
HAL Id: lirmm-01233519
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01233519v1

Submitted on 25 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Representative Frequent Patterns in a Hierarchy
of Contexts

Julien Rabatel, Sandra Bringay, Pascal Poncelet

To cite this version:
Julien Rabatel, Sandra Bringay, Pascal Poncelet. Mining Representative Frequent Patterns in a
Hierarchy of Contexts. IDA: Advances in Intelligent Data Analysis, Oct 2014, Leuven, Belgium.
pp.239-250, �10.1007/978-3-319-12571-8_21�. �lirmm-01233519�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01233519v1
https://hal.archives-ouvertes.fr


Mining Representative Frequent Patterns in a
Hierarchy of Contexts

Julien Rabatel1, Sandra Bringay12, and Pascal Poncelet1

1 LIRMM (CNRS UMR 5506), Univ. Montpellier 2
161 rue Ada, 34095 Montpellier Cedex 5, France

2 Dpt MIAp, Univ. Montpellier 3
Route de Mende, 34199 Montpellier Cedex 5, France

Abstract. More and more data come with contextual information de-
scribing the circumstances of their acquisition. While the frequent pat-
tern mining literature offers a lot of approaches to handle and extract
interesting patterns in data, little effort has been dedicated to rele-
vantly handling such contextual information during the mining process.
In this paper we propose a generic formulation of the contextual fre-
quent pattern mining problem and provide the CFPM algorithm to mine
frequent patterns that are representative of a context. This approach is
generic w.r.t. the pattern language (e.g., itemsets, sequential patterns,
subgraphs, etc.) and therefore is applicable in a wide variety of use cases.
The CFPM method is experimented on real datasets with three different
pattern languages to assess its performances and genericity.

1 Introduction

In the data mining field as well as in every data-related domain, more and
more data come with contextual information detailing the circumstances under
which data have been acquired. A concrete example lies in the explosion of
mobile phone usage accompanied by information about the user location and
user profiles. Another omnipresent example is related to the Web, where users
often give some information about themselves (e.g., on forums or social media)
that can be used to better understand their Web usage.

While mining patterns of very various forms and structures (itemsets, se-
quences, episodes, subgraphs, spatio-temporal patterns, etc.) has been studied
extensively in the past two decades [6], there has been little interest in fully ex-
ploiting the surrounding data, i.e., the so-called contextual data. Many machine
learning approaches can however benefit from this contextual information to
finely analyze or exploit the data. In the current paper, we study and propose a
solution for mining frequent patterns in the presence of contextual information.
More precisely, the contributions of this paper are twofold:

– Providing a generic theoretical framework. We propose a formalism for
defining contextual frequent patterns that does not depend on a particular
pattern language. This framework has the ability to generalize the frequent
pattern mining problem to consider available contextual information.



– Contextual frequent pattern mining algorithm. We also propose a
new algorithm, so-called CFPM, which is generic w.r.t. the pattern language
and the underlying mining algorithm. This approach is based on relevantly
post-processing the output of existing algorithms, meaning that it can be ap-
plied in conjunction with any algorithm that aims at solving a transactional
frequent pattern mining problem and offers a great applicability range.

While seminal work has already defined the basis of contextual frequent pat-
tern mining in the case of sequential patterns [12, 13], the existing work has
the following drawbacks: (1) its formulation is only dedicated to sequential pat-
terns, while we are interested in providing a generic formulation applicable to
most frequent patterns definitions; (2) the algorithm designed to mine contex-
tual frequent sequential patterns uses specific techniques that make it unusable
for other pattern languages. We build upon this previous work and show that
the principles of mining contextual frequent patterns are not inherently associ-
ated to one pattern language, or even to one mining method, and can be used
in conjunction with a lot of existing previous work for a great flexibility and ap-
plicability. Mining contextual frequent patterns only relies on pattern frequency
and does not relate to how a pattern frequency contrasts with the rest of the
database. Such patterns, found in the literature as discriminative patterns, con-
trast patterns or correlated patterns [4] do not fall within the scope of this study.

