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Abstract

Based on the algorithmic proof of Lovasz local lemma due ts&t@and Tardos, the works
of Grytczuket al. on words, and Dujmotiet al. on colorings, Esperet and Parreau developed a
framework to prove upper bounds for several chromatic nusfie particular acyclic chromatic
index, star chromatic number and Thue chromatic numbengusie so-calleéntropy compres-
sion method

Inspired by this work, we propose a more general framewodkaaetter analysis. This leads
to improved upper bounds on chromatic numbers and indicegatiticular, every graph with
maximum degree\ has an acyclic chromatic number at mésﬁ + O(A). Also every planar
graph with maximum degreA has a facial Thue choice number at mast- O(A%) and facial
Thue choice index at mos0.

1 Introduction

In the 70’s, Lovasz introduced the celebratevasz Local Lemm@_LL for short) to prove results
on 3-chromatic hypergraphs]11]. It is a powerful probaiiti method to prove the existence of
combinatorial objects satisfying a set of constraintsc8ithen, this lemma has been used in many
occasions. In particular, it is a very efficient tool in gragatoring to provide upper bounds on sev-
eral chromatic numbersI[I] B,113,117] 21| 22,[27, 28]. Regeéitiser and Tardo$[29] designed an
algorithmic version of LLL by means of the so-calledtropy Compression Method his method
seems to be applicable whenever LLL is, with the benefits a¥iging tighter bounds. Using ideas
of Moser and Tardo$ [29], Grytczwh al.[20] proposed new approaches in the old field of nonrepet-
itive sequences. Inspired by these works, Dujmatikl [9] gave a first application of the entropy
compression method in the area of graph colorings (on Thrtexeoloring and some of its game
variants). As the approach seems to be extendable to sevapdl coloring problems, Esperet and
Parreau[[100] developed a general framework and applied acyelic edge-coloring, star vertex-
coloring, Thue vertex-coloring, each time improving thetilenown upper bound or giving very
short proofs of known bounds. In the continuity of these vgprke provide a more general method
and give new tools to improve the analysis. As applicatiothat method, we obtain some new
upper bounds on some invariants of graphs, such as acydicechumber, facial Thue chromatic
number/index, ...

The paper is organized as follows. In Secfidn 2, we presentrtbthod and apply it to acyclic
vertex coloring. It will be the occasion of providing impexy bounds (in terms of the maximum
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degree). Then, in Sectiohk 3 did 4, we describe the genettabchand provide its analysis. Finally,
Sectiod is dedicated to the applications of that method.

2 Acyclic coloring of graphs

A proper coloringof a graph is an assignment of colors to the vertices of thphgsaich that two
adjacent vertices do not use the same colork-@oloring of a graphG is a proper coloring oz
usingk colors ; a graph admitting &-coloring is said to bé-colorable An acyclic coloringof a
graphG is a proper coloring of7 such thatz contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. kgtG), called theacyclic chromatic numbebe
the smallest integét such that the grapy admits an acyclié-coloring.

Acyclic coloring was introduced by Griinbaum[18]. In pautir, he proved that if the maximum
degree\ of G is at mosB, theny, (G) < 4. Acyclic coloring of graphs with small maximum degree
has been extensively studied([7, 8| [12,14[ 23] 28, 36, 3@r@8Bthe current knowledge is that graphs
with maximum degreé\ < 4,5, and6, respectively verifyy,(G) < 5,7, and11 [7,[25,[23]. For
higher values of the maximum degree, Kostochka and Sto@#grghowed that,(G) < 1 +

{%J. Finally, for large values of the maximum degree, Alon, Mabiid, and Reed [2] used
LLL to prove that every graph with maximum degr&esatisfiesy, (G) < [50A4/3] Moreover they

proved that there exist graphs with maximum deghefor which x, = Q (ﬁ

the upper bound was improved ﬁ6.59A§ + 3.3AW by Ndreca et al[[30] and then f0835A3 + A

by Sereni and Vole¢[34].
We improve this upper bound (for larg¥) by a constant factor.

) . Recently,

Theorem 1 Every graphG with maximum degreA > 24 is such that

Xa(G) < min{éA% LF5A—14, SAt A+ 82A3 + 1} .
2 2 A3 —
Atthe end of Sectioh 2.2.1 (see Remfark 9), we give a methaafitterthese upper bounds, improving
on Kostochka and Stocker’s bound as soor\as 27.

Alon, McDiarmid, and Reed[2] also considered the acyclimamatic number of graphs having
no copy of K, .1 (the complete bipartite graph with partite sets of size 2 and 1) in which
the two vertices in the first class are non-adjacent. LLetbe the familly of such graphs. Such
structure contains many cycles of lengtand they are an obstruction to get an upper bound on the
acyclic chromatic number linear if. Again using LLL, they proved that every graphe K, with
maximum degreé\ satisfiesy, (G) < [32,/7A].

Using similar techniques as for TheorEim 1, we obtain:

Theorem 2 Lety > 1 be an integer and> € IC, with maximum degre&. We havey,(G) <

1+ A (1427 +14).

As itis simpler, let us start with the proof of TheorEim 2 thit serve as an educational example
of the entropy compression method.

2.1 Graphs with restrictions on K 11's

We prove Theoreifl] 2 by contradiction. Suppose there existaghg' € K., with maximum degree
A suchthat,(G) > 1+ A (1 + V2 + 4). We define an algorithm that “tries” to acyclically color
Gwithk=1+A (1 + V27 + 4) colors. Define a total ordex on the vertices of5.



2.1.1 The algorithm

LetV e {1,2,...,x}" be a vector of length, for some arbitrarily large > n = |V (G)|. Algo-
rithm AcycLICCOLORINGGAMMA _G (see below) takes the vectidras input and returns a partial
acyclic coloringy : V(G) — {e,1,2,...,x} of G (e means that the vertex is uncolored) and a text
file R that is called aecordin the remaining of the paper. The acyclic coloripgs necessarily
partial since we try to colo with a number of colors less than its acyclic chromatic number a
given vertexv of GG, we denote byV (v) the set of neighbors af.

Algorithm 1: AcyYcLICCOLORINGGAMMA _G
Input :V (vector of length).
Output: (¢, R).

1 for allvin V(G) do

2 L o(v) <
R < newfile()

3
4 fori<+ 1totdo

5 Let v be the smallest (w.r.t) uncolored vertex ofs
6

7

8

p(v) < V]
Write "Col or \n"in R
if ¢(v) = p(u) foru € N(v)then

/'l Proper coloring issue

9 (V) <o

10 | Write "Uncol or, nei ghbor w \n"in R

11 else ifv belongs to a bicolored cycle of leng2h (k > 2), say(v = uq, ..., usk) then
/'l Bicolored cycle issue

12 for j < 1to 2k — 2 do

13 | o(u;) o

14 | Write "Uncol or, 2k-cycle (v=wu1,...,uz,) \N"INR

15 return (¢, R)

Algorithm AcycLICCOLORINGGAMMA _G runs as follows. Lep; be the partial coloring ofr
afteri steps (at the end of th&" loop). At Stepi, we first considep,_; and we color the smallest
uncolored vertex with V'[7] (line 6 of the algorithm). We then verify whether one of thédaing
types bad events happens:

Event 1: G contains a monochromatic edge for someu (line 8 of the algorithm) ;

Eventk: G contains a bicolored cycle of leng®lt (v = uq, us, . .., us) (line 11 of the algorithm).

If such events happen, then we uncolor some vertices (imgug in order that none of the two
previous events remains. Clearly; is a partial acyclic coloring ofz. Indeed, since Event 1 is
avoided,p; is a proper coloring and since Event 2 is avoidedis acyclic.

Proof of Theorem[d. Let us first note that the function defined by Algorithne¥cLicCOLOR-
INGGAMMA _ G is injective. This comes from the fact that from each ottguhe algorithm, one
can determine the corresponding input by Leniina 3. Now wemhteontradiction by showing that
the number of possible outputs is strictly smaller than t@ler of possible inputs whetis chosen
large enough. The number of possible inputs is exactiwhile the number of possible outputs is
o(k'), asitis atmostl + k)™ x o(x"). Indeed, there are at mqdt+ «)" possible partiak-colorings
of G and there are at mos{x!) possible records by Lemrid 4. Therefore, assuming the egiste
of a counterexampl€' leads us to a contradiction. That concludes the proof of Tére@. a



2.1.2 Algorithm analysis

Recall thatp; denotes the partial acyclic coloring obtained aftstieps. Let us denote iy, C V(G)
the set of vertices that are coloredsn Let alsov;, R; andV; respectively denote the current vertex
v of thei*? step, the record® afteri steps, and the input vectdf restricted to its first elements.
Observe that ag; is a partial acyclio:-coloring of G, and ag< is not acyclicallyx-colorable, we
have that; C V(G), and thusy; is well defined. This also implies th#&t hast "Col or " lines.
Finally observe thaR; corresponds to the lines &f before the(i + 1)t "Col or " line.

Lemma 3 One can recoveV; from (p;, R;).

Proof. By induction oni. Trivially, V (which is empty) can be recovered frqipg, Ro). Consider
now (p;, R;) and let us try to recoveV;. It is thus sufficient to recoveR;_1, v;—1, and V'[i].

As observed before, to recové; ; from R; it is sufficient to consider the lines before the last
(i.e. theith) "Col or " line. Then reading?;_;, one can easily recover, , and deduce;. Note
that in thei*® step we wrote one or two lines in the record: exactly o@el'or " line followed

by either nothing, or oneUncol or, nei ghbor " line, or one 'Uncol or, 2k-cycl e" line.
Indeed there cannot be abiricol or, 2k-cycl e" line following an "Uncol or, nei ghbor"
line, asv would be uncolored by the algorithm before considering loiem cycles passing through
v. Let us consider these three cases separately.

e If Stepi was a color step alone, théfi] = ¢;(v;) andy;_; is obtained fromp; by uncoloring
UVj.

e Ifthe lastline ofR; is "Uncol or, nei ghbor ", thenV[i] = ¢;(u) andy;—1 = ;.

e If the last line of R; is "Uncol or, 2k-cycle (u,...,uz)", thenV[i] = ¢;(uak—1)
and;_; is obtained fromp; by coloring the vertices; for 2 < j < 2k — 2 (which were
uncolored iny;), in such a way thap;_1(u;) equalsp; (usr—1) if 7 =1 mod 2, or equals
©;(uzyr,) otherwise. Note that this is possible because inithéoop, the algorithm uncolored
neitheruss, 1 Norugy,.

This concludes the proof of the lemma. ad

Let us now bound the number of possible records.
Lemma 4 AlgorithmAcycLICCOLORINGGAMMA _G produces at mosi(x') distinct recordsR.

