
HAL Id: lirmm-01235422
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01235422

Submitted on 30 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Translation of OCL Meta-Level Constraints
into Java Meta-Programs

Sahar Kallel, Chouki Tibermacine, Bastien Tramoni, Christophe Dony

To cite this version:
Sahar Kallel, Chouki Tibermacine, Bastien Tramoni, Christophe Dony. Automatic Translation of
OCL Meta-Level Constraints into Java Meta-Programs. SNPD 2015 - 16th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-
puting, Jun 2015, Takamatsu, Japan. pp.213-226, �10.1007/978-3-319-23509-7_15�. �lirmm-01235422�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01235422
https://hal.archives-ouvertes.fr

Automatic Translation of OCL Meta-Level
Constraints into Java Meta-programs

Sahar Kallel, Chouki Tibermacine, Bastien Tramoni, Christophe Dony and Ahmed
Hadj Kacem

Abstract In order to make explicit and tangible their design choices, software de-
velopers integrate, in their applications’ models, constraints that their models and
their implemetations should satisfy. Various environments enable constraint check-
ing during the modeling stage, but in most cases they do not generate code that
would enable the checking of these constraints during the implementation stage.
It turns out that this is possible in a number of cases. Environments that provide
this functionality only offer it for functional constraints (related to the states of
objects in applications) and not for architectural ones (related to the structure of
applications). Considering this limitation, we describe in this paper a system that
generates metaprograms starting from architecture constraints, written in OCL at
the metamodel level, and associated to a specific UML model of an application.
These metaprograms enable the checking of these constraints at runtime.

Keywords: Software Architecture, Architecture Constraint, Object Constraint
Language, Java Reflect

Sahar Kallel
Lirmm, Montpellier University, France, e-mail: sahar.kallel@lirmm.fr

Chouki Tibermacine
Lirmm, Montpellier University, Farance e-mail: chouki.tibermacine@lirmm.fr

Bastien Tramoni
Lirmm, Montpellier University, France e-mail: bastien.tramoni@lirmm.fr

Christophe Dony
Lirmm, Montpellier University, France e-mail: dony@lirmm.fr

Ahmed Hadj Kacem
ReDCAD, Sfax University, Tunisie e-mail: ahmed.hadjkacem@fsegs.rnu.tn

1

sahar.kallel@lirmm.fr
chouki.tibermacine@lirmm.fr
bastien.tramoni@lirmm.fr
dony@lirmm.fr
ahmed.hadjkacem@fsegs.rnu.tn

2 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

1 Introduction

Software architecture description is one of the main building blocks of an applica-
tion’s design [4]. It gives us an overview of the application organization that helps us
to reason about certain properties, such as quality attributes. In this context, architec-
ture description languages have been created to specify and verify such application
architectures without worrying, at first, about the implementation of their function-
ality. The verification can be especially based on constraints that those languages
associate to architecture descriptions. These constraints can be classified into two
categories: functional and architectural.

Functional constraints check the state of the architecture’s objects. For exam-
ple, if we consider a UML model (an architecture description) containing a class
Employee (a component in that architecture) which has an integer attribute age, a
functional constraint presenting an invariant in this class could impose that the val-
ues of this attribute (slot of an object of that class) must be included in the interval
[16-70] for all instances of this class. On the other side, architecture constraints ana-
lyze the structure of the application, and not objects states. For example, they define
invariants (boolean conditions) imposed by the choice of a particular architectural
style or pattern, like the layered architecture style [22]. All these constraints can be
specified at design stage through a constraint language like the “Object Constraint
Language” (OCL) [19], the OMG standard.