The remaining is organized as follows. Section 2 defines the contextual fre-
quent pattern mining problem. Then, Section 3 describes the proposed CFPM

algorithm. Experiments are conducted in Section 4 and some conclusions and
prospects are given in Section 5.

2 Contextual Data and Frequent Patterns

This section aims at formalizing the frequent pattern mining problem as well
as its extension for handling contextual information. According to [10], a large
family of pattern mining problems can be specified with the following formula-
tion: given a database D, a class of patterns P called a pattern language and
a selection predicate q, it consists in finding the set {p ∈ P | q(D, p) is true}.
This definition is refined as follows to describe the transactional frequent pattern
mining problem addressed in this study.

Definition 1 (Transactional frequent pattern mining) A transaction is
a couple T = (tid, oT ), where tid is a unique transaction identifier, and oT is
the transaction object, i.e., an object provided in an arbitrary description space.
A transactional database is a set of transactions.

The pattern language is associated with a support operator ≺, such that
a transaction T supports a pattern p (or p is supported by T ) if p ≺ T . From
the support operator, one can define the frequency of p in D as the fraction of

transactions in D supporting p: FreqD(p) = |{T∈D|p≺T}|
|D| .



Frequent patterns are those whose frequency is above a user-specified mini-
mum frequency threshold. In other terms, given a transactional database D,
a pattern language P, a pattern support operator ≺, and a minimum frequency
threshold σ, the transactional frequent pattern mining problem refers to
finding the set F(P, D,≺, σ) = {p ∈ P|FreqD(p) ≥ σ}.

As an example, the well-known frequent itemset mining problem [1] within
this transactional setting can be: given an alphabet of items I = {a, b, c, d, e},
transaction objects are itemsets, i.e., subsets of I. The pattern language P is
defined as 2I and the support operator ≺ as the set inclusion operator between
patterns and transaction itemsets. For instance, given a pattern p = {a, d} and
a transaction T = (t, {a, b, d, e}), then p ≺ T because {a, d} ⊆ {a, b, d, e}.

Figure 1(a) provides an example of a transactional database of itemsets D
using the alphabet I. The first column gives the identifier of each of the 14
transactions, while the second one provides the corresponding transaction item-
set. The third column is not used in the transactional pattern mining setting.
By considering a minimum frequency threshold σ of 0.5, we notice that the pat-
tern p = {a, b} has a frequency FreqD(p) = 8/14 and is therefore frequent with
FreqD(p) ≥ σ.

tid Itemset Context

t1 {a, b, e} YS

t2 {a, b, d} YS

t3 {a, b, e} YS

t4 {a, b, c} YS

t5 {a, b} YS

t6 {a, c, d} YW

t7 {a, b, d} YW

t8 {a, b} YW

t9 {a, b, c, e} OS

t10 {b, c, d} OS

t11 {b, d} OS

t12 {b, d, e} OW

t13 {b, d} OW

t14 {a, c, d, e} OW

(a) A transactional
database with associated
contexts.

A

Y OS W

YS YWOS OW

(b) A context hierarchy.

Fig. 1: A transactional contextual database composed of (a) a transactional
database of itemsets with the associated minimal contexts, and (b) a context
hierarchy.

Such a theoretical framework is representative of a large fraction of frequent
pattern mining approaches appeared in the literature in the past decades. These
problems exploit a transactional view of the data, i.e., they are represented under



the form of a collection of transactions and frequent patterns are those mapped
to at least a given number of transactions. Among pattern mining problems that
do not enter this family, an example is the relatively recent problem of mining
patterns in one unique large graph or network, addressed for instance in [3].

We are interested in enriching this transactional setting for mining frequent
patterns in the presence of contextual information, i.e., data describing some
circumstances regarding each transaction. We therefore introduce the context
hierarchy to manipulate this contextual information.