Proof. Since Algorithm ACycLICCOLORINGGAMMA _G fails to colorG, the recordR has ex-
actly ¢t "Col or " lines (i.e. the algorithm consumes the whole input vectolt) contains also
"Uncol or" lines of different types: fiei ghbor" (type 1), 4- cycl e" (type 2), '6- cycl e"
(type 3),..."h-cycl e" (type 2). Let.7 = {1,2,..., 2} be the set of bad event types. Let denote
s; the number of uncolored vertices when a bad event of jypecurs. Observe that:

e Forevery'Uncol or, nei ghbor "step, the algorithm uncolors 1 previously colored vertex.
Hence set; = 1.

e For every 'Uncol or, 2k-cycl e" step, where the cycle has length, the algorithm un-
colors2k — 2 previously colored vertices. Hence sgt= 2k — 2 for 2 < k < |n/2].

To compute the total number of possible records, let us coenpow many different entries,
denoted”;, an 'Uncol or " step of typej can produce in the record. Observe that:

e An"Uncol or, nei ghbor"line can produce\ different entries in the record, according to
the neighbor ot (the vertex just colored by the algorithm) that shares tineeseolor. Hence
setC) = A.
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Figure 1: Example of a special cougle, v).

e An"Uncol or, 2k-cycl e"line involving a cycle of lengti2k can produce as many dif-
ferent entries in the record as the numbe2kfcycles going through. Thus this number of
entries is at mos{yA?*~2 according to Lemma 3.2 of [2]. Hence g6} = $yA% 2 for
2<k<|n/2].

We complete the proof by means of Theorenh 18 of Sedflon 4 (sgeage 1B). Theore 18
applies on Algorithm ©LORING_G which is a generic version of Algorithma¥cLICCOLOR-
INGGAMMA _G. Consequently, let us consider the following polynorgjét):

Qx) = 1+ Z Cix®

€T
1 , ,
_ 1 A - A2172 2i—2
+ Ar + Z 27 T
2<i<n
yAZ? 1
< 1+A —_— forx < —
R Sy e TS A
SettingX = £ %,we have:

Sincey > 1, then% < 1 and thus we have < X < &+ < 1. Therefore, Algorithm
AcvyCLICCOLORINGGAMMA _G produces at most(x?) different records by Theorem118. This

completes the proof. ]

2.2 Graphs with maximum degreeA

To prove Theorerl1, we prove that, given a grapwith maximum degree\, we havey,(G) <
§A3 +5A —14for A > 24in Sectior 2211 and thaty (G) < §AS + A4 S27- 4 1for A > 9
in Sectio Z.ZP.

The proof is made by contradiction. Suppose there existaphgr with maximum degreé\
which is a counterexample to Theoréin 1. Define a total orden the vertices ofy. Let N (u)
and N2(u) be respectively the set of neighbors and distance-twooesrtdfu. For each pair of
non-adjacent vertices andv, let N(u,v) = N(u) N N(v), and letdeg(u,v) = |N(u,v)|. For
each vertex: of G, let the order<,, on N2(u) be such that <, w if deg(u,v) < deg(u,w), or if
deg(u,v) = deg(u,w) butv < w. A couple of verticegu, v) with v € N2(u) is specialif there are
less thanvA 3 (o is a constant to be set later) vertieesuch that <,, w. That is,(u, v) is special
if and only if, v is in theaA*/3 highest elements o%,, (see Figur€]l). Note that the coupie v)
may be special while the couple, ) may be non-special. Let us dendtéu) C N?(u) the set of

verticesv such tha{u, v) is special. By definition,S(u)| = min {QA%, IN? (u)|}.

5



Algorithm 2: AcYCLICCOLORING_G
Input : V (vector of length).
Output: (¢, R).

1 for all vin V(G) do

2 L o(v) < o
R + newfile()

3
4 fori«+ 1totdo

5 Let v be the smallest (w.r.t) uncolored vertex ofs
6

7

8

p(v) + Vi]
Write "Col or \n"in R
if (v) = p(u) foru € N(v) then
/1l Proper coloring issue
9 o(v) < o
10 Write "Uncol or, nei ghbor « \n"in R
Ise ifp(v) = ¢(u) foru € S(v) then
/'l Special couple issue
12 o(v) <o
13 Write "Uncol or, special uw\n"inR

14 else ifv belongs to a bicolored cycle of lengthv = w1, u2, us, u4) then
/1 Bicolored cycle issue

11

(0]

15 o(v) <o
16 o(ug) < o
17 Write "Uncol or, cycl e (u1,us,us,us) \n"in R
18 else ifv belongs to a bicolored path of length(6:, us = v, us, u4, us, ug) With uy < ug
then
/1 Bicolored path issue
19 o(uy) < o
20 p(v) <o
21 o(ug) < o
22 o(ug) < o
23 Write "Uncol or, path (u1,us,us,us, us,ug) \n"in R

24 return (o, R)

2.2.1 First upper bound

By contradiction hypothesis,(G) > %A% + 5A — 14. Let x be the unique integer such that
JAF 45015 < n < 3AT 4 5A — 14 (e n = [A% +54 - 15)).

The algorithm

LetV € {1,2,...,x}" beavector of length Algorithm ACYcLICCOLORING G (see below) takes
the vectorl as input and returns a partial acyclic coloring V(G) — {e,1,2,...,x} of G (recall
thate means that the vertex is uncolored) and a redord

Algorithm AcycLICCOLORING_G runs as follows. Lep; be the partial coloring of7 after
i steps (at the end of th&"® loop). At Stepi, we first considerp;_; and we color the smallest
uncolored vertex with V'[7] (line 6 of the algorithm). We then verify whether one of thédaing
types of bad events happens:

EventN (for neighbor): G contains a monochromatic edge for someuw (line 8 of the algo-
rithm);



EventS (for special): G contains a special couple, ) with « andv having the same color
(line 11 of the algorithm);

EventC (for cycle): G contains a bicolored cycle of length(d = w1, us, us, u4) (line 14 of
the algorithm);

EventP (for path): G contains a bicolored path of length(6;, us = v, us, w4, us, ug) With
uy < ug (line 18 of the algorithm).

If such events happen, then we modify the coloring (i.e. weolor some vertices as mentioned in
Algorithm AcycLICCOLORING_G) in order that none of the four previous events remainste No
that at some Stefy for v andwv two vertices ofG such that{(u, v) is a special couple buw, u) is
not, we may haveo(u) = ¢(v); this means that has been colored before Clearly,p; is a partial
acyclic coloring ofGG. Indeed, since Event 1 is avoidedl,is a proper coloring ; since Events 3 and 4
are avoidedyp; is acyclic.

Proof of Theorem[d. As in the proof of Theorefm 2, we prove that the function defimgdcycLic-
COLORING_G is injective (see Lemnid 5). A contradiction is then olsdity showing that the
number of possible outputs is strictly smaller than the neindf possible inputs whehis chosen
large enough compared to The number of possible inputs is exactlywhile the number of pos-
sible outputs i (x'), as the number of possiblé + r)-colorings ofG is (1 + )™ and the number
of possible records is(x') (see Lemméal6). O

Algorithm analysis

Recall thaty;, v;, R;, andV; respectively denote the partial acyclic coloring obtaiaédri steps,
the current vertex of theit" step, the record afteri steps, and the input vectdt restricted to its
1 first elements.

We first show that the function defined bycAcLICCOLORING_G is injective.
Lemma 5 V; can be recovered frorty;, R;).

Proof. First note that, at each step of AlgorithncAcLICCOLORING_G, a 'Col or " line possibly
followed by an Uncol or " line is appended td:. We will say that a step which only appends a
"Col or "line is acolor step and a step which appends@o! or " line followed by an Uncol or "
line is anuncolor step Therefore, by looking at the last line &f, we know whether the last step
was a color step or an uncolor step.

We first prove by induction oithat R; uniquely determines the set of colored vertices at $tep
(i.e. ;). Observe that?, necessarily contains only one line which 8ol or"; then v, is the
unique colored vertex. Assume now that 2. By induction hypothesisk; ; (obtained fromR;
by removing the last line if Stepwas a color step or by removing the two last lines if Stapas
an uncolor step) uniquely determines the set of coloredoesriat Step — 1. Then at Step, the
smallest uncolored vertex @f is colored. If one of Events 1 to 4 happens, then the last line o
R; is an 'Uncol or " line whose indicates which vertices are uncolored. TherefR; uniquely
determines the set of colored vertices at Step

Let us now prove by induction that the p&is;, R;) permits to recovel;. At Step 1,(¢1, R1)
clearly permits to recoveV;: indeed,v; is the unique colored vertex and thtd1] = ¢ (v1).
Assume now that > 2. The recordR;_; gives us the set of colored vertices at Step1, and thus
we know what is the smallest uncolored verteat the beginning of Step Consider the following
two cases:

e If Stepi was a color step, thep;_; is obtained fromp; in such a way thap; 1 (u) = ¢;(u)
for all u # v andy;_1(v) = e. By induction hypothesis,p;_1, R;—1) permits to recover
Vi1 andV[z] = 991(71)



e If Stepi was an uncolor step, then the last line/®f allows us to determine the set of un-
colored vertices at Stepand therefore, we can deduge ;. Then by induction hypothesis,
(pi—1, Ri—1) permits to recoveV;_;. We obtainl/[¢] by considering the following cases:

If the last line is of the formUncol or, nei ghbor ", thenV{[i] = ¢;(u).

If the last line is of the formUncol or, special ", thenV[i] = p;(u).
Ifthe lastline is of the formUncol or, cycle (uy,us,us,uq)", thenV[i] = p;(us).

If the last line is of the formUncol or, path (uy,us,us, ug, us,ug)", thenVii] =
pi(ue).

d

This completes the proof.

Lemma 6 AlgorithmAcycLICCOLORING_G produces at mosi(x') distinct records.

Proof. As Algorithm AcycLICCOLORING_G fails to colorG, the recordr has exactly "Col or "
steps. It contains alsdJhcol or " lines of different types: fiei ghbor " (type N), "speci al "
(typeS), "cycl e" (type C), and 'bat h" (type P). Let 7 = {N, S, C, P} be the set of bad event
types. Let denote; the number of uncolored vertices when a bad event of fypecurs. Note that
each Uncol or " step of type hei ghbor " (resp. 'speci al ", "cycl e", and "pat h") uncolors
1 (resp. 1, 2, 4) previously colored vertex. Hencesset= 1, sg = 1, s¢ = 2 andsp = 4.

To compute the total number of possible records, let us céepow many different entries,
denotedC’;, an 'Uncol or " step of type;j can produce in the record. By considering verteix
AcCYCLICCOLORING_G, observe that:

e An "Uncol or" step of type hei ghbor " can produceA different entries in the record,
according to the neighbor efthat shares the same color; hencelgt = A.

e An "Uncol or " step of type $peci al " can producesS(v)| < aA3 different entries in the
record, according to the vertexe S(v) that shares the same color; hencelgt= A3,

e An "Uncol or" step of type tycl e" can produce as many different entries in the record
as the number of-cycles going through and avoidingS(v). We do not consider bicolored
4-cycles going througly and some vertex. € S(v), since we would have arhcol or,

8
speci al " step instead. Hence this number of entries is bounde@aia)according to the

8
next claim, and thus lefc = £=.

Claim 7 Given a graphG with maximum degred, for any vertexs of GG, there are at most
22 inducedi-cycles going through and avoidingS(v).