In the literature and practice of software engineering there exists a large number
of architecture patterns [25, 11, 9] whose architecture constraints have been for-
malized. But unfortunately, currently architecture constraints can be checked only
at design time on design artifacts; they are ignored in the implementation stage.
Therefore, a part of the knowledge and the expertise in the implementation of a soft-
ware project “evaporates”. To guarantee that architecture pattern source code will
not undergo changes during evolution in the implementation artifacts or at runtime,
we need to find a way to check the associated architecture constraints at the imple-
mentation stage knowing that with OCL language (for example), we can not check
the architecture constraints at this stage. We can opt to rewrite them entirely with
languages used by the developers at that development stage. And this task of rewrit-
ing all these constraints is tedious, time consuming and error prone. Constraints on
the two stages of development (design and implementation) are syntactically dif-
ferent but they are semantically equivalent (conditions on architecture descriptions
that are present in the two stages). So why not generate the ones from the others,
like code can be generated from UML models? Moreover, most of existing tools
for model-to-text (code) generation do not consider the generation of code for con-
straints associated to models. For those which exist [1, 18, 8], they only translate
functional constraints, and not architectural ones.

Considering these limitations, we propose a multi-steps process for translating
OCL architecture constraints into Java code. The obtained Java code uses the in-
trospection mechanism provided by the programming language (Java Reflect) to
analyze the structure of the application. This choice is motivated by our willing-
ness to use a standard mechanism without resorting to external libraries. Reflection

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 3

(introspection) enables language users to analyze architectures and to examine the
structure of their classes at runtime. In our work, the generated code is considered
as a “metaprogram” since it uses the introspection mechanism of the programming
language for implementing an architecture constraint.

The remaining of this paper is organized as follows. In the following section, we
illustrate the input and the output of the proposed process to better understand the
context of our work. These will serve as running examples throughout the paper.
In Section 3, we present our general approach indicating the steps for generating
constraints into Java metaprograms. Sections 4, 5 and 6 describe these steps in detail.
Before concluding and presenting some perspectives, we discuss the related work
in Section 7.

2 Illustrative Example

Fig. 1 An excerpt of UML metamodel

To introduce the context of our work, we present an example of an architec-
ture constraint enabling the checking of the “MVC (Model-View-Controller) pat-
tern” [21]. We assume that we have three stereotypes, allowing us to annotate the
classes in an application which represent the view (View), the model (Model) and
the controller (Controller). This constraint states that the classes stereotyped Model
must not declare dependencies with the classes stereotyped View. This makes it
possible, among other things, to have several views for the same model, and thus
to uncouple these classes that play different roles in the pattern. In addition, the

4 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

classes stereotyped Model must not have dependencies with the classes stereotyped
Controller. This makes it possible to have several possible controllers for the model.

Using OCL and the UML metamodel (Fig. 1), we obtain the following constraint:

1 c o n t e x t C l a s s inv :
2 s e l f . package . p r o f i l e A p p l i c a t i o n . a p p l i e d P r o f i l e
3 . ownedS te reo type−> e x i s t s (s : S t e r e o t y p e | s . name= ’ Model ’)
4 i m p l i e s
5 s e l f . s u p p l i e r D e p e n d e n c y . c l i e n t −>f o r A l l (t : Type |
6 not (t . oclAsType (C l a s s) . package . p r o f i l e A p p l i c a t i o n
7 . a p p l i e d P r o f i l e . ownedS te reo type−>e x i s t s (s : S t e r e o t y p e |
8 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))

Listing 1 MVC pattern constraint in OCL/UML

The first line in the Listing 1 declares the context of the constraint. It indicates
that the constraint applies to each class of the application ; the meta-class Class
is then the starting point for all navigations in the rest of the constraint. Lines 2
to 3 serve to collect the set of classes representing the model (having the stereotype
Model) by using the navigation package.profileApplication.appliedProfile. owned-
Stereotype. UML metamodel allows us to get an applied stereotype only starting
from the package that contains the modeling element (a class, in our case) and not
from the element itself. The problem is resolved in some tools like RSA-IBM where
the UML metamodel has been extended with an operation named getAppliedStereo-
types(), which is inherited by the Class metaclass. In Line 5 we obtain the set of
classes which have a direct dependency with the context of the constraint. The re-
maining of the Listing allows to iterate over the set of class instances and test if it
contains classes stereotyped with View or Controller.