Definition 2 (Context hierarchy) A context hierarchy H is a directed acyclic
graph (DAG), denoted by H = (VH, EH), such that

– VH is a set of vertices also called contexts,
– EH ⊆ VH × VH is a set of directed edges among contexts.

H is naturally associated with a partial order <H on its vertices, defined as
follows: given c1, c2 ∈ VH, c1 <H c2 if there exists a directed path from c2 to c1
in H. This partial order describes a specialization relationship: c1 is said to be
more specific than c2 if c1 <H c2, and more general than c2 if c2 <H c1.

A minimal context from H is a context such that no more specific context
exists in H, i.e., c ∈ VH is minimal iff @c′ ∈ VH | c′ <H c. The set of minimal
contexts in H is denoted as V −H .

A context hierarchy aims at offering more information about the elements
of a transactional database D when mining frequent patterns. A transactional
database and a context hierarchy are combined to produce a contextual trans-
actional database D, i.e., a triple (D,H, δ) such that:

– D is a transactional database,
– H is a context hierarchy,
– δ is a function δ : D 7→ V −H mapping each transaction from D to a minimal

context in H.

In a contextual transactional databaseD, a transaction T is explicitly mapped
to a minimal context given by c = δ(T ). By following the intuition that a transac-
tion associated to a very specific context also is part of the more general contexts,
we define the database induced by c, denoted by D(c), as the subset of D which
is associated with c. More formally, D(c) = {T ∈ D|(δ(T ) <H c) ∨ (δ(T ) = c)}.

Example. To illustrate the contextual database notions, let first consider Fig-
ure 1(b) which provides a visual representation of a context hierarchy. Contexts
are the labels of vertices, such as contextual information is given by the age
(young or old, respectively shorten to Y and O) and the season (summer or win-
ter, respectively shorten to S and W). Some examples of contexts provided by
this context hierarchy shown in Figure 1(b) are (from the more specific to the
more general) YS, S, or A, respectively corresponding to “transactions associated
to young people in summer”, “transactions associated to summer (regardless of



the age of people)” and “all (A) the transactions regardless of the age and sea-
son”. The third column of Figure 1(a) describes the δ function by mapping
each transaction to a minimal context, such as the first transaction identified
by t1 associated with the context YS, i.e., δ(t1) = Y S. Figure 1 hence provides
a contextual transactional database D. From this δ mapping, we notice for in-
stance that the database induced by YS (i.e., D(Y S)) is the set of transactions
of identifiers t1, . . . , t5, while D(A) is the set of all transactions.

2.1 When should a pattern be associated with a context?

The contextual frequent pattern mining problem aims at discovering patterns
whose the property of being frequent is context-dependent. In order to study and
highlight the interest of exploiting contextual information within the frequent
pattern mining process, we below isolate two patterns from our running example.

Case 1. Itemset {a, b} is frequent in D (FreqD({a, b}) = 8/14). However, con-
sidering the database and its fragmentation given by contextual information,
one can notice that {a, b} is frequent in the fraction of D corresponding to
young people (Y) with a frequency of 7/8 while it is infrequent in the rest of
D, i.e., old people. In the following, we will state that this pattern, while
frequent in A, is not general in A because it is not frequent in every context
contained in A. On the other hand, this pattern is general in Y because, in
addition to be frequent in Y, it is also frequent in YS (FreqY S(p) = 5/5) and
YW (FreqYW (p) = 2/3), i.e., all contexts contained in Y.

Case 2. p′ = {b, d} is not frequent in D (FreqD(p′) = 6/14), while it however is
frequent in O (FreqO(p) = 5/6) as well as in the contexts contained in O: its
frequency is 2/3 both in OS and OW.

Case 1 shows that simply mining frequent patterns within a context does
not necessarily provide representative patterns. In addition, Case 2 shows a
pattern that is representative of a given context, but mining frequent patterns
in the whole database could not make such patterns emerge as the context they
represent is not large enough relatively to the whole database.