Proof. There are at mosA? edges betweeV (v) and N?(v). Letd be an integer such
that deg(v,u) > dif and only if u € S(v). Therefore, there are at leadtS(v)| edges
betweenV (v) andS(v). Thus there are at mo&t2 —daAs edges betweelV (v) andS(v) =
NZ2(v)\ S(v), and

Z deg(v,u) < A? — daA® (1)
u€S(v)

One can see that the set of indueedycles passing throughand through some vertex €
NZ2(v) is in bijection with the pairs of edggsiz, uy} with z # y and{z, y} € N(v,u). Thus
there are(deg(;’“)) such cycles. Summing over all vertices $ffv), we can thus conclude
that this is less than the following valug¢ = %Zueg(v) deg(v,u)?. As this function is
quadratic indeg(v, ), and as herdeg(v, u) < d, Equation[(l) implies thak” < K(d) for
K(d) = 3(A? — daA%)d. By simple calculation one can see that the polynorhiéd) is

8
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maximal ford = 5> and we thus have thdt < K (%—a) = &2 This concludes the proof

of the claim. O

e An "Uncol or" step of type pat h" can produce as many different entries in the record
as the number of-pathsP = (u1,us, us, uq, us, ug) With us = v andu; < wus. Hence
this number of entries is bounded BA(A — 1)* according to the next claim, and thus let
Cp=3A(A-1)%

Claim 8 Given a graphG with maximum degred, for any vertexv of G, there are at most
%A(A — 1)4 paths(ul, U2, U3, Usq, Us, UG) of Iength 6 withus = v andu; < us.

Proof. Given vertexv, there are(é) possibilities to choosa; andus, and thenA — 1
candidates for being vertex ., onceu; is known ¢ > 3). This clearly leads to the given
upper bound. ]

We complete the proof by means of Theoremih 18 of SeElion 4ofs@agé 118). Let us consider
the following polynomial)(x):

Q) = 1+ Z Ciz™
€T
1+ Cna®N + Csx®s + Cox®c + Cpa®F

8

1+ Az +aldz + %IQ + %A(A 1)t

SettingX = QZ—ZT", we have:
3

Q) _ (1 34 (s CaabvaeSiVE (41
T—(\/T_a—&-oz)A +(8a \/§+1)A 82a% V2 + =1 (6 A+A2) @)

Ly I g -
In order to minimize == + o, we setn = 3, giving X = ] and we obtain:
Q(X) 24 16 4 3

+—<—A%+5A—15§ﬁassoona$224

304
T = SATEBA 16+ T - o a5 < 5

X

Sinced < X < 1for A > 24, Algorithm AcycLICCOLORING_G produces at most{x') different
records by Theorem18. This completes the proof. O

Remark 9 For small values ofA, note that settingy = % is not optimal. Indeed the best choice
of « is the value minimizing the right term of Equatidd (2). Foample, forA = 27, setting
a = 0.225 leads us tol94 colors instead o242, already improving on Kostochka and Stocker’s

boundl + {%J = 197. Actually one can observe in Talile 1 that the optimal value (fbr a
givenA) converges tc% rather slowly.

A 27 28 29 30 100 | 1000 | 10000| 100000| 1000000
a | 0.225] 0.225] 0.226| 0.226| 0.25| 0.32 | 0.384 | 0.434 0.465

Table 1: Optimal values af for some given.



Algorithm 3: AcYCLICCOLORING-V2_G
Input : V (vector of length).
Output: (¢, R).

1 for all vin V(G) do

2 | pv) o
R + newfile()

3
4 fori«+ 1totdo

5 Let v be the smallest (w.r.t) uncolored vertex ofs
6

7

8

p(v) + Vi]
Write "Col or \n"in R
if (v) = p(u) foru € N(v) then
/1l Proper coloring issue
9 p(v) o
10 Write "Uncol or, nei ghbor « \n"in R
Ise ifp(v) = ¢(u) foru € S(v) then
/'l Special couple issue

11

(0]

12 o(v) <o
13 | Write "Uncol or, special u\n"inR
14 else ifv belongs to a bicolored cycle of leng2h (k > 2), say(u1, us = v, us, ..., usy)

with u; < ug then
/1 Bicolored cycle issue

15 for j < 1to 2k —2do
16 L o(uj) o
17 B Write "Uncol or, cycle (u1,...,u2) \N"in R

18 return (¢, R)

2.2.2 A better upper bound for large value ofA

The choice of the bad event types is important and consiglérin different sets of bad event types
(insuring the acyclic coloring property) may lead to diffat bounds. In the previous subsection,
we have considered four bad event types that insure a cgltibe acyclic. In this subsection, we
consider an other set of bad event types which leads to a logtber bound for large value aX.

Algorithm AcYcLICCOLORING-V2_G (see above) is a variant of AlgorithntAcLICCOLOR-
ING_G (see on padd 6) based on the following set of three badsvent

EventN: G contains a monochromatic edge for someu (line 8 of the algorithm);

EventS: G contains a special couple, v) with « andv having the same color (line 11 of the
algorithm);

Eventk: G contains a bicolored cycle of leng#k (u1,us = v, us,...,us) (line 14 of the algo-
rithm);

This leads to the following upper bound whan> 9:

4

8A3

—— + 1.
A3 —4

3 .4
Xa(G) < §A_3 +A+

4 4
Let » be the unique integer such tHan s + A 4 % <Kk <3ASHA+ A8§34 +1andleta = 3.
3 — 3 —
We now briefly sketch the proof. Lef = {N, S,2,3,4,..., g} be the set of bad event types. Note
that each Uncol or " step of type hei ghbor " (resp. 'speci al "and "2k- cycl e")) uncolorsl

(resp.1, 2k — 2) previously colored vertex. Hence sgt = 1, sg = 1 ands, = 2k — 2.

10



By considering in Algorithm AcycLICCOLORING-V2_G, observe that:

e An"Uncol or " step of type hei ghbor " can produce) different entries in the record. Set
Cn = A.

e An "Uncol or " step of type $peci al " can producesS(v)| < %A% different entries in the
record, according to the vertexe S(v) that shares the same color. $&t = %Aé.

e Now consider cycles of lengthk, £ > 2. For cycles of length 4, there are at m@sm?
induced 4-cycles going throughand avoidingS(v) (see Clainil’); we sefy; = %Ag.
Letk > 3. Letus upper bound the numberif-cycles going through that may be bicolored.
To do so, we count the number 2f-cycles(uy, ug, us, . . ., usg) With ug = v, u; < uz such
that(uy, uer—1) O (uak—1,u1) is not special (if bothfuy, usr—1) and(uak—1, u1) are special,
thenwu; andusi_1 cannot receive the same color). There are at Mgt s such cycles
according to Clairi0. We sét, = A%+~

Claim 10 For k > 3, there are at mosA2+—3 2k-cycles(uy, us, us, . .., us) going through
v with v = ug andu; < ug such that(uy, usg—1) Or (uzk—1,w1) is not special.

Proof. Aswu; < us, givenw, there are(5) possible(u;,u3). Then knowingu;, there are
at mostA possible choices foti; 11, 3 < i < 2k — 2. Now let(r, s) be a non-special pair
being either(uy, usk—1) or (uzk—1,u1). Hences € N2(r)\S(r). Letd be the highest value
of deg(r, u) for u € N2(r)\S(r). Therefore, there are at lea#tS(r)| edges betweeV (r)
andS(r), and so at mosh? — A5 edges betweeN () and N2(r) \ S(r). It follows that
d is at mos2A3. Hence, there are at moai 3 possible choices foiio,. This leads to the
given upper bound. ]

Let us consider the following polynomié&l(x):

Qx) = 1+ Z Cix®

€T
[n/2]
= 14 Cnz®N + Cgz®s + Cox® + Z Cra®*
k>3
1, s 182@/%21@421@2
= 1+Ax+§A§x+ZA§x + ZA Tt
k>3
1.4 1.8, Awg 1
< 1+A$+§A3$+ZA3$ +1—7A2$2 fOI’IE<Z

SettingX = A%, we haveX < £ as soon as\ > 9 and thus:
3

CICONFEJN BN LQM <k
X 2 A5 —4

Algorithm AcycLICCOLORING-V2_G produces at most(x*) different records by Theorem118.
This completes the sketch of the proof.

3 General method

In the previous section, we gave upper bounds on the acylticntatic number of some graph
classes. To do so, we precisely analyzed the randomizeéguoe for a specific graph class and a

11



Algorithm 4: COLORING_G

Input :V = {1,2,...,x}" (vector of length).
Output: (p, R).
1 for allvin V(G) do
2 L o(v) <
R + newfile()
for i <— 1tot do

3

4

5 v < NextUncoloredElement(p)
6 | wv) < V[
;

8

9

Write "Col or \n"in R
if ¢ € F(v) then
J < BadEventType(v, ¢)

10 k + BadEventClass;(v, ¢)

11 for Yu € UncolorSetBadEvent;(v, @, k) do

12 | o(u) e

13 Write "Uncol or, Bad Event j, k£ \n"inR

14 return (¢, R)

specific graph coloring. The aim of this section is to pro\adgeneral method that can be applied to
several graph classes and many graph colorings (some atpmtis of our general method are given
in Sectior{b).

In the remaining of this sectioks is an arbitrarily chosen graph. The aim of the general method
is to prove the existence of a particular coloring(@fusing « colors, for some:. A partial col-
oring of G is a mappingy : V(G) — {e,1,2,...,x} (¢ means that the vertex is uncolored). We
assume by contradiction thé&t does not admit such a coloring. In that case, we will show that
Algorithm CoLORING_G (see AlgorithniL¥) defines an injective mapping (Corol[Ed) from !
different inputs (for somé) to o(x?) different outputs (Theorem1L8), a contradiction. Given diph
coloringyp, letz denotes the set of vertices coloreddn

3.1 Description of Algorithm COLORING _G

Given a vertex of G, let F(v) denote the set dbrbidden partial colorings anchored at This
set is such that the vertexis colored for anyp € F(v). For example, Algorithm &vcLicCoL-
ORINGGAMMA _G (see Algorithnill) is a special case of AlgorithroI®RING_G, where, for any
vertexv, the seff(v) consists of the partial colorings wher@nd one of its neighbor have the same
color, orv belongs to a properly bicolored cycle.

A partial coloringy of G is said to beallowed if and only if,

1. eithery is empty (none of the vertices is colored),

2. or there exists a colored vertexsuch thatp ¢ F(v) and uncoloring yields to an allowed
coloring.

Algorithm CoLORING_G constructs a partial coloring of G. A crucial invariant of Algo-
rithm COLORING_G is that the partial coloring considered at the beginning of each iteration of
the main loop is allowed.

At the beginning of each iteration, AlgorithmaZoRING_G starts with an allowed coloring
and chooses an uncolored veriely NextUncoloredElement.

e NextUncoloredElement(®): This function takes the set of colored vertices(®in ¢ as
input and outputs an uncolored vertex (unless all verticesalored).