Our goal is to obtain automatically a metaprogram generated from an OCL/UML
architecture constraint. The result would be expressed in Java as follows:

1 p u b l i c b o o l e a n i n v a r i a n t (C las s<?> a C l a s s) {
2 i f (a C l a s s . i s A n n o t a t i o n P r e s e n t (Model . c l a s s)) {
3 F i e l d [] f i e l d s = a C l a s s . g e t D e c l a r e d F i e l d s () ;
4 f o r (F i e l d a F i e l d : f i e l d s){
5 Class<?> f i e l d T y p e = a F i e l d . ge tType () ;
6 i f (f i e l d T y p e . i s A n n o t a t i o n P r e s e n t (View . c l a s s)
7 | | f i e l d T y p e . i s A n n o t a t i o n P r e s e n t (C o n t r o l l e r . c l a s s))
8 r e t u r n f a l s e ;
9 }

10 }
11 r e t u r n t r u e ;
12 }

Listing 2 MVC pattern constraint in Java

The method invariant(...) in Listing 2 accepts as a parameter an object of type
Class, representing each of the classes of the application (the classes which com-
pose the application business domain. This excludes classes of the libraries used by
the application). Unfortunately, we cannot start navigation from the Package object
representing the application package, because in java.reflect, this object does not
enable to obtain references to the classes which are declared inside it. The Package
object relates to a simple object containing information about the package(e.g. its
name). We assume that the dependencies between classes in UML is translated as

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 5

the declaration of at least one field in the first class having as a type the second class.
In addition, we assume that the equivalent of stereotypes in UML are annotations
in Java. The method invariant (..) uses the Java reflect library by invoking, for ex-
ample, getDeclaredFields() in Line 3 to collect fields, and isAnnotationPresent(..) in
Lines 6 and 7 to check if a given type has been marked with a particular annotation.

3 General Approach

We propose a three-step process for generating executable Java code from architec-
ture constraints. We note the presence of two metamodels the first one is the UML
metamodel and the second is the Java metamodel that are presented in the following
sections. Fig. 2 depicts the process of metaprogram generation. If the OCL con-
straint needs a refinement, the first step consists in rewriting the OCL constraint in
order to make it more accurate and concrete. For example, if the constraint has a
navigation to Dependency metaclass (in UML metamodel) then we need to refine
this constraint by specifying the different levels of dependencies. Else, the step of
transforming OCL constraints from UML metamodel to Java metamodel is estab-
lished in order to go forward in the process, to the Java code generation. These steps
are detailed in the following sections. We did not perform a direct translation from
OCL/UML to Java because this translation includes at the same time several trans-
formations: shifting to a new metamodel, changing the syntax of constraints, etc.
In fact, our approach requires first a mapping from abstractions of design level to
abstractions of implementation level (mapping abstractions from UML metamodel
to the Java metamodel) and subsequently a translation of the syntax.

In the literature, there are many languages enabling the specification of architec-
ture constraints (see [23] for a survey). The choice of OCL and UML is motivated
by the fact that UML is the de facto standard modeling language, and that OCL is
its original constraint language. Even if a recent study [20] pointed that UML is not
widely used by developers, we all agree that it is a general-purpose modeling lan-
guage known by a lot of developers. We have intuitively chosen to make constraints
programmable in the implementation level in Java because it is a main-stream lan-
guage in object-oriented programming, which provides introspection capabilities.

4 Constraint Refinement

The refinement mechanism is used whenever some abstractions in the UML meta-
model do not have an equivalence in the JAVA language. For example, in the spec-
ification of the OCL constraint expressed on the UML metamodel, we have col-
lected all types (Classes) which have dependencies with a specific type by using
supplierDependency.client. This expression has not a direct equivalence

6 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

Fig. 2 Approach Description

in Java. As a result, we refine the constraint in the UML metamodel to express the
different levels of dependencies.

