uncolored facially adjacent edgee′, ande belongs to a repetition on a (colored) facial2j-edge
pathP .
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The partition into classes is not obvious. Lete1, e2, e3 ande4 be the (at most four) edges ofG
facially adjacent toe, and lete′ ∈ {e1, e2, e3, e4} be the uncolored one with smallest index.

Let us now partitionBj(e) into setsBe′,P
j (e) according to the uncolored edgee′ and the path

P supporting the repetition. We have seen earlier that given an edgee′ there are at most1+2j
possible pathsP . As there are up to four possibilities fore′ this partition has4 + 8j parts,
but the cases wheree′ has distinct values are independent. Let us hence merge these parts as
follow. Let Bk

j (e), for 1 ≤ k ≤ 1 + 2j, be the union ofBe1,P1

j (e), Be2,P2

j (e), Be3,P3

j (e) and

B
e4,P4

j (e), for some choice of pathsP1,P2,P3 andP4. The obtained partition hasCj = 1+2j
classes.

• Given the set of colored edgesϕ of some bad eventϕ ∈ Bj(e), one can determine the facially
adjacent uncolored edgee′. Hence given (also) the classk such thatϕ ∈ Bk

j (e), one can
determine the pathP supporting the repetition. The functionUncolorSetBadEventj(e, ϕ, k)
outputs the half of the pathP containinge, and thussj = j. Note that as the edges ofP are
incident to the same face, and ase ande′ are facially adjacent, uncoloring this set of edges
leads to a partial coloring that has no repetition and such that the uncolored edges induce a
connected graph inM(G), hence an allowed coloring (as required).

• Using again the fact thatP can be retrived fromϕ (= X here) andk, one can easily design a
functionRecoverBadEventj(v,X, k, ϕi+1).

Consider now

Q(x) = 1 +
∑

1≤j≤n/2

Cjx
sj = 1 +

∑

1≤j≤n/2

(1 + 2j)xj

<
1

1− x
+

2x

(1− x)2
if x < 1

By settingX =
√
17−3
4 , one obtains thatQ(X)/X < 9. Hence by Theorem 12,G admits a partial

allowed 9-coloring (hence a partial facial Thue edge-coloring) wheree∗ is the onlyuncolored edge.
This concludes the proof of the theorem. ✷

Given Theorem 23, it seems likely thatπ′
fl(G) ≤ 9 for any plane graphG. Actually one can

show that it is the case ifG has an edgee∗ incident to two faces of small sizes. Unfortunately we do
not achieve this bound here, but we prove:

Corollary 24 For any plane graphG, π′
fl(G) ≤ 10.

Proof. For a givenG, pick an arbitrary edgee∗ ∈ E(G) and an arbitrary colorc ∈ L(e∗). For
all the other edges ofG, remove colorc from their list. Now all these lists have size at least 9. By
Theorem 23, it is possible to color all the edge ofG excepte∗, avoiding facial repetitions. Then
coloringe∗ with c cannot create any repetition, asc does not appear elsewhere inG. ✷

Remark 25 Note that in the proof of Theorem 23 we only use the fact that edges are adjacent to at
most two faces, and thus it extends to any graph embedded on any surface. Hence, Theorem 23 and
Corollary 24, both extend to arbitrary surface.

5.4 Generalised acyclic coloring

Let r ≥ 3 be an integer. Anr-acyclic vertex-coloring is a proper vertex-coloring suchthat every
cycleC uses at leastmin(|C|, r) colors. This generalisation of the notion of acyclic coloring (the
r = 3 case) was introduced by Gerkeet al. in the context of edge-coloring [16] and then by Greenhill
and Pikhurko in the context of vertex-coloring [17]. LetAr(G) be the minimum number of colors
in anyr-acyclic vertex-coloring ofG. By extension, letAl

r(G) be ther-acyclic choice number of
G. Greenhill and Pikhurko [17] proved in particular that, forr ≥ 4 and∆ ≥ 3, every graphG
with maximum degree∆ satisfiesAr(G) ≤ c∆⌊r/2⌋ wherec = 2(r+2)/3r(r + 2). We reduce this
constant factor as follows.
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Theorem 26 LetG be a graph with maximum degree∆ ≥ 3. For anyr ≥ 4, we have thatAl
r(G) ≤

∆⌊r/2⌋ +O
(

∆(r+1)/3
)

.