The next section exploits these intuitions to formally define what types of
frequent patterns are mined in a contextual database and how they relate to the
context hierarchy.

2.2 Contextual Frequent Patterns: a Formal Definition

The current section applies the contextual transactional setting defined above
to first reformulate the notion of frequent pattern within a context and then
introduce the notions related to the contextual frequent patterns (CFPs).

Definition 3 (c-frequent pattern) A pattern p is frequent in c, or c-frequent,
iff p is frequent in D(c), i.e., if FreqD(c)(p) ≥ σ. For the sake of readability, we
denote FreqD(c)(p) with Freqc(p).



As discussed in the previous section, we are interested in patterns being
representative of a context, i.e., such that their frequency property holds for all
the descendants of this context. Such patterns are called general patterns and
are used to define CFPs.

Definition 4 (c-general pattern) A pattern p is general in c, or c-general, iff
p is c-frequent and p is c′-frequent ∀c′ | c′ <H c.

Definition 5 (Contextual frequent pattern) A contextual frequent pattern
is a couple α = (c, p), such that p is c-general. α is said to be generated by p.

(c, p) is context-maximal if there does not exist another context c′ more general
than c and such that (c′, p) is a CFP, i.e., @c′ ∈ VH|(c <H c′) and p is c′-general.

The CFP mining problem consists in enumerating all the context-maximal
CFPs given a contextual database D and a minimum frequency threshold σ.

The set of CFPs that are context-maximal constitutes an exact condensed
representation of the set of CFPs, as no CFP cannot be derived from a context-
maximal one. Indeed, following Definition 4, one may notice that if a pattern
is c-general, then it is also general in all descendants of c. Therefore, mining all
CFPs in D is equivalent to mining context-maximal CFPs only.

The CFP mining framework also has the advantage of associating to each
context in H less patterns than what a typical transactional frequent pattern
miner would provide (as being frequent in a context is only one of the require-
ments for a pattern to generate a CFP). To some extent,

3 Mining Contextual Frequent Patterns

This section describes how CFPs are mined given a contextual transactional
database, by defining two approaches: (1) a baseline approach that makes direct
use of the definitions given in Section 2, and (2) a more efficient approach that
relies on theoretical properties emerging from the CFP mining framework.

3.1 A Baseline Approach

By relying on the requirements listed in Definition 4, Algorithm 1 provides a
baseline approach to extract context-maximal CFPs. This approach relies on
the following steps: (1) extracting frequent patterns from every possible context
(lines 2-4), (2) for each context c and each pattern p frequent in c, checking the
c-generality and context-maximality of (c, p) (lines 5-11).

Mining all the contexts in order to enumerate all their frequent patterns
obviously is very time-consuming, as it requires to run an external pattern miner
for each context separately. We therefore study in the following some theoretical
properties in order to allow a more efficient extraction of CFPs.



Algorithm 1 A Baseline Approach

Require: A contextual database D, a minimum frequency threshold σ
Ensure: Set of contextual frequent patterns in D
1: C ← ∅ // initialize the set of discovered CFPs

2: for c ∈ D do
3: Fc ← frequent patterns in c
4: end for
5: for c ∈ D do
6: for p ∈ Fc do
7: if p is c-general and context-maximal then
8: C ← C ∪ {(p, c)} // generate and store the contextual pattern

9: end if
10: end for
11: end for

3.2 CFPM: A More Efficient Post-Processing Approach

The approach described in Algorithm 1 trivially exploits the definition of con-
textual data and CFPs and leads to costly calculation, in particular by first
extracting frequent patterns from each possible context. We highlight some in-
teresting properties to reduce redundant calculations, in particular by reducing
the executions of the frequent pattern miner. As opposed to [12, 13], we focus
in this paper on providing a generic post-processing algorithm that, from the
output of existing frequent pattern miners, generates the CFPs.