12



Then Algorithm @LORING_G colorsv using the next color from vectdr. This new coloringy
either verifiesp ¢ F(v) and consequently is allowed, orp € F(v) and in that case is an “almost”
allowed coloring since uncoloringyields an allowed coloring. Hence, let us define these faidid
colorings that can be produced by Algorithn oG®RING_G.

A partial coloringy of G is said to be dad event anchored at, if ¢ € F(v) and if the partial
coloringy’, obtained fromp by uncoloringy, is such that

e ' is an allowed coloring,
e v is the vertex output bjfextUncoloredElement(¥’).

We denoteB(v) the set of bad events anchoredwat It is clear thatB(v) C F(v). Hence, the
coloringsy considered at line 8 of the algorithm are either allowed tohgtoB(v). Therefore, the
test at line 8 is thus equivalent to testing whethet B(v).

Before going further into the description 0bCORING_G, let us introduce the following refine-
ments of the set®(v). For some set”, each seB(v) is partitioned into| .7 | setsB;(v) where
j € 7. We call the bad events @f; (v) thetypej bad eventsWe now refine again each sgf(v).
We partition eachB; (v) into different classe®” (v) wherek belongs to some séf;(v) of cardi-
nality at mostC}, for some value”; (depending only on typg). The partition into classes must be
sufficiently refined in order to allow some properties of thedtionRecoverBadEvent (see below).

After coloringv in the main loop, if the current coloring does not belong t&(v), then GL-
ORING_G proceeds to the next iteration. Observe that in that gasenains allowed as expected.

Suppose now that after coloringthe current coloring belongs tdB(v). In that case, GLOR-
ING_G determines the valugsandk such thatp € B’;(v). That is done using the following two
functions:

e BadEventType(v, p): Wheny is a bad event dB(v), this function outputs the element .7
such thaty is a bad event belonging ®; (v).

e BadEventClass;(v, @) for somej € 7: Wheny is a bad event 0B, (v), this function
outputs the elemerit € ¢’ (v) such thaty is a bad event belonging ﬁﬁf;(v).

Then GLORING_G uncolors the vertices given yicolorSetBadEvent, and proceeds to the
next iteration. A key property dincolorSetBadEvent is to ensure that the obtained coloring (i.e.
obtained after uncoloring the vertices giventhycolorSetBadEvent) is allowed as expected.

e UncolorSetBadEvent;(v, %, k) forsomej € 7: For any bad eveng of B?(v) (with colored
verticesp), this function outputs a subsgtof @ of sizes; (for some values; depending only
on typej), such that uncoloring the vertices 8fin ¢ yields an allowed coloring.

Often the property of leading to an allowed coloring is easfutfill (see Lemmad1l1). A seX of
partial colorings of= is closed upwardresp.closed downwarjif starting from any partial coloring
of X, coloring (resp. uncoloring) any uncolored (resp. colpreitex leads to another coloring of
X.

Lemma 11 If every seff(u) is closed upward, then the set of allowed colorings is clakegnward.
Hence in that case, for any € B(v), uncoloring a seb of vertices containing, leads to an allowed
coloring.

Proof. Let us first prove the first statement. Assume for contraalicthat the set of allowed
colorings is not closed downward, that is there exist annadtb coloringy and a non-empty set
S C p, such that uncoloring the vertices fhleads to a non-allowed coloring. As ¢ is allowed,
there exists an ordering,, .. ., v,, with p = ||, of the vertices ing such that the restriction af

to verticesuvy, . .., v;, denotedp;, does not belong t&'(v;), for anyi < p. Let us denotey; the
coloring obtained fromp; by uncoloring the vertices df (if colored). Asy’ is not allowed, there
exists a valud < j < p such thaty’; € F(v;). But asF(v;) is closed upwards, this contradicts the
fact thaty; ¢ F(v;).

13



Consider now the second statement. For@myB(v), uncoloringv leads to an allowed coloring
(by definition of B(v)). Then the proof follows from the fact that allowed colosngre closed
downward. a

Finally, to prove the injectivity of ©LORING_G, we need that the following function exists.

e RecoverBadEvent;(v, X, k,¢') whereX C V(G), k € €;(v), andy’ is a partial coloring
of G: The function outputs a bad evepte ]E%?(v), such that (1) = X and (2) uncolor-
ing UncolorSetBadEvent;(v, i, k) from ¢ one obtainsgy’, if such partial coloringy exists.
Moreover, the partition into classes Bf (v) must be sufficiently refined so that at most one
bad eventy fulfills these conditions.

Example

Let us illustrate our general method with the proofs of &t on acyclic vertex-coloring.

Observe that Algorithril]1 corresponds to Algorithim 4 for thikdiwing settings. For any vertex
v, the seff(v) contains every partial coloring @f with a monochromatic edge or with a bicolored
cycle involvingv. Then one type (typ&) corresponds to monochromatic edges, and several types
(type k, for k > 2) correspond to bicolored cycles, one per possible lengthefcycles. Then
each type is partitionned into classes, each of them carnepg to one monochromatic edge or
to one bicolored cycle, respectively. For the uncoloringgesss, one can notice that the number of
uncolored vertices only depends on the type of bad events,1 ands, = 2k — 2, and that the set
of uncolored vertices only depend on the class (i.e. the mlomoenatic edge or the bicolored cycle).
Furthermore, as the sdii$v) are closed upward and as the current vertex is always urezblat the
end of each iteration the partial colorings are always alb\iby Lemma1l1). Finally, as described
in Subsectiofi 2]1 there exists a functR¥roverBadEvent; for each type of bad everjt

Similarly, Algorithm[2 also corresponds to Algorittih 4. el (v) contains every partial color-
ing of G with a monochromatic edge:, a monochromatic special pdis, u), a properly bicolored
4-cycle (v, u1,us,us) or a properly bicolore@-path(uy, v, us, ug, us, ug) With uy < us.

3.2 Algorithm COLORING _G and its analysis

From the previous subsection, we have thatjffer .7, C'; ands; respectively denote the number of
typej bad event classes, and the number of vertices to be uncaldreda type bad event occurs.
We set

Q(z) =1+ Y Cja*
jeT
In this subsection, we prove the following:

Theorem 12 The graphG admits an allowedk-coloring for any integex such that

K > min Q(I)
o<z<l X

Before going further to prove Theoréml 12, let us state thefoNowing remarks.

Remark 13 One can observe that the bound obtained when all = 1, namely
k>14+ Zjeg Cj;, is the same as the one obtained by a simple greedy colorimgeeld, while
coloring the current vertex, the bad events of typg“forbid” at most C; colors forv, and so
1+ Zjey C; colors suffice to color the graph greedily.

Remark 14 One can observe that the polynomialz) only depends on the valuds, = Z Cj.

js.t.sj=k
One could thus merge the bad event types having the samesyalue
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From now on, we assume th@tdoes not admit an allowegkcoloring, this will lead to a con-
tradiction. LetV € {1,2,...,x}" be a vector of length for some arbitrarily large. The algo-
rithm COLORING_G (see Algorithni#) takes the vectbras input and returns an allowed partial
coloringy of G and a text fileR (called therecord). Let p;, v;, R;, andV; respectively denote the
partial coloring obtained by Algorithm @ orRING_G afteri steps, the current vertexof thei'"
step, the record? afteri steps, and the input vectdf restricted to its first elements. Note that
the algorithm and especially the propertiesjatolorSetBadEvent;(v, , k) ensure that each;
is allowed. Asp; is an allowed partiak-coloring of G and since has no allowedk-coloring by
hypothesis, we have that, C V(G) and that vertex;; is well defined. This also implies tha#t
hast "Col or "lines. Finally note thaf?; corresponds to the lines & before the(i +1)*" "Col or "
line.

Lemma 15 One can recover; andp, from R;.

Proof. By induction on:. Trivially, 7, = 0 andv, does not exist. Consider no®;.; and
let us show that we can recover,; and®,, ;. To recoverR; from R;,, it is sufficient to con-
sider the lines before the last (i.e. thiet+ 1)™") "Col or " line. By induction hypothesis, one can
recovery, from R;. Observe that;;; = NextUncoloredElement(y;). Let X = 3, + v;11.

If the last line of R;; is a "Col or" line, then,,;, = X. Otherwise, the last line oR;;

is an 'Uncol or " line of the form 'Uncol or, Bad Event j, £". Then, we havep, , =
X \ UncolorSetBadEvent;(v;y1, X, k). That completes the proof. |

Lemma 16 One can recoveV; from (;, R;).

Proof. By induction ori. Trivially, V4 (which is empty) can be recovered frqpg, Ry). Consider
now (p;+1, R;+1) and let us try to recover;, . By induction, it is thus sufficient to recovét;,

©;, and the valuéd’[i + 1]. As previously seen in the proof of Lemd 15, we can ded@crom
R; 1. By LemmdIb, we knowp, and we have,; = NextUncoloredElement(;). Note thatin
the (i + 1) step of Algorithm @LORING_G, we wrote one or two lines in the record: exactly one
"Col or "line followed either by nothing, or by oné&hcol or, Bad Event j, £k"line. Letus
consider these two cases separately:

e If Stepi+ 1 was a color step alone, théfi + 1] = ;1 (v;11) andy; is obtained fromp; 4
by uncoloringu; 1.

e If the last line of R;;; is "Uncol or, Bad Event j, k", then the function
RecoverBadEvent;(vi+1, B;, k, @i+1) outputs the bad event, that occured during this step
of the algorithm. Then we have th&f{i + 1] = ¢ (v;+1) and thatp; corresponds to the partial
coloring obtained fronp by uncoloringu; .

This concludes the proof of the lemma. O

Corollary 17 The mappind” — (¢, R) defined by AlgorithnCOLORING_G is injective.

Proof of Theorem[12. First observe that Algorithm GLORING_G can produce at mosi{x?)
distinct outputs(¢, R); indeed, there are at moét + «)™ partial coloringsy of G and at most
o(k') recordsR (by Theoreni 1B, see Sectibh 4). This is less thansthpossible inputs (for a
sufficiently larget), and thus contradicts the injectivity of AlgorithmoCoRING_G (CorollanyIY).
This concludes the proof. ]
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3.3 Extension to list-coloring

Given a graphG and a list assignmerit(v) of colors for every vertex of G, we say thatZ admits

a L-coloring if there is a vertex-coloring such that every eg&nt receives its color from its own list
L(v). A graph isk-choosablef it is L-colorable for any list assignmeitsuch thatL(v)| > & for
everyv. The minimum integek such thatG is k-choosable is called thehoice numbeof G. The
usual coloring is a particular case bfcoloring (all the lists are equal) and thus the choice numbe
upper bounds the chromatic number. This notion naturallgreds to edge-coloring and chromatic
index.

Until now, our methods were developed for usual colorings (ivithout lists). Every algorithm
takes a vector of color¥™ as input and, at each Stépa vertexv is colored with color/[i] (line
6 of Algorithm CoLORING_G). It is easy to slightly modify our procedure to extendaait results
to list-coloring. To do so, the input vectdf is no longer a vector of colors but a vector of indices.
Then, at each Stej the current vertex is colored with thel/[i]*® color of L(v). We then adapt
the proof of Lemm&Zll6 so thaf[i + 1] is no longerp;+1(vi+1) (Or ¢} (vi+1)) but instead it is the
pOSition Of@i+1(1ji+1) (Or (p;(’UH_l)) in L(Ui_;,_l).