In the following, all the defined events are strongly inspired by those defined by Greenhill and
Pikhurko [17]. LetG be any graph with maximum degree∆, and letn denote its number of ver-
tices. Let≺ be any total order on the vertices ofG. NextUncoloredElement(ϕ) returns the first
uncolored vertex according to≺. In this application, the setsF(v) are closed upward. We hence
use Lemma 11, to ensure that each functionUncolorSetBadEvent fulfills all the requirements. We
proceed now to the description of the bad events (the setsF(v) being deduced fromB(v)), and the
description of the required functions. We distinguish two cases according tor’s parity.

5.4.1 Caser even

Setr = 2ℓ with ℓ ≥ 2. We consider the following sets of bad events anchored at vertexv:

• LetB1(v) be the set of bad eventsϕ where “there exists a vertexu at distance at mostℓ (from
v) having the same color asv”. Let C 1(v) be the set of verticesu at distance at mostℓ from

v. As |C 1(v)| ≤
∑ℓ

i=1 ∆(∆− 1)i−1 = ∆((∆−1)ℓ−1)
∆−2 ≤ ∆ℓ we setC1 = ∆ℓ. Each setB1(v)

is partitioned into classesBu
1 (v), for every vertexu ∈ C 1(v), according to the vertexu that

is colored likev. UncolorSetBadEvent1(v, ϕ, u) outputs the vertexv, and thuss1 = 1. In
addition,RecoverBadEvent1(v,X, u, ϕ′) outputs the partial coloringϕ obtained fromϕ′ by
coloringv with colorϕ′(u).

Here it is clear that an allowed coloring is a distanceℓ proper coloring. Furthermore, asr = 2ℓ,
cyclesC of length at mostr + 1 will receive|C| distinct colors.

• LetB2(v) be the set of bad eventsϕ where “v belongs to a pathP onr+2 vertices such thatv
and two other colored vertices, saya, b, have colors that already appear onP \{v, a, b}”. Let us
define a partition ofB2(v). Consider the setC 2(v) formed by all tuples(P, a, b, v′, a′, b′) such
thatP is a path onr + 2 vertices containing verticesv, a, b, v′, a′, b′ where|{v, a, b}| = 3,

1 ≤ |{v′, a′, b′}| ≤ 3 and{v, a, b} ∩ {v′, a′, b′} = ∅. Let B(P,a,b,v′,a′,b′)
2 (v) ⊂ B2(v) be

the class of bad eventsϕ where “bothv and v′ have the same color, botha anda′ have
the same color, and bothb and b′ have the same color”. Let us count the number of such
classes. First observe thatv belongs to at mostr+2

2 ∆(∆ − 1)r paths onr + 2 vertices. Now
observe that there are at mostr + 2 possible choices for each vertexa, b, v′, a′, b′. Hence let
us setC2 = 1

2 (r + 2)6∆r+1. UncolorSetBadEvent2(v, ϕ, (P, a, b, v
′, a′, b′)) outputs the

set{v, a, b}, and thuss2 = 3. In addition,RecoverBadEvent2(v,X, (P, a, b, v′, a′, b′), ϕ′)
outputs the partial coloringϕ obtained fromϕ′ by coloring verticesv, a andb respectively
with colorsϕ′(v′), ϕ′(a′) andϕ′(b′).

These bad events imply that in an allowed coloring, cycles oflength at leastr + 2 contain at leastr
colors. Hence an allowed coloring is also a generalisedr-acyclic coloring. Consider now

Q(x) = 1 +
∑

1≤j≤n/2

Cjx
sj = 1 + C1x+ C2x

3

By settingX =
(

1
2C2

)
1
3

one obtains that

Q(X)

X
= C1 +

3

2
2
3

C
1
3
2

= ∆ℓ +
3

2
(r + 2)2∆(r+1)/3

By Theorem 12,G admits an allowed coloring (hence a generalisedr-acyclic coloring) with⌈Q(X)/X⌉
colors. This concludes the proof of the theorem forr even.
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5.4.2 Caser odd

The odd case is similar to the even case. Letr = 2ℓ+ 1 with ℓ ≥ 2. Let us use again the two types
of bad events defined above. Now, type 1 bad events are sufficient to deal with cycles of length at
mostr. Type2 bad events are still sufficient to deal with cycles of length at leastr + 2. It remains
to deal with cycles of lengthr + 1. Type 1 bad events forbid some kinds of lengthr + 1 cycles. As
r+1 = 2ℓ+2, the cycles of lengthr+1 that are not forbidden by type 1 bad events are those where
each color appears only once, or where colors appearing several times, do it on antipodal vertices.
We thus add two other bad event types to deal with this kind of cycles of lengthr + 1.