Often, a dependency between two classes is translated as: i) the declaration in
the first class of at least one attribute having as type the second class, ii) some
parameters in operations of the first class, have as type the second class, or iii) some
operations of the first class, have as a return type the second class.

The previous constraint (Listing 1) is refined as follows:

1 c o n t e x t C l a s s inv :
2 s e l f . package . p r o f i l e A p p l i c a t i o n . a p p l i e d P r o f i l e
3 . ownedS te reo type−> e x i s t s (s : S t e r e o t y p e | s . name= ’ Model ’)
4 i m p l i e s
5 s e l f . o w n e d A t t r i b u t e . type−>f o r A l l (t : Type |
6 not (t . oclAsType (C l a s s) . package . p r o f i l e A p p l i c a t i o n
7 . a p p l i e d P r o f i l e . ownedS te reo type−>e x i s t s (s : S t e r e o t y p e |
8 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))
9 and

10 s e l f . ownedOpera t ion . r e t u r n V a l u e t y p e−>f o r A l l (t : Type |
11 not (t . oclAsType (C l a s s) . package . p r o f i l e A p p l i c a t i o n
12 . a p p l i e d P r o f i l e . ownedS te reo type−>e x i s t s (s : S t e r e o t y p e |
13 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))
14 and
15 s e l f . ownedOpera t ion . ownedParameter . type−>f o r A l l (t : Type |
16 not (t . oclAsType (C l a s s) . package . p r o f i l e A p p l i c a t i o n
17 . a p p l i e d P r o f i l e . ownedS te reo type−>e x i s t s (s : S t e r e o t y p e |

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 7

18 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))

Listing 3 Refined MVC pattern constraint

Our constraint in Listing 3 (after refinement) is composed of three sub-constraints
(Lines 5- 8, Lines 10- 13 and Lines 15- 18). Each sub-constraint matches one level
of the dependencies. In Line 5, the dependency is primarily verified on all attributes
defined in classes. Note that oclAsType(Class) operation is used in this constraint
to allow navigation between Type and Class through the specialization relation. In
Lines 10 and 15, the dependency is related to the types of operation parameters and
their returned values.

The refinement of a constraint means a translation of this constraint from an ab-
stract level to a concrete one. In contrast to the translation detailed in the following
section, in this step, the translation is an endogenous transformation, since the con-
straints which are the source and the target of the transformation both navigate in
the same (UML) metamodel.

5 Constraint transformation

Before generating code, we transform in this step the OCL constraint specified on
the UML metamodel into an OCL constraint specified on the Java metamodel. This
simplifies the translation into Java code, since the mapping of abstractions from
UML to Java is performed in this step. In order to perform constraint transformation
we used a Java metamodel. Unfortunately, none of the metamodels found in the
literature and practice satisfied our needs. We relied on Java Reflect library to create
a new simplified Java metamodel. In fact, we can define our metamodel relying on
Java specification but we deliberately chose Java Reflect because it gives us access
to the meta-level of the language and also because it reflects exactly what we can do
in the generated Java code. In this metamodel, we limited ourselves to the elements
necessary for architecture constraint specification. Fig 3 depicts the Java metamodel
that we have defined1.

The goal of constraint transformation is to replace in an architecture constraint
the UML metamodel vocabulary by Java metamodel vocabulary. It had to establish a
mapping between UML terms and Java terms that are classified in three categories:
metaclasses, roles and navigations.

Table 1 presents for each UML metaclass, role and navigation its equivalent in
Java.

We opted for the specification of these mappings in xml, and we have written
an ad-hoc program for implementing the transformation instead of using an exist-
ing model transformation language like Acceleo [3], Kermeta [2] or ATL [16]. In
fact, architecture constraints are not models. We might have generated models from

1 We assume in this paper that the reader is familiar with UML and Java languages. This is the
reason why the two metamodels are not detailed. They are depicted only for accompanying OCL
constraints in order to see how navigations in the metamodels are established.

