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ABSTRACT
Digital images, especially color images, are very widely used,
as well as traded via Internet, e-mail and posting on websites.
Images have a large size which allows embedding secret mes-
sages of large size, so they are a good medium for digital
steganography. The main goal of steganalysis is to detect the
presence of hidden messages in digital media. In this paper,
we propose a steganalysis method based on color feature cor-
relation and machine learning classification. Fusing features
with features obtained from color-rich models allows to in-
crease the detectability of hidden messages in the color im-
ages. Our novel proposition uses the correlation between dif-
ferent channels of color images. Features are extracted from
the channel correlation and co-occurrence correlation. In this
work, all stego images are created with a range of differ-
ent payload sizes using two steganography S-UNIWARD and
WOW algorithms. To validate the proposed method, his effi-
ciency is demonstrated by comparison with color rich model
steganalysis.

Index Terms— Steganalysis, color spatial rich model,
channel correlation, co-occurrences, ensemble classifiers.

1. INTRODUCTION

Steganography is the art of secret communication, by embed-
ding messages within media such as audio, image or video
files, in a way to complicate the detection of these hidden
messages.

In general, steganography requires two parts, messages
are embedded in the first part and they are extracted in the sec-
ond part [1]. Several steganography techniques are used for
different purposes, such as, for the most prominent, hiding il-
legal activities or secret communications [2]. Many steganog-
raphy methods have been developed to enable secret commu-
nication. So the real-world needs to develop methods and
algorithms rapidly in order to detect the presence of hidden
messages and, thus, identify this secret communication. This
method is called steganalysis.

We Thank the Iraqi Ministry of Higher Education and Scientific Re-
search for funding this work.

Embed messages inside the digital medium involves some
slight changes in this medium. Steganalysis research aims
to develop some methods that are effectively able to detect
these modifications. Although the real-world uses signifi-
cantly more color images than grayscale images, there is high
development in steganalysis to handle grayscale images, but,
while overlooking color images [3].

In this paper, we propose new features to enrich the color
rich model [4], which is formed by co-occurrences of resid-
uals taken across the color channels. Section 2 is dedicated
to methods related to color image steganalysis. Section 3 de-
scribes the proposed method by recalling the color rich model,
color filter array and color channel correlation gradients. Ex-
perimental results an comparisons with its tables and curves
are given in section 4. Section 5 concludes this paper.

2. LITERATURE REVIEW

In recent years, only a few methods involving color steganal-
ysis have been proposed.

Westfeld, in [5], developed a detector of Last Significant
Bit (LSB) matching in color images using the 3D color cube
representation of the image. The detection method combines
the three color components of each pixel to recognize an in-
creased number of neighbor colors. This method estimates a
relative frequency of a number of neighbor pixels as a ste-
ganalysis feature. LSB typically introduces characteristic
tails in the histograms that are not observed in cover images.
The authors have shown that this algorithm is efficient for de-
compressed JPEG images. However, it performs poorly in
images with a high number of unique colors, such as never
color compressed or resized images.

The detection of LSB Matching from grayscale images
was enhanced by Ker, in [6], to detect LSB Matching in color
images. By modifying the Harmsen method [7] that used the
Center Of the Mass (COM) of the Histogram Characteris-
tic Function (HCF ) for the detection of additive noise based
steganography, including LSB Matching. This method espe-
cially detects hidden messages in JPEG images but is not very
efficient concerning bitmap images which have never been
compressed.



Thiyagarajan et al. [8] proposed a universal image ste-
ganalysis method based on color model conversion. Indeed,
considering color images, they convert Red, Green and Blue
(RGB) channels of the images to the Hue Saturation and In-
tensity (HSI) color model to detect hidden messages. Stego
images are then generated by implementing different color
image formats, using the last significant bit steganography
method. Finally, cover and stego images are recognized using
a threshold value which depends on the correlation between
pixel pairs in terms of color components.