Therefore, Theorenig [ 2, and 12 extend to list-coloring.

4 Bounding the number of records

The aim of this section is to prove one of our main theoremmaia Theoreri 118, that upper bounds
the number of possible records produced by AlgorithoLGRING_G.

Let us define a class of recor@ which includes the records that AlgorithmoCoRrING_G
could produce in a real execution. In this sectionydet |V (G)| be the order of the grap@i, .7
be a set of bad event types, andandC; be positive integers for ajl € .7, corresponding to the
number of uncolored vertices and the number of classesiasst¢o the bad events of tyge
ArecordR € R is a sequence ofcol or "and "Uncol or, Bad Event j, k"lines, where
j e Jandk € {1,...,C;}. TheDyck pathsare defined as staircase lattice paths on a square grid,
from the lower-left corner to the upper-right corner, whitthnot go below the diagonal. We say that
a Dyck path ispartial when it does not end in the upper-right corner. Bireof a (partial) Dyck
path is its number of up-steps. Observe that a reddrd R can be seen asyartial Dyck path
where

e each up-step corresponds toGo! or " line,

e each descent (maximal sequence of consecutive down-stefes)gth ¢ is annotated with a
couple(j, k) and corresponds to atficol or, Bad Event j, Ek"linewherel =s;.

Observe Figurgl2 which gives an example of such an annotatéidlyck path wherg;, = 1,
Sj, = 2, Sjg = 1, and5j4 =2.

From now on, the termecordrefers to both a record produced by AlgorithmDRING_G and
its corresponding annotated partial Dyck path.

Atagivenstep, itis clear that the level of the record cqroesls to the number of colored vertices
in G (for example, at Step of Figure[2, the grapli’ has3 colored vertices). Thus the ending level
of the record should be betweérandn. Let us define the subclags C R of the records ending
at level 0. In the following, usual Dyck paths will be calledn-partialDyck path to emphasize the
difference between Dyck paths and partial Dyck paths. Hehcethe set of non-partial Dyck paths
of R.

It is clear that the size of a record &f is the number of Col or " lines. Letr; (resp.b;) be the
number of records of sizein R (resp.B) for anyt > 0. We thus define the generating functions of

R andBB as
R(y) =Y _my' and B(y) =Y by".

t>0 t>0
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Figure 2: (a) A record and (b) its corresponding annotatetigh®yck path.

Let R, C R be the set of records 62 ending at level. Since during the execution of Algo-
rithm COLORING_G, every Uncol or " line follows a "Col or " line, arecordR € R, can be split
into ¢ up-steps (which correspond to the last up-steps betweeh landi+1, for each) < i < (—1)
and/ + 1 records{ By, Bs, ..., Ber1}+ C B (See Figur€ld). Hence, the generating functio®efis
Ry(y) = y*B(y)**!. Therefore,

Riy)= Y Rly)= > y'By)™"" 3

0<e<n 0<e<n

o 0 /N

By By Bs By Bs

Figure 3: Splitting a partial Dyck path of levéinto ¢ + 1 non-partial Dyck paths an@lup-steps.

Let B; C B be the set of records @& ending with a descent annotatgik) for somek (note
thatk may takeC; distinct possible values by definition). Therefore, a rdcBre B; ends with a
last up-step and a last descent of length The subpattR’ obtained fromR by removing the last
up-step and the last descent belong®ig ;. Hence, the generating function Bf is B;(y) =
R, _1(y) x yC; = y*1 C;B(y)* . Therefore, since a record € B is either empty (i.e. of size 0) or
ends with a descent annotatgdk), we have:

B(y)=1+ Bj(y) =1+ ) Cy”B(y)” 4)
JjET jeT
We are now ready to prove the following theorem.
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t
Theorem 18 AlgorithmCoLORING_G produces at most (Q(m)) ) distinct records with "Col or "
lines whereQ(z) =1+ 3, 5 C;z* and for anyx €]0, 1].

In practice, our aim is to minimize the valuegff—). Observe that:

Remark 19 In Theoreni 18, the minimum value%? is as follows:

e If s; =1forall j € 7, then the minimum is reached for= 1 and =1+ Z Cj.
jET

e Otherwise, the minimum is reached for the unique positiv¢ of the polynomialP(z) =

-1+ Z (Sj - 1)ijsj
€T

Proof of Theorem[I8.Let A = OmiI<11 Q(x). Let us prove that Algorithm GLORING_G produces
<z< xr
at mosto(\*) distinct records: it suffices to boumg (the number of records of sizeof R) by o(\").
t
If s; = 1forall j € 7, thenb, = (zjey c-) — (A — 1)" by Equation[®). It follows that, =

So<e<n (;) (A= 1)""" for sufficiently large! by Equation[(B). Finallyy; < (n + 1)t"*! (A — 1)’
and therefore; = o(\").

From now on, we consider the case wheje> 2 for somej € .7. As observed by Esperet
and Parread [10, Lemma 6], there is a constrflepending only on the lengths of the descents)
such that; < b;,¢. It suffices hence to show that = o(\*). For that purpose we make use
of the smooth implicit-function scheﬂ@SlFS for short) of Meir and Moori [26] (see also Flajolet
and Sedgewick’s book 15, Section VII.4.1]). FuncttBnQy) does not satisfy the SIFS and we thus
introduce the functioni(y) defined byA(y) = B(y) — 1 whered = ged{s; | j € T }. We prove
in the following thatA(y) satisfies the SIFS. Note that the size of Dyck path8 &f multiple ofd.

Therefore, we have:
=>byt= > byl

t>0 t multiple of d

ThusB(yé) =1+~ bary". HenceA(y) = Y ,~, awy’ with ag = 0 anda; = by, fort > 1. Thus
A(y) is analytic at 0gg = 0, anda; > 0 for all t > 0. Furthermore, note that for any sufficiently
larget, the integerdt can be written as a sum which summands belongsto| j € .7}. Hence
a; = bgy > 0 for any sufficiently largg > 0. It follows that A(y) is aperlodE By Equation[(4),
we haveA(y) = G(y, A(y)) for the bivariate functiort? defined by

Gly,z) =Y Cy™/" (2 +1)"
jeT
Observe that

=3 ¥ (7)owrs

JjE€T 0<i<s;

and hencé&(y, z) is a bivariate power series satisfying the following coioais:
(a) G(y,z) is analytic in the domaify| < +oo and|z| < +cc.

(b) SettingG(y,z) = >, .50 9mny™2", the coefficients oly satisfy gm.n > 0, go,0 =0,
go1 =0,andg:; . > 0forthej € .7 suchthat; > 2.
d 77

1The smooth implicit-function schema is giver[ih A.
2Aperiodicis used in the usual sense of Definition V.5 of Flajolet-Seugk’s book [15]. Equivalently, there exist three
indicesi < j < k such that;ajay, # 0 andged(j — i,k — i) = 1.
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(¢) There exist two positive numbersands satisfying the system of equati&s

G(r,s)=s and G,(r,s) = 1.
Indeed, by settingd = r/¢(s + 1), these two equations respectively become

Y CiXi=sand Y 50X =5+ 1.
JjET JjET

By substracting the first one to the second one, we obtainXhistthe unique positive root
of P(z) (see Remark9) which exists. The first equation hence glefiness. In this
first equation adding 1 to both sides, and then multiplyirepitboth by-'/¢, one obtains that

r=(X/Q(X))"
HenceA(y) = tho ayy' satisfies asmooth implicit-function schemaith characteristic system
(r,s), see Definitio "33 of A. By Theorefn B4, we have that= O (t*%r*t). It follows that

t
a; = o(r~t)andb; = o (r~¥/4) = o ((%) ) As X is the unique positive root aP(x), this

concludes the proof. ]

5 Some applications of the method to graph coloring problems

In this section, we apply the framework described in SedBda different coloring problems. We
improve several known upper bounds by at least an additimstaat and sometimes also by a con-
stant factor. More importantly, this framework allows siempproofs with only few calculations.
Indeed, directly using Theordml12, one avoids the calanatmade in Sectidd 4.

5.1 Non-repetitive coloring

In a vertex (resp. edge) colored grapRjarepetitionis a path or2; vertices (resp. edges) such that
the sequence of colors of the first half is the same as the sequé colors of the second half. A
coloring with no2j-repetition, for anyj > 1, is callednon-repetitive Let(G) be thenon-repetitive
chromatic numbeof G, that is the minimum number of colors needed for any nontieeevertex-
coloring of G. By extension, letr;(G) be thenon-repetitive choice numbef G. These notions
were introduced by Aloret al. [1] inspired by the works on words of Thule [35]. Seel[19] for a
survey on these parameters. Dujntoet al. [9] proved that every grapty with maximum degree

A satisfiesm;(G) < |1+ le_1 + Zl_r A%| = A2 4+ 2A5 + O(A%) colors. However, their
3 — 3

technique could provide tighter bounds from the second temn24]. Here, we provide a simple
and short proof of the following bound.

Theorem 20 Let G be a graph with maximum degrée > 3. We have:

4
3

2038 )
m(G) < {AH%AM 23A31W :A2+2%A% +o(A
3 3

—_ ) (Note thati2 ~ 1.89)

A3 — 23 23

Proof. To do this, let us use the framework as follows. Iiebe any graph with maximum degree
A, and letn denote its number of vertices. In this application, the §&tg are closed upward.
We directly proceed to the description of the bad evéits) and the description of the required
functions. Then, from the s&(v), we define the séf(v) as its upward closure.

e Let < be any total order on the vertices 6f NextUncoloredElement() returns the first
uncolored vertex according te.

3 @, denotes the derivative @ with respect to its second variable.
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e LetB(v) be the set of bad evengsanchored abt such that vertex belongs to a repetition
in . The se(v) is partitioned into subsei8;(v), for 1 < j < n/2, in such a way that in
everyy € B;(v) the vertexv belongs to &j-repetition. Let#’;(v) be the set oRj-vertex
paths going through. Each sei;(v) is partitioned into subser(v) according to the path
P € %;(v) supporting the repetition. If in a bad evepte B(v) the vertexv belongs to
several repetitions, then one of the repetitions is chosgitrarily to set the valug and the
path P such thatp € BY (v). LetC; = jA% ! as this upper boundss’;(v)|. Indeed, there
areA2~! possible paths oRyj vertices where has a given position, arj possible positions
for v, but in that case every path is counted twice.

Let us prove that any partial allowed coloriggis a non-repetitive coloring. We proceed by
induction on the number of colored verticesqaf If there is no colored vertex, then is clearly
non-repetitive. Otherwise, there exists a colored vertsich thaty ¢ F(v) and uncoloring leads
to a partial allowed coloring’. By induction,y’ is non-repetitive. Thus, ip contains a repetition,
thenv is necessarily involved. In such a case, we would haweF (v), a contradiction.

e The functionUncolorSetBadEvent;(v, %, P) outputs the half of? containingv, and thus
s; = j. By LemmdIl, this function fulfills all the requirements.

e Given P and the sequence of colors of one halffiwhich is colored iny’), it is easy to
recover the sequence of colors of the other halPpind stRecoverBadEvent; (v, X, P, ¢')
is well-defined.