A pair of vertices{u, u′} is said to bespecialif u andu′ are at distance exactlyℓ+1 and if there
exist at least∆

ℓ+1
3 paths of lengthℓ + 1 linking u andu′. Consider the two following new sets of

bad events:

• Let B3(v) be the set of bad eventsϕ where “there exists a special pair{v, u} such thatv and
u have the same color”. LetC 3(v) be the set of verticesu such that{v, u} is a special pair.
Each setB3(v) is partitioned into classesBu

3 (v) according to the vertexu colored likev. As
there are at most∆ℓ+1 paths of lengthℓ + 1 starting fromv, there exist at most∆

2
3 (ℓ+1) =

∆(r+1)/3 = C3 such classes. FunctionsUncolorSetBadEvent3 andRecoverBadEvent3
are defined similarly to the first type of bad events, withs3 = 1.

• Let B4(v) be the set of bad eventsϕ where “v belongs to a cycleC of lengthr + 1 = 2ℓ+ 2
such thatv and its antipodal vertexv′ (onC) have the same color, are at distanceℓ + 1 from
each other but do not form a special pair, and such thatC contains another pair of antipodal
vertices{u, u′} having the same color”. LetC 4(v) be the set of couples(C, u) such thatC is
a (r+1)-cycle containingv andu as non-antipodal vertices. Each setB4(v) is partitioned into
classesB(C,u)

4 (v), for every(C, u) ∈ C 4(v). There exist at mostℓ∆
4
3 (ℓ+1) = ℓ∆

2
3 (r+1) = C4

such classes. Indeed, there are∆ℓ+1 choices for vertexv′ and the path fromv to v′; asv
andv′ do not form a special pair, there are∆

1
3 (ℓ+1) choices for the path fromv′ back tov;

and finally there areℓ possibilities for the pair{u, u′} of antipodal vertices. The function
UncolorSetBadEvent4(v, ϕ, (C, u)) outputs{v, u}, so s4 = 2, andRecoverBadEvent4
clearly exists.

One can check that these two new types of bad events handle theremaining cycles of lengthr + 1
colored with less thanr colors. This ensures us that allowed colorings are generalisedr-acyclic
colorings. Consider now

Q(x) = 1 +
∑

1≤j≤n/2

Cjx
sj = 1 + C1x+ C2x

3 + C3x+ C4x
2

By settingX = 1
∆(r+1)/3 one obtains that

Q(X)

X
= ∆ℓ +∆(r+1)/3 +∆(r+1)/3

(

1 + ℓ +
1

2
(r + 2)6

)

= ∆ℓ +∆(r+1)/3

(

2 + ℓ+
1

2
(r + 2)6

)

By Theorem 12,G admits an allowed coloring (hence a generalisedr-acyclic coloring) with⌈Q(X)/X⌉
colors. This concludes the proof of the theorem forr odd.

5.5 Colorings with restrictions on pairs of color classes

For many graph colorings, the color classes are asked to induce independent sets while another
property is asked to each pair of color classes. Aravind and Subramanian [4] introduced a general
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definition that captures many known colorings. In their definition, restrictions may apply to anyℓ
color classes, for anyℓ ≥ 2. Let us restrict ourselves to the caseℓ = 2.

Given a familyF of connected bipartite graphs, a(2,F)-subgraph coloringof G is a proper
coloring ofV (G) such that the subgraph ofG induced by any two color classes does not contain any
isomorphic copy ofH as a subgraph, for eachH ∈ F . Denote byχ2,F(G) the minimum number
of colors used by any(2,F)-subgraph coloring ofG. Denote byχ2,F (∆) the maximum value of
χ2,F(G) for any graphG having maximum degree at most∆. For example, whenF is the family
of even cycles,(2,F)-subgraph coloring is the usual acyclic vertex-coloring.