Lyu et al. [9] described a universal steganalysis algorithm
that exploits the inherent statistical regularities of natural
images. The statistical model consists of first and higher or-
der color wavelet statistics of noise residuals obtained using
predictors of coefficients in Quadratic Mirror Filter (QMF )
decomposition of the image from all three color channels.
Finally, they estimate that the addition of color statistics
provides considerable improvement in overall detection ac-
curacy.

Krichner et al. [10] suggested a steganalysis method to de-
tect LSB replacement steganography in color images. These
stego images are produced via processing which reveals some
traces of Color Filter Array (CFA) interpolations. Here the
authors have enhanced the Weighted Stego (WS) image ste-
ganalysis method [11] by replacing the cover predictor in WS
with position specific predictors. This technique puzzles out
the local predictability of pixels, depending on their position
in the CFA interpolation to account for differences between
cover (common) images and suspect images.

Fridrich et al. [12] proposed a general methodology for
steganalysis of digital images based on the rich model concept
consisting of a high number of diverse submodels. Each sub-
model considers various types of relationships among neigh-
boring samples of noise residuals obtained by linear filters
with compact supports. The submodels are formed from noise
residuals, which are computed using high pass filters, then
features are extracted using co-occurrence matrices.

From two different components, Goljan et al. [4] devel-
oped a color image model which is called the Spatio-Color
Rich Model (SCRMQ1, where ’C’ represents the color ver-
sion of the Spatial Rich Model -SRMQ1- [12], with ’Q1’
representing fixed quantization q = 1 ) produced from two
different components. The first component is the SRMQ1
with a single quantization step q = 1 and dimensionality of
12753 features. The SRMQ1 feature is computed for each
color channel separately, then the three features are merged to
keep the same dimensionality, as for grayscale images. The
second component is a collection of 3D co-occurrences with
a larger threshold T = 3 and q = 1. The final dimensional
features obtained from this component are 5404 features. The
color rich model is built from the same pixel noise residuals
as those used in the SRMQ1, but is formed across the three
channels of each pixel.

3. PROPOSED METHOD

Our proposition is to enrich the SCRMQ1 with an inter-
channel correlation which is composed of two sets of features.
The first set, produced by [4], gives 18157 features. The sec-
ond set gives 3000 features obtained from the correlation of
different R,G,B channel gradients. The following section
recalls the color rich model, then section 3.2 explains the ba-
sics of color filter array, and section 3.3 gives an explanation
about our proposition.

3.1. Color Rich Model

The following steps describe the process by which the first set
of features is computed. We used the spatial color rich model
for color image steganalysis in [4] which produced 18157 fea-
tures. This method extracts the noise residual from each color
channel separately by the following formula:

Rij = X̂ij(Nij)− c ·Xij . (1)

where c ∈ N is the residual order,Nij is a local neighborhood
of pixel Xij at coordinates (i, j), X̂ij(·) is a predictor of c·Xij

, Xij 6∈ Nij , Xij ∈ {0, ...., 255}. X̂ij represents a pixel value
of an 8-bit grayscale cover image and its corresponding stego
image.

All of the submodels (Rij) ∈ Rn1×n2 are formed from
noise residual images of size n1× n2 computed using high
pass filters of the following form:

Rij ← trancT

(
round

(
Rij

q

))
, (2)

where trancT represents the truncation function with T > 0
defined for any x ∈ R, trancT (x) = x for x ∈ [−T, T ] and
trancT (x) = T · sign(x) and otherwise q is the quantization
step, and round is a function for rounding to an integer value.

The spatio-color rich model consists of two different com-
ponents. On one hand, the spatial rich model (SRMQ1) [12]
with a fixed quantization q=1 and truncation T=2 yields a
dimensionality of 12753 features. These features are com-
puted from each R, G and B color channel separately. Fi-
nally, the three dimensionality features are added together to
keep the same dimensionality as for grayscale images. On the
other hand, from the same noise residuals (i.e. SRMQ1), the
CRMQ1 builds a collection of 3D color co-occurrences, tak-
ing three color values at the same position (across the three
channels of each pixel). Thus, with fixed truncation T=3 and
quantization q=1, CRMQ1 produces 5404 features.