Additional properties of contextual general patterns. A context can be
uniquely described by its minimal descendants in H. To this end, we consider
the decomposition of a context c in H as the set of minimal contexts in H being
more specific than c, i.e., decomp(c,H) = {c′ ∈ V −H |(c′ <H c) ∨ (c′ = c)}. For
instance, decomp(Y ) = {Y S, Y W} and decomp(Y S) = {Y S}.

Property 1 p is c-general iff p is c′-frequent ∀c′ ∈ decomp(c).

Property 1 (whose proof can be found in [12] and adapted to the current frame-
work) is essential by allowing the reformulation of the c-generality property w.r.t.
minimal contexts only. The checking of c-generality requirements for a context
thus becomes much simpler: a pattern p is c-general if and only if the set of
minimal contexts where p is frequent includes the decomposition of c. Extending
this property to context-maximal CFPs is straightforward. CFPM, as presented
in Algorithm 2, exploits this property. It can be decomposed into the following
consecutive steps:

Mining. (lines 2-4) Frequent patterns are extracted from each minimal context.
As opposed to Algorithm 1, CFPM does not mine non-minimal contexts.



Algorithm 2 CFPM: Contextual Frequent Pattern Mining

Require: A contextual database D, a minimum frequency threshold σ
Ensure: Set of contextual frequent patterns in D
1: C ← ∅ // initialize the set of discovered CFPs

2: for c ∈ V −H do
3: Fc ← frequent patterns in c
4: end for
5: for p ∈

⋃
c∈V−H

Fc do

6: lp ← {c ∈ V −H | p ∈ Fc}
7: K[lp]← K[lp] ∪ {p}
8: end for
9: for l a key in K do

10: for c ∈ maxContexts(l,H) do
11: for p ∈ K[l] do
12: C ← C ∪ (p, c) // generate and store a CFP

13: end for
14: end for
15: end for

Reading. (lines 5-8) Output files from previous step are read and patterns p
are indexed by the set of minimal contexts where they are frequent, i.e., lp.
Then, K is a hash table with keys being sets of minimal contexts and values
being sets of patterns, such as K[l] containing the patterns p such that lp = l.
The cost of this step mainly lies on intensive I/O processing.

Coverage Computation and Pattern Generation. (lines 9-15) During this
step, each key of K is given to the maxContexts routine (line 10) which
performs a bottom-up traversal of the vertices of H in order to return the
set of maximal contexts among {c ∈ VH | decomp(c) ⊆ l}. This is the cov-
erage computation step. Then, for each pattern p such that l = lp(line 11)
and each context returned by maxContexts (line 10 ), one context-maximal
CFP is generated and stored (line 12 ). Two patterns p and p′ frequent in
the same minimal contexts (i.e., lp = lp′) are general in the same contexts.
They will generate the same result via the maxContexts routine. By using
the hash table K to store the patterns that are frequent in the same mini-
mal contexts, the number of calls to maxContexts is greatly reduced to the
number of keys in K rather than the number of distinct patterns discovered
during the mining step.

Discussion. Mining minimal contexts only is an essential advantage over the
baseline approach. CFPM’s post-processing oriented design also offers the pos-
sibility to use it with any transactional frequent pattern miner, whatever the
structure of mined patterns (e.g., subgraphs, episodes, sequential patterns, item-
sets, etc.). This genericity also is the main advantage over previous work [12,
13].



4 Experimental Results

The implementation of the algorithm is divided into two parts. First, a Ruby

wrapper is in charge of running external pattern miners, reading their output,
and eventually generating the CFPs. Ruby’s flexibility is particularly relevant
for designing a generic approach, where final users should be able to add new
components with very little effort to support new pattern languages. Second, a
C++ module is in charge of the maxContexts routine of Algorithm 2, as it offers
better performances without any drawbacks regarding genericity or usability.

The CFPM approach has been extensively experimented in order to assess its
main features. Therefore, we have performed experiments implying real datasets
and three common pattern languages, namely itemsets [1], sequential patterns [2]
and subgraphs [9]. Each of these pattern languages involves different theoretical
frameworks and algorithms. Experiments have been conducted on an Intel i7-
3520M 2.90GHz CPU, with 16 GB memory.