Using random graphs, Aravind and Subramanian [4] showed thefollowing lower bound on
χ2,F(∆).

Theorem 27 (Aravind and Subramanian [4]) Given a connected bipartite graphH withm edges
(m ≥ 2), we have

χ2,{H}(∆) = Ω

(

∆
m

m−1

(log∆)1/(m−1)

)

Hence, the same bound applies toχ2,F (∆) for any familyF containing a graphH with m edges.

The same authors later showed that this lower bound is almosttight. Letm ≥ 2 be an integer and let
F be a family of connected bipartite graphs such that all the graphs have at leastm edges.

Theorem 28 (Aravind and Subramanian [5]) For some constantC depending only onF , we have

χ2,F (∆) ≤ C∆
m

m−1

Partition the graphs inF according to their number of vertices. LetF≤m
v (resp.F>m

v ) denote the
subset ofF with graphs on at mostm vertices (resp. more thatm vertices). Let alsok≤m

v = |F≤m
v |.

We consider another parition ofF according to the number of edges in each graph. LetFm
e (resp.

F>m
e ) denote the subset ofF with graphs on exactlym edges (resp. more thatm edges); and let

kme = |Fm
e |.

The constantC mentionned in Theorem 27 is either64(m+ 1)3k≤m
v or 128(m+ 1)3 according

to whetherk≤m
v > 0 or not. Following the approach of Aravind and Subramanian, we improveC as

follows.

Theorem 29 We have

χ2,F(∆) < (k≤m
v + 71)(m+ 1)∆

m
m−1 (5)

χ2,F(∆) < (kme + 1 + o(1)) (m+ 1)∆
m

m−1 (6)

Proof. Let us use the framework described in Section 3 as follows. Let F = {H1, H2, . . .}. Let
us also denote byni andmi the number of vertices and edges in the forbidden graphHi for each
i (recallmi ≥ m). For convenience, we introduce the valueγ = m

m−1 . Let G be any graph with
maximum degree∆, and letn denote its number of vertices. As in this application, the sets F(v)
are closed upward we directly proceed to the description of the bad events (asF(v) is deduced from
B(v)), and the description of the required functions.

• Let ≺ be any total order on the vertices ofG. NextUncoloredElement(ϕ) returns the first
uncolored vertex according to≺.

• Let BE(v) be the set of bad eventsϕ anchored atv such that vertexv belongs to a monochro-
matic edgeuv (in ϕ). Let C E(v) = N(v). Let us partitionBE(v) into classesBu

E(v) accord-
ing to which edgeuv is monochromatic inϕ, for u ∈ C E(v). Clearly|C E(v)| ≤ ∆, thus let
CE = ∆.

From here it is clear that an allowed coloring is proper.
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• The functionUncolorSetBadEventE(v, ϕ, u) outputs the singleton{v} and thussE = 1.
By Lemma 11, this function fulfills all the requirements.

• RecoverBadEventE(v,X, u, ϕ′) outputs the partial coloringϕ ∈ Bu
E(v) obtained fromϕ′ by

coloringv with colorϕ′(u).

Following the approach of Aravind and Subramanian [5], we extend the notion of special pairs
introduced by Alon et al. [2] to bigger sets. For anyj ≥ 2, a j-setS of G (i.e. a set of sizej) is
specialif the setX =

⋂

v∈S N(v) has size greater than∆j−γ(j−1). Let us define the corresponding
bad events.

• For2 ≤ j < n, letBj·Set(v) be the set of bad eventsϕ anchored atv such that vertexv belongs
to a monochromatic specialj-setS. LetC j·Set(v) be the set of specialj-sets containingv. Let
us partitionBj·Set(v) into classesBS

j·Set(v) according to which specialj-setS ∈ C j·Set(v) is

monochromatic. By Claim 30, the number of classes is at most1
(j−1)!∆

γ(j−1) = Cj·Set.

Claim 30 Any vertexv ofG belongs to less than 1
(j−1)!∆

γ(j−1) specialj-sets, for anyj ≥ 2.