3.2. Color Filter Array

Digital cameras capture color images using a single sensor in
conjunction with a Color Filter Array (CFA). The CFA al-
lows only one part of the spectrum to pass to the sensor so that
only one color is measured at each pixel (red, blue or green)



and such images are called mosaic images. To construct a
color image, a demosaicking algorithm is used in order to in-
terpolate each color plane (i.e. CFA interpolations). Several
patterns exist for the color filter array, with the most common
being Bayer CFA [13]. During this process, the green color
channel is the most important factor which determines the lu-
minance of the color image, 50% of the pixels in the Bayer
CFA structure is assigned to the green channel, while 25% is
assigned to the red channel and 25% to the blue color channel.

The interpolation introduces specific correlations between
the samples of a color image. Hence, a subset of samples,
within a color channel, is correlated with their neighboring
samples of the same color. Since the color filters in a CFA
are typically arranged in a periodic pattern, these correlations
are also periodic [14].

3.3. Channel Correlation

In this section, we introduce an inter-channel correlation mea-
sure, and demonstrate that it can be listed to first order Eu-
clidean invariants (see Hilbert [15] for the invariant theory).
Such invariants have mainly been used for stereo-matching
[16]. In this paper, we show that the information provided by
them can enhance steganography detection.

Starting from the local correlation of red and green chan-
nels (similarly, correlation of red and blue channels) :

Corr
R,G

(i, j, k, l) =
∑

(i′,j′)∈Wi,j

X
(R)

i′,j′ X
(G)

k+i′,l+j′ (3)

with:
• X

(R)

i′,j′ ∈ [0, 255], being a pixel value at position (i, j) in
the red channel,

• X
(G)

k,l ∈ [0, 255], being a pixel value at position (k, l) in
the green channel,

• Wi,j , being a small window centred in (i, j).

Considering (k, l) = (0, 0) and a limited development of
X

(R)

and X
(G)

around (i, j), then :

Corr
R,G

(i, j, 0, 0) =∑
h = (i′−i, j′−j)
(i′, j′) ∈ Wi,j

(
X

(R)

i,j +∇X
(R)

i,j · h
)(

X
(G)

i,j +∇X
(G)

i,j · h
)
.

(4)

Developing this equation leads to four terms. Three of
which are constant or not informative, then there is only one
informative term :

∇X
(R)

i,j · ∇X
(G)

i,j . (5)

If only one channel has locally been altered, the gradient in
this channel is modified. Consequently, the scalar product of

Cover / Stego 

Blue Channel 

Green Channel 

Red Channel 

Fig. 1: Diagram illustrating the preprocessing steps to obtain
correlations between gradients in each channel.

two channel gradients reflects the change in the cosine of the
difference between the two gradient angles.

Similarly, we can apply the same computation for the red
and blue channel and then obtain :

∇X
(R)

i,j · ∇X
(B)

i,j (6)

As stated by Gouet et al. [16] (and following the Hilbert
theory [15]), it is unnecessary to investigate the∇X(G)

i,j · ∇X
(B)

i,j

term, as it is already implicitly contained in the first two ex-
pressions (Eq. 5 and 6).

Our proposition in this paper is to add two new features
depending on the normalized correlation between red and
green channels, and red and blue channels as :

G
RG

=
∇X(R)

i,j · ∇X
(G)

i,j

|∇X(R)

i,j | |∇X
(G)

i,j |
(7)

G
RB

=
∇X(R)

i,j · ∇X
(B)

i,j

|∇X(R)

i,j | |∇X
(B)

i,j |
(8)

Fig. 1 illustrates our preprocessing steps to obtain nor-
malized correlations between gradients of each channel. Note
that gradients of each channel are estimated by convolution
with a [-1; 1] mask (horizontal and vertical).