Contextual Frequent Itemsets. First, in order to study the behavior of
CFPM when considering the frequent itemset mining problem [1], we have used
the APriori algorithm as implemented in [5]. The dataset used for this experi-
ment initially comes from [8]. It consists of 100, 000 product reviews published
on the amazon.com website. Reviews have been lemmatized and grammatically
filtered3. The remaining words compose the item alphabet and each review is
represented as a transaction. Contextual information associated with the reviews
is composed of the type of product, the rating given by the user and the propor-
tion of positive feedbacks received. The resulting context hierarchy contains 210
contexts, whose 48 are minimal. The interested user may refer to [12] for details.

Contextual Frequent Sequential Patterns. The second pattern mining
problem addressed with CFPM considers frequent sequential patterns as defined in
[2]. To this end, CFPM uses the PrefixSpan [11] algorithm as implemented in the
SPMF project [5]. The used dataset is the same as the one described above for
frequent itemset mining, except that reviews have been converted to sequences
of itemsets4. It is also the same as the one previously used in [12].

Contextual Frequent Subgraphs. In order to address the subgraph pat-
tern language [9], we use a dataset that has been constructed to study the mu-
tagenicity property of some molecules [7]. It contains 6, 512 molecular graphs,
such that each one is associated with a label that indicates whether it is muta-
gene or not. Contextual information is composed of the mutagenicity label, the
molecular weight, and the source dataset from which the molecule has been ex-
tracted. The merging of these pieces of information produces a context hierarchy
containing 39 contexts whose 10 are minimal.

3 Remaining terms are non-modal verbs, nouns, adjectives and adverbs.
4 The conversion follows the principle that each sentence of the review is an itemset,

and the order of itemsets in a sequence results from the order of sentences.



(A1)

 0

 500

 1000

 1500

 2000

 2500

 0.04  0.05  0.06  0.07  0.08  0.09  0.1

ti
m

e
 (

in
 s

)

minimum frequency

Time repartition while mining CFPs

mining
reading

coverage computation
CFP generation

baseline

(B1)

 0

 500

 1000

 1500

 2000

 0.05  0.1  0.15  0.2  0.25  0.3

ti
m

e
 (

in
 s

)

minimum frequency

Time repartition while mining CFPs

mining
reading

coverage computation
CFP generation

baseline

(C1)

 0

 500

 1000

 1500

 2000

 2500

 0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

ti
m

e
 (

in
 s

)

minimum frequency

Time repartition while mining CFPs

mining
reading

coverage computation
CFP generation

baseline

(A2)

 10000

 100000

 1e+06

 1e+07

 0.04  0.05  0.06  0.07  0.08  0.09  0.1

p
a
tt

e
rn

 c
o
u
n
t

minimum frequency

Pattern counts

distinct frequent
context-maximal CFPs

non-maximal CFPs

(B2)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.05  0.1  0.15  0.2  0.25  0.3

p
a
tt

e
rn

 c
o
u
n
t

minimum frequency

Pattern counts

distinct frequent
context-maximal CFPs

non-maximal CFPs

(C2)

 10000

 100000

 1e+06

 1e+07

 0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

p
a
tt

e
rn

 c
o
u
n
t

minimum frequency

Pattern counts

distinct frequent
context-maximal CFPs

non-maximal CFPs

Fig. 2: Time consumption for mining CFPs for itemsets (A1), sequential pat-
terns (B1) and subgraphs (C1), and number of distinct patterns and contextual
patterns for itemsets (A2), sequential patterns (B2) and subgraphs (C2).