Proof. Observe thatv belongs to∆
(

∆−1
j−1

)

stars (onj + 1 vertices) centered inN(v) having
j − 1 leaves inN2(v) (first choose a center and thenj − 1 of its neighbors). Now thej leaves
of such a star are contained in at most one specialj-set ofv. On the other hand, a special
j-set containingv covers more than∆j−γ(j−1) of these stars. Hencev belongs to less than
∆
(

∆−1
j−1

)

×∆γ(j−1)−j < 1
(j−1)!∆

γ(j−1) specialj-sets. ✷

From here it is clear that in an allowed coloring there will beno monochromatic specialj-set.

• For2 ≤ j < n, let the functionUncolorSetBadEventj·Set(v, ϕ, S) outputs a(j − 1)-subset
of S containingv ; thussj·Set = j − 1. Again by Lemma 11, this function fulfills all the
requirements.

• If RecoverBadEventj(v,X, S, ϕ′) is called, then there is only one vertex ofS colored inϕ′,
sayw. HenceRecoverBadEventj(v,X, S, ϕ′) outputs the partial coloring obtained fromϕ′

by coloring all the vertices ofS with ϕ′(w).

As proposed in [5], one bad event type can deal with all the graphs inF>m
v ⊆ F the set of forbidden

graphs having more thanm vertices.

• LetBF>m
v

(v) be the set of bad eventsϕ anchored atv such that vertexv belongs to a connected
properly bicolored subgraphI on m + 1 vertices. Note that such subgraphI of G is not
necessarily isomorphic to a graph ofF>m

v . However this type of bad events deal with all the
graphs ofF with at leastm + 1 vertices. LetC F>m

v
(v) be the set of all connected bipartite

graphsI onm+1 vertices that contain vertexv. We partitionBF>m
v

(v) into classesBI
F>m

v
(v)

according to the bicolored subgraphI. By the proof of Lemma 2.4 in [4] we have that the
number of classes,|CF>m

v
(v)| ≤ (m+ 1)4m+1∆m = CF>m

v
.

From here it is clear that in an allowed coloring there will beno properly bicolored copy of any
Hi ∈ F with more thanm vertices.

• The functionUncolorSetBadEventF>m
v

(v, ϕ, I) outputs a(m− 1)-subset ofV (I) contain-
ing v (recallI is a properly bicolored subgraph onm+1 vertices), such that the two remaining
verticesv1 andv2 are adjacent (and thus have distinct colors). Note thatsF>m

v
= m−1. Again

by Lemma 11, this function fulfills all the requirements.

• If RecoverBadEventF>m
v

(v,X, I, ϕ′) is called, then there are only two adjacent vertices of
I, v1 andv2, colored inϕ′. HenceRecoverBadEventF>m

v
(v,X, I, ϕ′) outputs the partial

coloring obtained fromϕ′ by properly extending the 2-coloring ofv1 andv2 to the wholeI.
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We define a new bad event type for each graphHi ∈ F≤m
v , that is each graph ofF with at most

m vertices. LetV1 andV2 be the two independent sets partitioningV (Hi).

• Let BHi(v) be the set of bad eventsϕ anchored atv such that vertexv belongs to a properly
2-colored subgraphS isomorphic toHi ∈ F≤m

v , and such thatS does not contain a monochro-
matic specialj-set. LetCHi(v) be the set of all subgraphsS isomorphic toHi, containingv,
and without specialj-set contained in one of the two parts ofS. The setBHi(v) is partitioned
into classesBS

Hi(v) according to the bicolored copy,S. By Claim 31 (see below), the number

of classes is at mostni∆
γ(ni−2)−mi−m

m−1 = CHi.

Claim 31 For any vertexv ofG, v belongs to at mostni∆
γ(ni−2)−mi−m

m−1 copies ofHi = (V1, V2, E)
in G that do not contain any special set in the images ofV1 nor in the image ofV2. (That is
ni∆

(γ)(ni−2) copies formi = m ando(∆γ(ni−2)), otherwise.)

Proof. Let us consider only the copies ofHi wherev corresponds to a given vertexu of Hi. Now
orientHi acyclically so thatu is the unique sink, and let us denote byu = u1, . . . , uni the vertices
of Hi in such a way that for any1 ≤ j ≤ ni the out-neighborhood ofuj corresponds to its neighbors
with index lower thanj. Note thatd+(uj) ≥ 1 for all 1 < j ≤ ni, and thatmi =

∑

1<j≤ni
d+(uj).