8 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

Fig. 3 Java metamodel

UML Java
Metaclass Class Class
Role ownedAttribute field

ownedOperation method
superClass superClass
nestedType declaringClass
interfaceRealization interface
package package

Navigation package.profileApplication
.appliedProfile.ownedStereotype annotation

Metaclass Property Field
Role type type

declaringTypeattribute declaringClass
Metaclass Operation Method
Role returnValuetype returnType

declaringTypeoperation declaringClass
ownedParameter parameterType
raisedException exceptionType

Metaclass Stereotype Annotation
Metaclass Package Package

Table 1 Mapping UML-Java (Metaclass, Role, Navigation)

constraints. But this process is complex to implement. It requires to transform the
text of the constraint in models, to use a transformation language for transforming
these models and then generate again the text of the new constraint from the new
model. We opted for a simple solution that consists in exploiting an OCL compiler.
It allows to generate an abstract syntax tree (AST) from the text of the constraint.
This AST allows us to apply easily different transformations.

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 9

We apply the table presented before (Table 1) on the generated AST in order to
obtain a constraint expressed in Java metamodel. For applying mappings, we start
by navigations, then the roles and finally the metaclasses. The following Listing 4
presents our constraint example after applying the transformation method:

1 c o n t e x t C l a s s inv :
2 s e l f . a n n o t a t i o n−> e x i s t s (s : A n n o t a t i o n | s . name= ’ Model ’)
3 i m p l i e s
4 s e l f . f i e l d . type−>f o r A l l (t : Type |
5 not (t . oclAsType (C l a s s) . a n n o t a t i o n−>e x i s t s (s : A n n o t a t i o n |
6 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))
7 and
8 s e l f . method . r e t u r n T y p e−>f o r A l l (t : Type |
9 not (t . oclAsType (C l a s s) . a n n o t a t i o n−>e x i s t s (s : A n n o t a t i o n |

10 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))
11 and
12 s e l f . method . ParameterType−>f o r A l l (t : Type |
13 not (t . oclAsType (C l a s s) . a n n o t a t i o n−>e x i s t s (s : A n n o t a t i o n |
14 s . name= ’ View ’ or s . name= ’ C o n t r o l l e r ’)))

Listing 4 MVC pattern constraint in OCL/Java

As indicated in Listing 4, we replace, among others, package.profileApplication.
appliedProfile.ownedStereotype by annotation, ownedOperation by method, by re-
specting the mappings defined before.

The use of declarative mappings gives us the opportunity when the metamodels
evolve to modify easily the changed elements. In addition, it allows us to offer a
generic method which does not depend on particular metamodels.

6 Constraints generation into Java metaprograms

Code generation consists in translating the constraint expressed in Java metamodel
into a Java metaprogram. To generate this code, we relied on the following steps.
First, we generate the abstract syntax tree (AST) from the constraint expressed in
Java metamodel. Then, when traverse this tree in a Depth-First Pre-Order way in
order to generate progressively the java code by relying on rules presented below. It
is worth mentioning that the first rule is applied only once in a constraint generation
code. The other rules are applied along the analysis of the type of the AST nodes.
In fact, if it is a role or navigation then we must apply Rule 2. If is is a quantifier,
the rule 3 is then applied and so on.

1. We must consider first that a constraint is represented by a Java method that
returns a boolean, which takes as parameter an object of type the metaclass on
which the constraint applies (its context). This method is located in a Java class
and invokes if necessary other methods that are implemented during the code
generation.

2. Each role and navigation in the Java metamodel will be transformed to its ac-
cessor method defined in Java. For example, if we navigate to Field, we apply

10 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

getDeclaredFields()2, and if we would like to access to a method return type we
call getReturnType().