Results. First of all, Figures 2(A1,B1,C1) show a large difference of run-
times when comparing the baseline approach with CFPM, for every used dataset
and pattern language. This gap of runtime is mainly due to the fact that the base-
line approach first requires to mine frequent patterns from each context, while
CFPM only mines minimal contexts, that are less numerous and smaller. Then,
Figures 2(A1,B1,C1) provide a view on how the runtime of CFPM is decomposed
according to the algorithm steps. The largest fraction of time corresponds to the
mining step, i.e., running pattern miners for each minimal context. This fraction
systematically increases while the minimum frequency threshold decreases. Of



course, this fraction of runtime also depends on the underlying implementations
and algorithms. For instance, the time required to mine sequential patterns is
relatively much larger (cf. Figure 2(B1)).

Figures 2(A2,B2,C2) show the total amount of patterns regarding their type.
First, let consider the number of distinct patterns (i.e., the distinct frequent pat-
terns discovered during the mining step) compared with the number of context-
maximal CFPs. As expected, the latter is always greater than or equal to the
number of distinct patterns since every distinct pattern generates at least one
CFP. On the other hand, the total number of CFPs (i.e., not necessarily context-
maximal ones) is much higher, therefore demonstrating the interest of proposing
a condensed representation of contextual frequent patterns.

5 Conclusion and Prospects

In this paper, we adapt the transactional setting for mining frequent patterns by
considering the contextual information associated with transactions. We there-
fore define a theoretical framework for CFP mining and propose a relevant algo-
rithm for mining such patterns in a totally generic way regarding the pattern lan-
guage. By generalizing the typical transactional setting and by post-processing
the output of existing frequent pattern miners, the proposed approach provides
the benefit of being able to be used in conjunction with any such frequent pattern
miner developed during the last decades. Such an approach provides opportu-
nities to be exploited in numerous application domains where data are often
accompanied with contextual information, e.g., the mining of mobile data where
spatial and temporal information may be used as contextual data or user profil-
ing on the Web, where user activities may be mined under the scope of contextual
information about the user such as location, age, etc.

The contextual pattern mining approach offers numerous prospects, such as
for instance adapting it to the case of relying on discriminative patterns rather
than frequent patterns in the context hierarchy, or considering the case where
contextual information is imprecise (i.e., some transactions are mapped to a
non-minimal context).

References

1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

2. Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Inter-
national Conference on Data Engineering, pages 3–14. IEEE, 1995.

3. Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In
Advances in Knowledge Discovery and Data Mining, pages 858–863. Springer, 2008.

4. Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-based
classification: A unifying perspective. LeGo Workshop, page 36, 2009.

5. P. Fournier-Viger, A. Gomariz, A. Soltani, H. Lam, and T. Gueniche. Spmf: Open-
source data mining platform. http://www.philippe-fournier-viger.com/spmf, 2014.



6. Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern min-
ing: current status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, 2007.

7. Katja Hansen, Sebastian Mika, Timon Schroeter, Andreas Sutter, Antonius ter
Laak, Thomas Steger-Hartmann, Nikolaus Heinrich, and Klaus-Robert Müller.
Benchmark data set for in silico prediction of ames mutagenicity. Journal of Chem-
ical Information and Modeling, 2009.

8. Nitin Jindal and Bing Liu. Opinion spam and analysis. In International Conference
on Web Search and Data Mining, pages 219–230. ACM, 2008.

9. Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Inter-
national Conference on Data Mining, pages 313–320. IEEE, 2001.

10. Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data mining and knowledge discovery, 1(3):241–258, 1997.

11. Jian Pei, Helen Pinto, Qiming Chen, Jiawei Han, Behzad Mortazavi-Asl, Umeshwar
Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pages 0215–0215. IEEE Computer Society, 2001.

12. Julien Rabatel, Sandra Bringay, and Pascal Poncelet. Contextual sequential pat-
tern mining. In International Conference on Data Mining Workshops, pages 981–
988. IEEE, 2010.

13. Julien Rabatel, Sandra Bringay, and Pascal Poncelet. Mining sequential patterns:
a context-aware approach. In Advances in Knowledge Discovery and Management,
pages 23–41. Springer, 2013.