Then, our features are computed from these correlations
G

RG
and G

RB
, by computing the co-occurrences as in the

rich model [12]. We used different values of the quantiza-
tion q ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1} with fixed truncation T=1.
The reason for using these different values of quantization q
is that G

RG
and G

RB
belong to [−1, 1]. Moreover, the use of

these values gives more accurate features and avoids the gen-
eration of too many zero values caused by the truncation step
in the co-occurrence vector.

For each quantization, we obtain 12 submodels, one
symmetrized spam14h and one spam14v with 25 features



each, and one of minmax22h, minmax22v, minmax24, min-
max34h, minmax34v, minmax41, minmax34, minmax48h,
minmax48v, and one minmax54, with 45 features for each.
All submodels are gathered in a one dimension vector to erect
a dimensionality of (10× 45 + 2× 25)× 6 = 3000 features
which are added to 18157 features of color rich models with
fixed q = 1 and T = 3 in order to collect a final set of 21157
features.

3.4. Ensemble Classifiers

Modern steganalysis methods for digital images are based on
extracted features and these methods need machine learning
techniques to detect hidden messages. In our work, we choose
ensemble classifiers [17] because of their efficient classifica-
tion performance for large scale learning.

Kodovsky’s et al. [17] proposed ensemble classifiers1,
which is a new machine learning tool for steganalysis, con-
sisting of many classifier L base learners(Bl).

Each classifier is built from randomly selected subspace
dsub-dimensionals from the entire full d-dimension feature
space. The authors use Ficher Linear Discriminants (FLD)
as base learners and the final decision is made by aggregating
the decision of individual base learners.

Let d be a full dimension feature space. First, the classi-
fiers construct a number L of FLD base learners (Bl) with
l ∈ {1, ..., L}. Each one performs its learning on a subspace
of dsub dimension, where dsub < d. The ith image formed
fi ∈ Rd, will be mapped Rd → {0, 1}, with 0 being a cover
image and 1 a stego image.

In the learning phase, each classifier learns to map a fea-
ture vector fi, to the correct class number:

FLDl : Rd →{0, 1}
fi →FLDi (fi)

Each classifier uses the training database to compute the vec-
tor orthogonal to the hyperplane separating the two classes.
For a test feature, the lth base learner reaches its decision by
computing a projection and comparing it to a threshold. Af-
ter collecting all L decisions, the final classifier selected is
the one which has received the most votes. Then the decision
threshold of each base learner is adjusted to minimize the total
detection error under an equal prior on the training data [17]:

PE = minP
FA

1

2
[PFA + PMD (PFA)] .

where PFA represents the false alarm probability and PMD

the missed detection probability.

1Ensemble classifiers is available at http://dde.binghamton.
edu/download/ensemble.
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Fig. 2: The preprocessing steps for building our database de-
pend on the CFA idea.

4. EXPERIMENTAL RESULTS

4.1. Building Database

A raw image is a class of computer files containing un-
touched pixel information coming from the digital camera
sensor. These files hold a large amount of meta-information
about the image generated by the camera [18].

In our work, the color image database is very carefully
built depending on the CFA idea. We collected raw im-
ages from two subsets which are the most standard, and have
the highest number of images captured (i.e. the Dresden Im-
age Database [19] 3500 full-resolution Nikon digital camera
raw color images and the Break Our Steganographic System
(BOSSbase2) 1000 Canon digital camera raw color images).

In order to obtain color images in Portable Pixel Map
(PPM) format of size 512×512, all images take the same
CFA map layout, as illustrated in Fig. 2. Two steps are re-
quired. The first step consists of using a demosaicking al-
gorithm to convert raw images in demosaicked images . The
second step consists of cropping five sub-images from one im-
age. Fig. 3 shows sample images produced by the cropping
step.