Consider now

Qz) =1+ Z Cijz¥ = 1+ Z AT g

1<j<n/2 1<j<n/2
< 1+ Ar if z< !
_er r< —
(A2 — 1)2 A2

By settingX = > — (%)% (X > 0asA > 3), one obtains that
QLY azy LN L
X 23 A3z — 23
By TheoreniIR( admits an allowed coloring (hence a non-repetitive corinith [Q(X)/X |

colors. This concludes the proof of the theorem. a

An edge-coloring is calledon-repetitiveif, for every path with an even number of edges, the
sequence of colors of the first half differs from the sequerfceolors of the second half. The
minimim number of colors needed to have such a coloring oedges of is called theThue index
of G, and is denoted by’(G). By extension, letr;(G) be theThue choice indegf G. Alon et al.[I]
proved that every grapfi with maximum degre@\ satisfiesr’(G) < cA? with ¢ = 2¢16 + 1. We
can prove:

Theorem 21 LetG be a graph with maximum degrée> 3. Then
m(G) < A? +235A3% + O(A3).

The only difference with the vertex case is tiigt= 2 A%/~
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5.2 Facial Thue vertex-coloring

We consider in this subsection a slight variation of noretige coloring which applies to plane
graphs (i.e. embedded planar graphs). Here the restriotiorepetitions only applies on facial
paths. More formally, consider a plane graghA facial pathof G is a path on consecutive vertices
on the boundary walk of some face@f A vertex-coloring ofG is said to bdacially non-repetitive

if none of the facial paths is a repetition. The notion can xtereded to list coloring. Let;(G)
(resp. 75(G)) denote theacial Thue chromatic numbéresp. facial Thue choice numbgthat

is the minimum integek such thatG is facially non-repetitivelyk-colorable (resp.k-choosable).
Barat and Czap [6] proved that for any plane gra@phn;(G) < 24. Whether the facial Thue
choice number of plane graphs could be bounded from abovebgstant is still an open question.
Recently Przybytet al. [32] proved that, it is a plane graph of maximum degr@ethenr 7, (G) <
5A, and asymptoticallyr s (G) < (2 + o(1))A. We improve these upper bounds as follows:

Theorem 22 LetG be a plane graph with maximum degrae> 2. Then,
m7(G) < [A +4VA + 3_‘

Proof. Let G be a plane graph with maximum degrde In this application, the se8(v) are
closed upward. We directly proceed to the description obt event®(v) and the description of
the required functions. Then, from the &), we define the séf(v) as its upward closure.

e As previously, let< be any total order on the vertices 6f NextUncoloredElement(p)
returns the first uncolored vertex according<o

e Forl < j < |n/2] = p, letB;(v) be the set of bad evengssuch that vertex belongs to a
repetition on a facialj-vertex pathP. Let % ;(v) be the set of faciatj-vertex paths going
throughv. Each se;(v) is partitioned into setﬁf(v), for everyP € ¢ ;(v), according
to the pathP supporting the repetition. The number of obtained classssi¢h that we set
Cy = AandC; = 2jA for j > 2. Indeed, there are at moAt possible faces for containing
P, and2j positions forv in P.

Let us prove that any partial allowed coloringis a facial non-repetitive coloring. Proceed by
induction on the number of colored verticesyf Either ¢ has no colored vertex and it is facially
non-repetitive, or there exists a colored verteguch thatp ¢ F(v) and uncoloringy leads to a
partial allowed coloring’, that is hence facial non-repetitive. Thuspitontains a facial repetition,
thenv is necessarily involved. In such a case, we would haeeF(v), a contradiction.

e The functionUncolorSetBadEvent,(v,, P) outputs the half of the patF containingw,
and thuss; = j. By Lemmd1l, this function fulfills all the requirements.

e Given P and the sequence of colors of the colored halPoft is easy to recover the sequence
of colors of the uncolored half @, and sRRecoverBadEvent; (v, X, P, ¢’) is well-defined.

Consider now

Qz) =1+ Z Cijz® = 14 Ax+ Z 2j Az’
1<j<n/2 2<j<p
2—x

(x —1)2

< 14+ Az + 2A22 forz <1

. g .
By settingX = OV and asA > 2 one obtains that

@ < A+4VA+3

21



By Theoreni IRz admits an allowed coloring (hence a facial non-repetitélering) with [Q (X )/ X |
colors. This concludes the proof of the theorem. a

Piotr Micek recently announced that this theorem can be dwvgad asymptotically as for any
plane graplG, 7 (G) < O(log A) [24].

5.3 Facial Thue edge-coloring

Consider thefacial Thue choice index’,(G) of a plane graplt, that is the minimum integelt

such thatG is facially non-repetitively edgé-choosable. Schreyer and Skrabul'akdva [33] proved
that plane graphs have bounded facial Thue choice indexe pnmciselyvr}l(G) < 291. Recently
Przybyto [31] improved that bound to 12. To obtain that upbeund with our framework, it is
sufficient to consider as bad events the partial coloringsigaa facial2;j-repetition (for any;j > 1)
with costsC; = 4; since an edge belongs to at madgtfacial 2j-edge paths.

Let us explain a way to improve that upper bound. The ideadsdheach step the algorithm
chooses the edgeto be colored in such a way thatis facially adjacent to an uncolored edge
Therefore, if at some step the algorithm colors such an edgfgen this edge belongs to at most
1 + 27 facial 2j-edge paths going through colored edges (one path in thdrfeitkent toe ande’
and2j; paths on the other face incidentdh However, such an edgedoes not always exist. For
example if the algorithm has colored all the graghbut one edge, then this edge may belond;to
colored faciakj-edge paths. We manage to use this trick to obtain the imgrbwand of 10.

We will need the following definition. Given a plane gra@hits medial graph)M (G) is defined
as follows:

e its vertex set is the set of edges®f

e there is an edgev between the vertices andv of M (G) if and only if the corresponding
edges in7 are facially adjacent (i.e. adjacent and both incident éosiime face).

Theorem 23 For any plane graphz, any edge=* of GG, and any assignment of lists of sizethere
exists a partial facial Thue edge-coloring@fwhere all the edges except are colored.

Proof. Let G be a plane graph with maximum degrée and lete* be any edge of. In this
application, we want to ensure that at each iteration of teroop the current edge to color is
facially adjacent to (at least) one uncolored edge. Thiddass to set®(¢) that are not closed
upward. Hence they need to be described with care. For a gitligee, the setF(e) contains
the partial colorings with a facial repetition involvireg and the partial colorings where the set of
uncolored edges (i.e. vertices 8f(G)), includinge*, induces a disconnected graphMi(G).
Hence the set of allowed colorings is the set of partial éogm with no facial repetition, and where
uncolored edges, including, induce a connected graphid (G).

We conveniently defindextUncoloredElement in order to avoid bad events dealing with the
case where uncolored edges induce a disconnected graghd).

e For any setX C E(G) such that* € X, and such thal/(G)[X] is connected, the edge
e = NextUncoloredElement(E(G) \ X) must be such that/(G)[X — e] is connected.
Hence e may be chosen among leaves of a spanning trée @) [ X | rooted at*.

Hence with that definition offextUncoloredElement we have that for a given edge the set of
bad event®(e) contains the partial colorings with a facial repetitionatwing e, wheree is facially
adjacent to an uncolored edge(its parent in the spanning tree described above, which intigh
e*), and where the set of uncolored edges induces a conneeteld igr)/ (G). Let us introduce the
bad event types and classes:

e Forl < j <p = [n/2], letB;(e) be the set of bad events anchorea atich that has an
uncolored facially adjacent edgé ande belongs to a repetition on a (colored) facigtedge
pathP.
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The partition into classes is not obvious. kegtes, e andey be the (at most four) edges 6f
facially adjacent ta:, and lete’ € {e1, s, €3, e4} be the uncolored one with smallest index.
Let us now partitiorB;(e) into setsIB%j/’P(e) according to the uncolored edgeand the path
P supporting the repetition. We have seen earlier that givestge:’ there are at modt+ 2j
possible pathd>. As there are up to four possibilities fef this partition hast + 85 parts,
but the cases wheke has distinct values are independent. Let us hence merge pagts as
follow. Let BX(e), for 1 < k < 1+ 2j, be the union B (e), B> (e), B> (e) and
IB%§4’P4(e), for some choice of pathi,;, P», P; andP;. The obtained partition h&s; = 1+2;
classes.

¢ Given the set of colored edge=of some bad event € B, (¢), one can determine the facially
adjacent uncolored edgé. Hence given (also) the clagssuch thaty € ]E%?(e), one can
determine the patf supporting the repetition. The functitficolorSetBadEvent;(e, 3, k)
outputs the half of the patR containinge, and thuss; = j. Note that as the edges Hfare
incident to the same face, and @ande’ are facially adjacent, uncoloring this set of edges
leads to a partial coloring that has no repetition and suahttie uncolored edges induce a
connected graph it/ (G), hence an allowed coloring (as required).

e Using again the fact that can be retrived fronp (= X here) and:, one can easily design a
functionRecoverBadEvent; (v, X, k, ©i11).

Consider now

Q)=1+ Y Cu¥ = 1+ Y (1+2j)a’
1<5<n/2 1<j<n/2
1 2x

if =<1
< 1—x+(1—x)2 T <

By settingX = @, one obtains tha®(X)/X < 9. Hence by Theorein12; admits a partial
allowed 9-coloring (hence a partial facial Thue edge-dntprwheree* is the onlyuncolored edge.
This concludes the proof of the theorem. ]

Given Theoreni 23, it seems likely thﬁ}l(G) < 9 for any plane grapld=. Actually one can
show that it is the case @ has an edge* incident to two faces of small sizes. Unfortunately we do
not achieve this bound here, but we prove:

Corollary 24 For any plane grapl&, 7, (G) < 10.

Proof. For a givenG, pick an arbitrary edge* € E(G) and an arbitrary colot € L(e*). For

all the other edges af, remove color from their list. Now all these lists have size at least 9. By
TheoreniZB, it is possible to color all the edge(dfexcepte*, avoiding facial repetitions. Then
coloringe* with ¢ cannot create any repetition, @adoes not appear elsewherein |

Remark 25 Note that in the proof of Theordm]23 we only use the fact thgégdre adjacent to at
most two faces, and thus it extends to any graph embeddedycsudiace. Hence, Theordml 23 and
Corollary[24, both extend to arbitrary surface.