Observe that onceu1, . . . , uj−1 are set, there are at most∆d+(uj)−γ(d+(uj)−1) choices foruj. This
comes from the fact that the out-neighborhood ofuj is monochromatic and hence cannot be a special
d+(uj)-set. This leads to the following bound on the number of such copies ofHi.

∏

1<j≤ni

∆d+(uj)−γ(d+(uj)−1) ≤ ∆mi−γ(mi−ni+1)

≤ ∆(1−γ)mi+γ(ni−1)

≤ ∆
−mi
m−1+γ(ni−1)

≤ ∆
m−mi
m−1 −γ+γ(ni−1)

As there areni possible choices for mappingv in Hi, this concludes the claim. ✷

Now it is clear that an allowed coloring is a(2, Hi)-subgraph coloring for anyHi ∈ F . An
allowed coloring is thus a(2,F)-subgraph coloring.

• UncolorSetBadEventHi(v, ϕ, S) outputsni − 2 vertices ofS including v and such that
the two remaining vertices, sayv1 andv2, are such thatvj ∈ Vj for j = 1, 2. Note that
sHi = ni − 2. Again by Lemma 11, this function fulfills all the requirements.

• RecoverBadEventHi(v,X, S, ϕ′) outputs the partial coloring obtained fromϕ′ by properly
extending the 2-coloring of the two colored vertices ofS to the wholeS.

Consider now

Q(x) = 1 + CE · xsE +
∑

2≤j<n

Cj·Set · xsj·Set + CF>m
v
· xs

F>m
v +

∑

Hi∈F≤m
v

CHi · xsHi

= 1 +∆x+
∑

2≤j<n

1

(j − 1)!
(∆γx)j−1 + (m+ 1)4m+1∆mxm−1

+
∑

Hi∈F≤m
v

ni∆
γ(ni−2)−mi−m

m−1 xni−2

< ∆x+ e∆
γx + 16(m+ 1)(4∆γx)m−1 +

∑

Hi∈F≤m
v

ni (∆
γx)

ni−2
∆−mi−m

m−1
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By settingX = 1
4∆γ , as∆

−1
m−1 < 1 and as forHi ∈ F≤m

v we have3 ≤ ni ≤ m, one obtains that

Q(X)

X
< 4∆γ

(

1

4
+ e

1
4 + 16(m+ 1) +

1

4
k≤m
v ·m

)

By Theorem 12,G admits an allowed coloring (hence a(2,F)-subgraph coloring) with⌈Q(X)/X⌉ <
(k≤m

v + 71)(m+ 1)∆γ colors. This concludes the proof of the first statement of thetheorem.
For the second statement we proceed similarly but there are two differences.

(1) Recall the partition ofF intoFm
e andF>m

e according to the number of edges. We replace the
setF>m

e by the setT m+1
e of all trees on exactlym+ 1 edges. As every graph inF>m

e contains
a (m+ 1)-edge tree, a(2,Fm

e ∪ T m+1
e )-subgraph coloring is also a(2,F)-subgraph coloring.

(2) All the graphsFm
e ∪ T m+1

e are treated similarly by assigning each of them a specific badevent.
There is no more the bad event typeF>m

v .

This yields to the followingQ(x).

Q(x) = 1 + CE · xsE +
∑

2≤j<n

Cj·Set · xsj·Set +
∑

Hi∈Fm
e ∪T m+1

e

CHi · xsHi

= 1 +∆x+
∑

2≤j<n

1

(j − 1)!
(∆γx)j−1 +

∑

Hi∈Fm
e ∪T m+1

e

ni

(

x∆
mi

mi−1

)ni−2

< ∆x+ e∆
γx +

∑

Hi∈Fm
e ∪T m+1

e

ni

(

x∆
mi

mi−1

)ni−2

< ∆x+ e∆
γx +

∑

Hi∈Fm
e

ni (∆
γx)

ni−2
+

∑

Hi∈T m+1
e

ni (∆
γx)

ni−2
∆

−1
m−1

By settingX = 1
∆γ and as3 ≤ ni ≤ mi + 1, one obtains that

Q(X)