First we use demosaicking algorithm Patterned Pixel
Grouping (PPG) in the dcraw platform3 to be able to read
numerous raw formats used to convert raw images in PPM
and TIFF formats. As illustrated in Fig.2, the obtained im-
ages are such that the Bayer Pattern is always of type RGBG
(red channel pixel is placed at even position). We wrote a
spatial code in C language under Linux to start the crop from
the red channel position. Indeed, from one image, this code
randomly selected the red channel position and cropped five
images of size 512×512, so that all blocks share the same
CFA map layout. The final number of images used 10000
PPM color images of size 512×512.

2BOSSbase can be accessed at http://www.agents.cz/boss/
BOSSFinal.

3dcraw code is available at http://www.cybercom.net/defin/
dcraw.



4.2. Experimental Protocol

Stego images are obtained using two steganography algo-
rithms: the Spatial- UNIversal WAvelet Relative Distortion
(S-UNIWARD4) steganography algorithm [20] and Wavelet
Obtained Weights (WOW5) steganography algorithm [21].
As shown in [22], these two algorithms are highly adapted
because they are selected for this strong resistance to ste-
ganalysis.

The payload is embedded in equal proportion in the
three R,G and B channels. The different payload sizes
are {0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5} Bit Per Channel
(BPC). Two sets of features are extracted from each image,
the first set is the color rich model vector which consists of
18157 features of residuals among neighboring pixels (see
section 3.1). The second set of features consists of 3000
proposed features from correlations between channels by
applying gradient derivative filters on each channel, as ex-
plained in section 3.3. Then we add the two sets of features in
a one dimensional vector to get a result of 21157 features of
10000 covers and 10000 stegos which are ready to enter in the
classifier. The images are randomly divided into two halves
for training and testing. A random subset of images, 5000
covers and 5000 stegos is used to train and test the classifier.
The result of the classification is the average testing error
over 10 splits P̄E . The rest of the cover and stego images are
tested against the ensemble classifiers [17]. Then the deci-
sion values are collected for each. Given the decision values,
ROC curves are obtained. The area under the ROC curves
is calculated as the accuracy of the ensemble classifiers.

4.3. Results and Discussion

This section contains the experimental results of our proposed
method. We illustrate these results in Tables 1 and 2. S-
UNIWARD and WOW methods were tested with different
relative payloads {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} Bits Per
channel (BPC) against the method of color rich model [4].

We used the same set of payload values with the same
embedding methods. Our method, achieved higher perfor-
mance by registering 87.54% and 86.63% detection rates for
S-UNIWARD and WOW respectively with the payload 0.5
bpc. At the same time, the color rich model method [4] is less
efficient because it achieved respectively 86.14% and 85.27%
detection rates on the same sample. We noted the same thing
with the rest of the payload values for both (the proposed and
compared method), as shown in Tables 1 and 2.

Curves in Fig. 4 (a) and (b) also illustrate the comparison
between the proposed method and the color rich model. As a
result, the average testing error of the proposed method is less
than that of the color rich model. That proves the importance

4S-UNIWARD steganography method is available at http://dde.
binghamton.edu/download/stego_algorithms/.

5WOW steganography method is available at http://dde.
binghamton.edu/download/stego_algorithms/.

a) Original Row Image b) Crop 1

e) Crop 4 

c) Crop 2

d) Crop 3 f) Crop 5

Fig. 3: Sample images of our database built by random crop-
ping from locations of red channel pixels (even position) in a
Bayer pattern :

a) Original RAW image 3906×2602,

b) crop 1 position x=2116, y=1928,

c) crop 2 position x=902, y=1182,

d) crop 3 position x=3080, y=436,

e) crop 4 position x=1866, y=1778,

f) crop 5 position x=650, y=1032.

of the additional 3000 features derived from the correlation
between different channels proposed by our method.

Another experiment involved embedding the entire pay-
load only in one channel of the color image, i.e. with payload
0.2 bpc in the green channel only. In this case, the detection
rate records higher than the same payload if it is distributed
equally between the three color channels. Table 3 illustrates
the comparison of detection rates between the S-UNIWARD
and WOW methods with payloads 0.2 bpc and 0.4 bpc em-
bedded in one channel only and in the three channels sepa-
rately. Fig. 5 (a) and (b), show the ROC curves, illustrating
the performance of our method. This experiment revealed that
it is easier to detect a hidden massage in only one channel than
a message shared in all channels.