5.4 Generalised acyclic coloring

Letr > 3 be an integer. Am-acyclic vertex-coloring is a proper vertex-coloring subht every
cycleC uses at leashin(|C|, r) colors. This generalisation of the notion of acyclic cahgrithe

r = 3 case) was introduced by Geré&eal. in the context of edge-coloring [1L6] and then by Greenhill
and Pikhurko in the context of vertex-coloring [17]. Lét(G) be the minimum number of colors
in anyr-acyclic vertex-coloring of7. By extension, letd! (G) be ther-acyclic choice number of
G. Greenhill and Pikhurkd [17] proved in particular that, for> 4 and A > 3, every graphG
with maximum degre@\ satisfiesA, (G) < cAl"/2 wherec = 2("+2)/3;(r 4- 2). We reduce this
constant factor as follows.
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Theorem 26 LetG be a graph with maximum degrée> 3. For anyr > 4, we have thatl’ (G) <
Alr2l L o (A(r+1)/3)_

In the following, all the defined events are strongly insgiby those defined by Greenhill and
Pikhurko [17]. LetG be any graph with maximum degrée and letn denote its number of ver-
tices. Let< be any total order on the vertices Gf NextUncoloredElement(®) returns the first
uncolored vertex according ta. In this application, the sef8(v) are closed upward. We hence
use Lemmalll, to ensure that each functiaaolorSetBadEvent fulfills all the requirements. We
proceed now to the description of the bad events (theBetsbeing deduced fror®(v)), and the
description of the required functions. We distinguish twses according tgs parity.

5.4.1 Case even

Setr = 2¢ with £ > 2. We consider the following sets of bad events anchored &xer

e LetB; (v) be the set of bad evengswhere “there exists a vertexat distance at mogt(from
v) having the same color a8. Let %1 (v) be the set of vertices at distance at mogtfrom
v AS| Gy (v)] < L AA—1)i~t = AUADT-D < Al e seC, = AL, Each seB, (v)
is partitioned into classeBy (v), for every vertexu € 1 (v), according to the vertex that
is colored likev. UncolorSetBadEvent, (v, @, u) outputs the vertex, and thuss; = 1. In
addition,RecoverBadEvent, (v, X, u, ') outputs the partial coloring obtained fromy’ by
coloringv with color ¢’ (u).

Here it is clear that an allowed coloring is a distarigaroper coloring. Furthermore, as= 2/,
cyclesC of length at most + 1 will receive|C| distinct colors.

e LetB,(v) be the set of bad eventswhere v belongs to a patl onr + 2 vertices such that
and two other colored vertices, say, have colors that already appearBk{v, a, b}". Letus
define a partition oB2 (v). Consider the se&t’(v) formed by all tuples P, a, b, v’, o', b’) such
that P is a path on* + 2 vertices containing vertices a, b, v’,a’, b’ where|{v,a,b}| = 3,
1 < |{v',d,V'}| < 3and{v,a,b} N {v,a, b’} = 0. Let B> ¥) (1) « By(v) be
the class of bad events where “bothv and+’ have the same color, bothanda’ have
the same color, and bothand®’ have the same color”. Let us count the number of such
classes. First observe thabelongs to at mostf2A(A — 1) paths on + 2 vertices. Now
observe that there are at mast 2 possible choices for each vertexb, v’, a’,t’. Hence let
us setCy = %(7‘ + 2)6AT*!, UncolorSetBadEventy (v, P, (P, a,b,v',a’,b")) outputs the
set{v,a, b}, and thussy = 3. In addition,RecoverBadEvents (v, X, (P,a,b,v',a’,b'),¢’)
outputs the partial coloring obtained fromy’ by coloring verticess, a andb respectively
with colorsy’(v'), ¢’ (a’) andy’ (v).

These bad events imply that in an allowed coloring, cycldsmyth at least + 2 contain at least
colors. Hence an allowed coloring is also a generalisadyclic coloring. Consider now

Qxz)=1+ Z Ciz® = 14+ Chaz + Cya?

ol

By settingX = (ﬁ) one obtains that

Q)

Ct 2o
X — 1+2_%2

3
AZ + 5(7, + 2)2A(r+1)/3

By Theoreni IR(Z admits an allowed coloring (hence a generalisedyclic coloring) with[Q(X )/ X |
colors. This concludes the proof of the theoremif@ven.
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5.4.2 Case odd

The odd case is similar to the even case.itet 2¢ + 1 with £ > 2. Let us use again the two types
of bad events defined above. Now, type 1 bad events are snofftoieleal with cycles of length at
mostr. Type2 bad events are still sufficient to deal with cycles of lengtleastr + 2. It remains
to deal with cycles of length + 1. Type 1 bad events forbid some kinds of length 1 cycles. As
r+1 = 20+ 2, the cycles of length + 1 that are not forbidden by type 1 bad events are those where
each color appears only once, or where colors appearingateéiees, do it on antipodal vertices.
We thus add two other bad event types to deal with this king/olies of length- + 1.

A pair of vertices{u, v} is said to bespecialif « andu’ are at distance exacth4 1 and if there
exist at least\ 5" paths of lengthf + 1 linking « and«’. Consider the two following new sets of
bad events:

e LetB;3(v) be the set of bad evengswhere “there exists a special pdir, u} such that and
u have the same color”. Léf;(v) be the set of vertices such that{v, u} is a special pair.
Each sefB3(v) is partitioned into classe®} (v) according to the vertex colored likev. As
there are at mosh‘+* paths of length + 1 starting fromw, there exist at mosh 3 (¢+1) =
ACtD/3 — 4 such classes. Functioi&colorSetBadEvents; andRecoverBadEvents
are defined similarly to the first type of bad events, vsgh= 1.

e LetB,4(v) be the set of bad evengswhere v belongs to a cycl€’ of lengthr + 1 = 2¢ + 2
such thatr and its antipodal vertex’ (on C) have the same color, are at distarice 1 from
each other but do not form a special pair, and such@habntains another pair of antipodal
vertices{u, v’} having the same color”. L&, (v) be the set of couplg€”, ) such thatC is
a(r+ 1)-cycle containing andu as non-antipodal vertices. Each Bg{v) is partitioned into
classe® ™ (v), for every(C, u) € ¥4(v). There exist at mogiA 3 (“+1) = ¢AS(+D) = ¢,
such classes. Indeed, there @eét! choices for vertex’ and the path fromv to v'; asv
andv’ do not form a special pair, there ates (“+1) choices for the path from’ back tov;
and finally there aré possibilities for the paifw, v’} of antipodal vertices. The function
UncolorSetBadEventy (v, g, (C,u)) outputs{v,u}, sos, = 2, andRecoverBadEvent,
clearly exists.

One can check that these two new types of bad events handierttzening cycles of length + 1
colored with less tham colors. This ensures us that allowed colorings are gesecati-acyclic
colorings. Consider now

Qz) =1+ Z Cijz* = 1+ Cix+ Cea® + Cyz + Cya?

1<j<n/2

By settingX = <75 One obtains that

@ = AL 4 AUV L ACHD/3 (1 +4+ %(r + 2)6)

= Af 4 AUTD/3 (2 + 0+ %(r + 2)6>

By Theoreni.IR(Z admits an allowed coloring (hence a generalisedyclic coloring) with[Q(X )/ X |
colors. This concludes the proof of the theorem:fadd.

5.5 Colorings with restrictions on pairs of color classes

For many graph colorings, the color classes are asked taéndwependent sets while another
property is asked to each pair of color classes. Aravind armé@nanian([4] introduced a general

25



definition that captures many known colorings. In their dééin, restrictions may apply to an§
color classes, for an§/> 2. Let us restrict ourselves to the case: 2.

Given a family F of connected bipartite graphs,(2, F)-subgraph coloringof G is a proper
coloring of V(&) such that the subgraph 6finduced by any two color classes does not contain any
isomorphic copy offf as a subgraph, for eadth € F. Denote byxs »(G) the minimum number
of colors used by any2, F)-subgraph coloring of. Denote byys »(A) the maximum value of
x2,7(G) for any graphG having maximum degree at ma&t For example, whetF is the family
of even cycles(2, F)-subgraph coloring is the usual acyclic vertex-coloring.

Using random graphs, Aravind and Subramanign [4] showeddl@ving lower bound on

x2,7(A).

Theorem 27 (Aravind and Subramanian [4]) Given a connected bipartite grapt with m edges

(m > 2), we have
A) =90 A
X2, (my (D) = W

Hence, the same bound appliesy®~(A) for any familyF containing a graphd with m edges.

The same authors later showed that this lower bound is aliigbs$t Let:m > 2 be an integer and let
F be a family of connected bipartite graphs such that all tlaplgs have at least edges.

Theorem 28 (Aravind and Subramanian [5]) For some constart’ depending only ofF, we have
X2, 7(A) < CA=

Partition the graphs iif according to their number of vertices. LEE™ (resp.F.” ™) denote the
subset ofF with graphs on at most: vertices (resp. more that vertices). Let als&=" = |F="|.
We consider another parition &f according to the number of edges in each graph.Z&t(resp.
F>™) denote the subset of with graphs on exactlyn edges (resp. more that edges); and let
kD= |FD.

The constan€ mentionned in TheoremMR7 is eith@t(m + 1)3k=" or 128(m + 1) according
to whetherk=™ > 0 or not. Following the approach of Aravind and SubramanianimproveC as
follows.

Theorem 29 We have

Yor(B) < (k3™ 4 71)(m+ 1A 5)

Xe.r(A) < (K +1+0(1)) (m+1)Am-1 (6)

Proof. Let us use the framework described in Secfibn 3 as follows.Ae- {Hy, Ha,...}. Let
us also denote by, andm,; the number of vertices and edges in the forbidden grdplor each
i (recallm; > m). For convenience, we introduce the value= —. Let G be any graph with
maximum degreé\, and letrn denote its number of vertices. As in this application, this Bév)
are closed upward we directly proceed to the descriptioh@biad events (d8(v) is deduced from
B(v)), and the description of the required functions.

e Let < be any total order on the vertices @f NextUncoloredElement(%) returns the first
uncolored vertex according te.

e LetBg(v) be the set of bad eventsanchored ab such that vertex belongs to a monochro-
matic edgeww (in ¢). Let ¢ g(v) = N(v). Let us partitionB(v) into classe®Y,(v) accord-
ing to which edgesv is monochromatic irp, for u € € g(v). Clearly| € g(v)| < A, thus let
Cg =A.

From here it is clear that an allowed coloring is proper.
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e The functionUncolorSetBadEventy (v, @, u) outputs the singletofiv} and thussp = 1.
By LemmdI1, this function fulfills all the requirements.

e RecoverBadEventg (v, X, u, ') outputs the partial coloring € B'%(v) obtained fromy’ by
coloringv with color ¢’ (u).

Following the approach of Aravind and Subramanian [5], weeed the notion of special pairs
introduced by Alon et al[]2] to bigger sets. For any> 2, aj-setS of G (i.e. a set of sizg) is
specialif the setX =, _¢ N (v) has size greater tha’ =70 ~1)_ Let us define the corresponding
bad events.

e For2 < j < n,letB,.set(v) be the set of bad eventsanchored ai such that vertex belongs
to a monochromatic specigisetS. Let%’;.q.¢(v) be the set of speciagtsets containing. Let
us partitionB;.sc¢(v) into cIasse@f,Set(v) according to which specigtsetS € €';.sc¢(v) is
monochromatic. By Claif 30, the number of classes is at jegf; A7~ = Cj.set.