3. Concerning the OCL quantifiers and the operations, we defined for each one a
Java template. Examples are presented in Table 2. select(...) method presented in
the last row of the table can be applied on different OCL collection types, like
Set or Sequence. During the code generation , each OCL type will be replaced
by its Java equivalent.

fo
rA

ll

ocl forAll(ex:OclExpression): Boolean

java

private boolean forAll(Collection c) {
for(Iterator i = c.iterator(); c.hasNext();) {

if(!exInJava) return false; }
return true;

}

ex
is

ts

ocl exists(ex:OclExpression):Boolean

java

private boolean exists(Collection c) {
for (Iterator i = c.iterator(); c.hasNext();) {

ElementType e = (ElementType) i.next();
if(exInJava) return true; }

return false;
}

se
le

ct

ocl select(ex:OclExpression):Sequence

java

List result = new ...();
private list select(Collection c) {

for (Iterator i = c.iterator(); c.hasNext();){
ElementType e = (ElementType) i.next();
if (exInJava) {

result.add(e); }
}

return result;
}

Table 2 OCL Quantifiers and operations generation in Java

4. In each quantifier or operation, we traverse recursively the evaluated expression
as a sub-constraint and we generate again the corresponding code: if we meet
a role or navigation in Java metamodel, we re-apply rule 2. If the quantifier is
nested, we re-apply rule 3, and so on.

5. In the case of a nested quantifier (two quantifiers for example are defined one
inside the other), the second quantifier frequently needs to use the variables of
the first one to define its expression. So, in this case, we store the variables of the

2 We use getDeclaredField() instead of getFields() to retrieve all attributes (private and public). For
those we inherit, we must specify them in the OCL constraint using the role superClass.

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 11

first one (parameters of method that correspond to the first quantifier) in order to
pass them among the parameters of the method corresponding to the second one.

6. Concerning the logic operators (and, not..), we defined also methods equivalent
for each one. These methods are implemented in a class called LogicalOperator.
If the constraint contains a logic operator, This class will be declared as a super
class of the generated class that contains the invariant method.

7. The arithmetic operations (>, <, =, ...) and the types (Integer, Real, String, ...)
are the same in the generated metaprogram.

In order to better explain the code generation process, Table 3 presents an exam-
ple of a metaprogram which is generated from our MVC constraint presented in 2.
For simplicity reasons, we consider for the dependency between two classes that the
first class has at least one method return type having as type the second class.

We have presented in Table 3, for each part of constraint, its equivalent Java
code by respecting the rules that was explained previously. The generated code uses
the introspection of Java in order to examine the application structure at runtime
(getAnnotations(), getMethods()). This code should be called before and
after each method and affectation implemented in the application.

It is worth noting that this code is syntactically different from the optimal code
presented at the beginning of the paper (see Listing 2) but they are semantically
equivalent. It is evident that the automatic translation does not allow to obtain a
code having an optimal complexity. However, it is a valuable tool for developers
who will rather focus on implementing the business logic of their application.

7 Related Work

In this section we present works related to OCL constraint transformation and OCL
code generation. Hassam et al. [13] proposed a method for transforming OCL
constraints during UML model refactoring using model transformations. Their ap-
proach uses first an annotation method for marking the initial UML model, in order
to obtain an annotated target model. Then, a mapping table is created from these two
annotations in order to transform OCL constraints of the initial model into OCL con-
straints of the target one. Their solution of constraint transformations is difficult to
establish and it needs some knowledge about model transformation languages and
tools. In our work, constraint transformation is simple. It is performed in an ad-
hoc way without using additional modeling and transformation languages. In [10],
the authors propose an approach to generate (instantiate) models from metamod-
els taking into account OCL constraints, using CSP (Constraint Satisfaction Prob-
lem). They defined some mathematical rules to transform models and constraints
associated to them. Cabot et al. [7] worked also on UML/OCL transformation into
CSP in order to check quality properties of models. These approaches are similar to
our transformation process because they use an OCL compiler (DresdenOCL [8])
to transform constraints. But in our approach, we consider source code generation
from these constraints, in order to make them executable with application’s code.