X
< ∆γ

(

∆
−1

m−1 + e+ kme (m+ 1) + |T m+1
e | · (m+ 2)∆

−1
m−1

)

< ∆γ (kme (m+ 1) + e+ o(1))

By Theorem 12,G admits an allowed coloring (hence a facial non-repetitive coloring) with⌈Q(X)/X⌉ <
(kme + 1 + o(1)) (m+1)∆γ colors. This concludes the proof of the second statement of the theorem.
✷

Remark 32 For given instances ofF , tighter bounds can be inferred with the general method. For
example for star colorings of graphs, which correspond to(2, {P4})-subgraph coloring, it is not
necessary to have bad events for special sets. It suffice to have one bad event ensuring that the
coloring is proper (withC1 = ∆ and s1 = 1), and one bad event to avoid bicoloredP4’s (with
C2 = 2∆(∆ − 1)2 ands2 = 2). This yields to the bound2

√
2∆

3
2 + ∆ −

√
8∆ + 1 (by setting

X = 1/(
√
2∆(∆− 1))), similar to the one in [10].

6 Conclusion

One should note that the framework presented in Section 3 may, in some cases, benefit from some
sophistication. The version we presented here seems to be a good compromise between efficiency
and clarity for the applications we considered. We have seenin Subsection 5.3 how, at any step
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i, one can get benefit fromϕi−1 to decrease the valuesCj . One could also take into account the
order in which the vertices ofϕi−1 have been colored. For example, if(u, v) is a special pair (as in
Subsection 2.2) andu has been colored afterv to obtainϕi−1, then one could be sure that the colors
of u andv are distinct. Thus one would not have to consider bad events whereu andv are colored
the same. One could thus imagine that all the functions presented in Subsection 3.1 could depend on
the orderingπ in which the vertices ofϕi−1 were colored.

Finally an interesting way of improving this framework would be handling algorithms where the
costs of a given bad event may vary. For example, one can imagine that, for some vertices, a type
j bad event costsCj , while for some other vertices the cost isC′

j . A simple way to analyze this is
to set the cost of each typej bad event tomax{Cj , C

′
j}. We wonder whether there exists a better

approach.
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A The smooth implicit-function schema

In Section 4, we prove Theorem 18 by using a machinery provided by a theorem of Meir and
Moon [26] (see Theorem 34) on the singular behaviour of generating functions defined by asmooth
implicit-function schema.

Definition 33 (Smooth implicit-function schema [15, Definition VII.4, p. 467]) LetA(y) be a func-
tion analytic at 0,A(y) =

∑

t≥0 aty
t, with a0 = 0 and at ≥ 0. The function is said to be-

long to thesmooth implicit-function schemaif there exists a bivariate functionG(y, z) such that
A(y) = G(y,A(y)), whereG(y, z) satisfy the following conditions:

(a) G(y, z) =
∑

m,n≥0 gm,ny
mzn is analytic in a domain|y| < R and|z| < S, for someR,S > 0.

(b) The coefficients ofG satisfy

gm,n ≥ 0, g0,0 = 0, g0,1 6= 1,

gm,n > 0 for somem ≥ 0 and somen ≥ 2.

(c) There exist two numbersr ands, such that0 < r < R and0 < s < S, satisfying the system of
equations4

G(r, s) = s, Gz(r, s) = 1, with r < R, s < S

which is called thecharacteristic system.

Theorem 34 (Meir and Moon [26],[15, Theorem VII.3, p. 468]) Let A(y) belong to the smooth
implicit-function schema defined byG(y, z) with (r, s) the positive solution of the characteristic
system. Then,A(y) converges aty = r, where it has a square-root singularity,

lim
y→r

A(y) = s− γ

√

1− y

r
+O

(

1− y

r

)

, with γ =

√

2rGy1(r, s)

Gzz(r, s)
,

the expansion being valid in a∆-domain. In addition, ifA(y) is aperiodic, thenr is the unique
dominant singularity ofA and the coefficient satisfy

lim
t→∞

[yt]A(y) =
γ

2
√
πt3

r−t
(

1 +O(t−1)
)

.

4 Gy (resp.Gz) denotes the derivative ofG with respect to its first (resp. second) variable.
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