Claim 30 Any vertex of G belongs to less tha@j—l)! A1) specialj-sets, for any > 2.

Proof. Observe that belongs toA(?_*ll) stars (onj + 1 vertices) centered itV (v) having
j — 1leaves inV?(v) (first choose a center and thgn- 1 of its neighbors). Now thg leaves
of such a star are contained in at most one spegegat ofv. On the other hand, a special
j-set containing covers more thar\’—70U—1) of these stars. Henaebelongs to less than

A(?jll) x A1U-D-i < (jjl)!AV(j‘l) specialj-sets. O

From here it is clear that in an allowed coloring there willfeemonochromatic specigiset.

e For2 < j < n, let the functiorincolorSetBadEvent;.set (v, 7, S) outputs &j — 1)-subset
of S containingv ; thuss;.set = j — 1. Again by Lemmd N, this function fulfills all the
requirements.

e If RecoverBadEvent;(v, X, S, ') is called, then there is only one vertex$tolored iny’,
sayw. HenceRecoverBadEvent;(v, X, S, ¢’) outputs the partial coloring obtained froph
by coloring all the vertices of with ¢’ (w).

As proposed in[5], one bad event type can deal with all thplisan7,”™ C F the set of forbidden
graphs having more than vertices.

e LetB >~ (v) be the set of bad eventsanchored ab such that vertex belongs to a connected
properly bicolored subgraph on m + 1 vertices. Note that such subgraplof G is not
necessarily isomorphic to a graph&f . However this type of bad events deal with all the
graphs ofF with at leastm + 1 vertices. Leté > (v) be the set of all connected bipartite
graphsl onm + 1 vertices that contain vertex We partitionB r> (v) into cIasseﬁfru>m (v)
according to the bicolored subgraph By the proof of Lemma 2.4 i [4] we have that the
number of classes$s z>m (v)| < (m + 1)4™TTA™ = Cpom.

From here it is clear that in an allowed coloring there will @ properly bicolored copy of any
H; € F with more thann vertices.

e The functionUncolorSetBadEvent>m (v, P, I) outputs &m — 1)-subset ofl/ () contain-
ing v (recall is a properly bicolored subgraph en+ 1 vertices), such that the two remaining
verticesv; andv; are adjacent (and thus have distinct colors). Notedhat. = m—1. Again
by LemmdT1L, this function fulfills all the requirements.

e If RecoverBadEventr>n (v, X, I, ¢’) is called, then there are only two adjacent vertices of
I, v1 andwy, colored iny'. HenceRecoverBadEventr>m (v, X, I, ") outputs the partial
coloring obtained fromp’ by properly extending the 2-coloring of andv, to the wholel.
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We define a new bad event type for each grahhc F=™, that is each graph of with at most
m vertices. Lefl; andVz be the two independent sets partitioniigH; ).

e LetBy;(v) be the set of bad evengsanchored at such that vertex belongs to a properly
2-colored subgraph isomorphic toH; € F=™, and such tha does not contain a monochro-
matic specialj-set. Let% y;(v) be the set of all subgraplisisomorphic toH;, containing,
and without speciaj-set contained in one of the two parts®fThe sefB;(v) is partitioned
into classe®7,, (v) according to the bicolored copy, By Claim[31 (see below), the number
of classes is at mosi; A7 2~ T=T = Oy,

Claim 31 For any vertex of G, v belongs to at most; A”(" =2~ %=1 copies off; = (V1,Va, E)
in G that do not contain any special set in the images/pfnor in the image ofl;. (That is
n; A (i =2) copies form; = m ando(AY(™~2)), otherwise.)

Proof. Let us consider only the copies &F; wherev corresponds to a given vertexof H;. Now
orient H; acyclically so that: is the unique sink, and let us denotedy= 4, ..., u,, the vertices
of H; in such away that for any < j < n; the out-neighborhood af; corresponds to its neighbors
with index lower thary. Note thatd™ (u;) > 1forall 1 < j <n;, and thatn; = 3>, ., d*(u ).

Observe that once,, ..., u;_; are set, there are at mast' (4)=7(d"(u;)=1) choices foru;. This
comes from the fact that the out-neighborhood pis monochromatic and hence cannot be a special
d*(u;)-set. This leads to the following bound on the number of sugies ofH;.

H AT (ug) =y (d* (u;)-1) < AmiTY(mi—nitl)
1<j<n;
< Al=7mity(ni=1)
< AFEID
< AT vy (ni=1)
As there aren; possible choices for mappingin H;, this concludes the claim. |

Now it is clear that an allowed coloring is(@&, H;)-subgraph coloring for any;, € F. An
allowed coloring is thus &, F)-subgraph coloring.

e UncolorSetBadEventy; (v, %, S) outputsn; — 2 vertices ofS including v and such that
the two remaining vertices, say andw,, are such that; € V; for j = 1,2. Note that
sgi = n; — 2. Again by LemmaJ1, this function fulfills all the requirenten

e RecoverBadEventy; (v, X, S, ¢’) outputs the partial coloring obtained froph by properly
extending the 2-coloring of the two colored verticesSab the wholesS.

Consider now

Q(x) = 14+Cg-2°% 4+ E Cj.Set cpfiset C]:U>m cgtEET + E Cp - 2t
2<j<n Hie]:vﬁm

1
= 1+Ax+ E -
, =, (= 1)
<j<n

mi;—m o
+ E niA'Y(”'L*2)7 m—1 xn’L 2
H,eFs™

(AVz)7 =1 4 (m 4 1)4m T Amgm !

my—m

< Az+ et H16(m+ DEA D)™ 4 YT n (A2) TP AT S
Hié}—;m
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By settingX = 1=, asA#1 < 1and as fotHl; € F=™ we have3 < n; < m, one obtains that

Q(X) ¥ 1 % 1 <m
~ < 4A 1 te +16(m+1)+4kv m
By Theoreni IRz admits an allowed coloring (hencéa F)-subgraph coloring) withQ(X) /X | <
(k=™ + 71)(m + 1)A" colors. This concludes the proof of the first statement ottieerem.
For the second statement we proceed similarly but therenarditferences.

(1) Recall the partition ofF into 7" and F.;™ according to the number of edges. We replace the
setF. ™ by the set7" ! of all trees on exactlyn + 1 edges. As every graph ii_™ contains
a(m + 1)-edge tree, 2, 77" U 7,7 *1)-subgraph coloring is also(@, F)-subgraph coloring.

(2) Allthe graphsF™ U T,7+! are treated similarly by assigning each of them a specificsvadt.
There is no more the bad event typg ™.

This yields to the following(z).

Q(.T) — 14+Cg-2°% + Z Cj-Set . gSisSet 4 Z Chyi - 2°Hi

2<j<n HieFruT !
1 . my 77472
= 1+Az+ Z o '(A"*a:)ﬁl + Z n; (J:Amrl)
2<j<n (G- H;eFmuTmt!

m; —2
¥ L T
Az + 2" 4 E n; (J:Amrl)

H;e FmuTm !

Az +e2'T 4 Z n; (A7z)" % 4 Z ni (AVz)" 2 Amer

H;eF HyeTmtt

A

A

By settingX = <= and as3 < n; < m; + 1, one obtains that

QX)
< <
<

A7 (Am;—ll +e+ kI (m+1)+ [T - (m+ 2)Am111)
A7 (El'(m+1) +e+o0(1))

By Theoreni IR(Z admits an allowed coloring (hence a facial non-repetitdlering) with [Q(X )/ X ] <
(k7 4+ 1+ o(1)) (m+1)A7 colors. This concludes the proof of the second statemehedfieorem.
O

Remark 32 For given instances aF, tighter bounds can be inferred with the general method. For
example for star colorings of graphs, which correspond2o{ P, })-subgraph coloring, it is not
necessary to have bad events for special sets. It sufficew® dae bad event ensuring that the
coloring is proper (withC; = A ands; = 1), and one bad event to avoid bicolorét’s (with

Cy = 2A(A — 1)? and sy = 2). This yields to the boun2/2A% + A — v/8A + 1 (by setting

X =1/(v2A(A — 1)), similar to the one in[[10].

6 Conclusion
One should note that the framework presented in SeCtion 3 imapme cases, benefit from some

sophistication. The version we presented here seems to becacpmpromise between efficiency
and clarity for the applications we considered. We have se&ubsectioli 513 how, at any step
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i, one can get benefit from,;_; to decrease the valu€s;. One could also take into account the
order in which the vertices @, _, have been colored. For example(if, v) is a special pair (as in
Subsectiofi 2]2) and has been colored afterto obtainy; 1, then one could be sure that the colors
of u andv are distinct. Thus one would not have to consider bad evelnésew. andv are colored
the same. One could thus imagine that all the functions pteden Subsectidn 3.1 could depend on
the orderingr in which the vertices of5,_, were colored.

Finally an interesting way of improving this framework wddde handling algorithms where the
costs of a given bad event may vary. For example, one can iradlgat, for some vertices, a type
Jj bad event cost€’;, while for some other vertices the costG$. A simple way to analyze this is
to set the cost of each tygebad event tanax{C;, C’;}. We wonder whether there exists a better
approach.
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A The smooth implicit-function schema

In Section%, we prove Theorem]18 by using a machinery praovigea theorem of Meir and
Moon [26] (see Theoref B4) on the singular behaviour of gairey functions defined by smooth
implicit-function schema

Definition 33 (Smooth implicit-function schema [15, Definiton VII.4, p. 467]) LetA(y)be afunc-
tion analytic at 0,A(y) = > ,~qay’, Withay = 0 anda; > 0. The function is said to be-
long to thesmooth implicit-function schemi there exists a bivariate functio&(y, z) such that
Aly) = G(y, A(y)), whereG(y, z) satisfy the following conditions:

(@) G(y,2) = ., n>0 gmny™2" is analyticin adomainy| < R and|z| < 5, for someR, S > 0.

(b) The coefficients o satisfy

Im,n > 07 go,0 = 07 9o, 7£ 17
gm.,n > 0 for somem > 0 and somer > 2.

(c) There exist two numbersands, such thal < r < R and0 < s < S, satisfying the system of
equation
G(r,s) =s, Gy(r,s) =1, with r <R, s<S

which is called theharacteristic system

Theorem 34 (Meir and Moon [2€],[15, Theorem VI1.3, p. 468]) Let A(y) belong to the smooth
implicit-function schema defined ly(y, z) with (r, s) the positive solution of the characteristic
system. Themd(y) converges ay = r, where it has a square-root singularity,

) [y Y . 2rGy1(r, s)
lim A(y) = s — 1-= 1-= th y=/——"—=
yor W) =s—7 r +0 ( r) W G,.(r,s)

the expansion being valid in A-domain. In addition, ifA(y) is aperiodic, then- is the unique
dominant singularity oA and the coefficient satisfy

Jim [y A(y) = o=~ (1+007Y).

4 Gy (resp.G) denotes the derivative @ with respect to its first (resp. second) variable.
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