12 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

Constraint Java Metaprogram

context Class
inv :

/*Rule 1*/

public class Constraint{
Boolean invariant(Class aClass){
//To be completed }

}

self.annotation

/*Rule 2*/

Annotation [] annotations=
aClass.getAnnotations();

->
exists
(a:Annotation|
a.name=’Model’)

/*Rule 3*/

resultexists1 =
exists1(annotations);

/* Rule 4*/

private Boolean exists1(Annotation[]
annotations)

{
for(Annotation annota: annotations){
Class a = annota.annotationType();
if(a.equals(Model.class)){

return true; }
return false;

}

self.method

/*Rule 2*/

Method[] methods=
cl.getDeclaredMethods();

->
forAll(m:method|
not(m.returnType

.annotation
->
exists
(a:Annotation|
a.name=’View’))
)

/*Rule 3*/

Boolean resultforAll1=
forAll1(methods);

/*Rule 4 and Rule 6*/

private Boolean forAll1(Method[]
methods)

{
for(Method m : methods){
Type type = m.getReturnType();
Annotation[] annotations =

type.getAnnotations();
resultexist2 =

not(exists2(annotations));
if(!resultexist2) return false; }
return true;

}

Table 3 Example of MVC constraint Code generation

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 13

In contrast to CSP, this does not require an external tool for the interpretation of
constraints.

In the practice of model-driven engineering, there exist several tools like Eclipse
OCL [1], Octopus [18], and DresdenOCL [8, 14, 17] which aim to translate OCL
constraints in Java source code. They however transform constraints which are func-
tional and not architectural. These tools translate this kind of constraints into object-
oriented programs which do not use the introspection mechanism. The generated
code by Dresden OCL is difficult to understand. Indeed, it is true that Dresden OCL
is the first tool implemented in this domain, but it extensively uses a vocabulary pro-
posed only by its APIs. This code is normally intended to developers who master,
and will continue to use, Dresden OCL, contrary to our work, where code is intended
to be used by any Java developer. Besides, with these tools, we need to create before-
hand the classes of the model before generating constraints. Other works like Briand
et al. in [6] and Hamie et al. in [12] proposed a tool to transform functional (and not
architectural) constraints respectively into Java using aspect-oriented programming
and JML contracts.

8 Conclusion

It has been demonstrated that architecture constraints bring a valuable help for
preserving architecture styles, patterns or general design principles in a given ap-
plication after having evolved its architecture description [24]. These architecture
constraints are checked at design time. But what if the architecture evolves in the
implementation artifacts (the application’s programs)? Or, what if the architecture
evolves at runtime (through dynamic adaptation, for example)? To be able to check
these constraints in that development stage and at runtime, architecture constraints
should be translated into an appropriate format: meta-programs.

We have presented in this paper a process for generating Java code starting from
OCL architecture constraint specifications expressed in the UML metamodel. This
Java code uses the introspection mechanism provided by the programming lan-
guage. Our process is composed of three steps. The first optional one consists in
refining the constraints. The second step allows to transform them into OCL con-
straints expressed in Java metamodel. The last step generates Java source code re-
lying on specific code generation rules. The reflection (instrospection) mechanism
used in our approach is a standard mechanism in Java. Otherwise, we can use static
analysis libraries like JDT [15] or ByteCode libraries like BCEL [5] but our goal was
to use what is standard in Java and not resort to external libraries. In addition, with
reflection, architecture constraints can be checked at runtime (by invoking the invari-
ant method in all the methods of the application where the architecture is changed:
new objects are created, references to objects are assigned to fields, etc.).