Payload S-UNIWARD WOW
bpc Green RGB Green RGB
0.2 87.92% 76.30% 86.41% 74.98%
0.4 94.10% 85.30% 93.34% 84.26%

Table 3: Our steganalysis detection rate of S-UNIWARD and
WOW steganography methods at 0.2 bpc and 0.4 bpc payload
embedding in the green channel compares with equal embed-
ding in three channels.



Embedding Proposed method Color rich model
Payload Average testing error Detection Rate% Average testing error Detection Rate %

0.01 0.4830 ± 0.0010 51.70 0.4841 ± 0.0017 51.59
0.05 0.4010 ± 0.0032 59.90 0.4045 ± 0.0026 59.55
0.1 0.3203 ± 0.0023 67.97 0.3298 ± 0.0016 67.02
0.2 0.2370 ± 0.0031 76.30 0.2498 ± 0.0026 75.02
0.3 0.1808 ± 0.0034 81.92 0.1947 ± 0.0023 80.53
0.4 0.1470 ± 0.0025 85.30 0.1599 ± 0.0015 84.01
0.5 0.1246 ± 0.0023 87.54 0.1386 ± 0.0023 86.14

Table 1: The comparison between the steganalysis of the proposed method with the color rich model in different relative
payloads for the S-UNIWARD steganography method: the average testing error for the proposed is less than for the color rich
model method.

Embedding Proposed method Color rich model
Payload Average testing error Detection Rate% Average testing error Detection Rate %

0.01 0.4836 ± 0.0017 51.64 0.4850 ± 0.0014 51.50
0.05 0.4042 ± 0.0027 59.58 0.4092 ± 0.0032 59.08
0.1 0.3317 ± 0.0034 66.83 0.3397 ± 0.0023 66.03
0.2 0.2502 ± 0.0041 74.98 0.2654 ± 0.0025 73.46
0.3 0.1918 ± 0.0013 80.82 0.2081 ± 0.0029 79.19
0.4 0.1574 ± 0.0021 84.26 0.1783 ± 0.0034 82.17
0.5 0.1307 ± 0.0015 86.63 0.1473 ± 0.0025 85.27

Table 2: The comparison between the steganalysis of the proposed method with the color rich model in different relative
payloads for the WOW steganography method: the average testing error for the proposed is less than for the color rich model
method.
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Fig. 4: Detection error P̄E as a function of the payload for (a) S-UNIWARD and (b) WOW steganography methods illustrates
good detectability with our proposed features.
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(a) 0.2 bpc using S-UNIWARD
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(b) 0.4 bpc using S-UNIWARD

Fig. 5: ROC curves of the proposed method for the payloads (a) 0.2 bpc (b) 0.4 bpc using the S-UNIWARD steganography
method. The steganalysis technique detects easier hidden messages in only one channel more than equal embedding in the three
channels.



5. CONCLUSION AND FUTURE WORK

Here we proposed and implemented a new method for color
image steganalysis. The proposed method estimates correla-
tions between the gradients of red, green and blue channels.
Then these correlations are incorporated in the rich model us-
ing a co-occurrence matrix in order to obtain 3000 features.
These features are added to those that are obtained from the
color rich model in order to build a vector of a total of 21157
features. All feature vectors are fed to the ensemble classi-
fiers. We used a quantization step with a set of values that
differed from the color rich models. The ensemble classi-
fiers is used to detect steganographic messages. Images for
cover and stego are collected using the Dresden database and
BOSSbase 1.0. Multiple comparisons are made between the
proposed method with the color rich model using WOW and
S-UNIWORD steganography methods in different payloads,
reflecting the efficiency of the proposed features.

Our future work will focus on developing a new steganal-
ysis method for digital color images, enhance the feature vec-
tor and calculate a new correlation between all channels of the
color image.
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