In our proposal, OCL coverage is not complete. We have implemented a proto-
type called MOJaRT: Meta-OCL to JAva Reflect Translator. It is available for down-
load here: https://github.com/saharkallel/mojart.git/. which does

https://github.com/saharkallel/mojart.git/

14 Kallel, Tibermacine, Tramoni, Dony and HadjKacem

not take into consideration some OCL constructions, like some collection operations
(union, for example). But this does not have any impact on the work proposed in
this paper.

As a future work, we plan to generalize the proposed approach, by specifying
architecture constraints in a language-independent way: using predicates on graphs
and operations on them and then making automatic transformations towards a par-
ticular object-oriented programming language.

References

1. Eclipse ocl. http://www.eclipse.org/modeling/mdt/?project=ocl. URL
http://www.eclipse.org/modeling/mdt/?project=ocl

2. Kermeta. http://www.kermeta.org. URL http://www.kermeta.org
3. Acceleo: Implementation of mof to text language. http://www.omg.org/news/

meetings/tc/mn/specialevents/ecl/Juliot-Acceleo.pdf. URL
http://www.omg.org/news/meetings/tc/mn/specialevents/ecl/
Juliot-Acceleo.pdf

4. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley (2012)
5. BCEL: The byte code engineering library. http://commons.apache.org/

proper/commons-bcel/. URL http://commons.apache.org/proper/
commons-bcel/

6. Briand, L.C., Dzidek, W., Labiche, Y.: Using aspect-oriented programming to instrument ocl
contracts in java. Technical Report, Carlton University, Canada (2004)

7. Cabot, J., Clarisó, R., Riera, D.: Umltocsp: a tool for the formal verification of uml/ocl models
using constraint programming. In: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pp. 547–548. ACM (2007)

8. Demuth, B.: The dresden ocl toolkit and its role in information systems development. In: Proc.
of the 13th International Conference on Information Systems Development (ISD2004) (2004)

9. Erl, T.: SOA design patterns. Pearson Education (2008)
10. Ferdjoukh, A., Baert, A.E., Chateau, A., Coletta, R., Nebut, C.: A csp approach for meta-

model instantiation. In: ICTAI 2013, IEEE Internationnal Conference on Tools with Artificial
Intelligence, pp. 1044,1051 (2013)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley (1994)

12. Hamie, A.: Pattern-based mapping of ocl specifications to jml contracts. In: Model-Driven En-
gineering and Software Development (MODELSWARD), 2014 2nd International Conference
on, pp. 193–200. IEEE (2014)

13. Hassam, K., Sadou, S., Fleurquin, R., et al.: Adapting ocl constraints after a refactoring of
their model using an mde process. In: BElgian-NEtherlands software eVOLution seminar
(BENEVOL 2010), pp. 16–27 (2010)

14. Hussmann, H., Demuth, B., Finger, F.: Modular architecture for a toolset supporting ocl. In: ł
UML 2000The Unified Modeling Language, pp. 278–293. Springer (2000)

15. JDT: Java development tools. http://www.eclipse.org/jdt/. URL http://www.
eclipse.org/jdt/

16. Jouault, F., Kurtev, I.: Transforming models with atl. In: Satellite Events at the MoDELS 2005
Conference, pp. 128–138. Springer (2006)

17. LCI: Object constraint language environnement. http://lci.cs.ubbcluj.ro/
ocle/. URL http://lci.cs.ubbcluj.ro/ocle/

18. Octopus: Ocl tool for precise uml specifications. http://octopus.sourceforge.net. URL http:
//octopus.sourceforge.net

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.kermeta.org
http://www.kermeta.org
http://www.omg.org/news/meetings/tc/mn/specialevents/ecl/Juliot-Acceleo.pdf
http://www.omg.org/news/meetings/tc/mn/specialevents/ecl/Juliot-Acceleo.pdf
http://www.omg.org/news/meetings/tc/mn/specialevents/ecl/Juliot-Acceleo.pdf
http://www.omg.org/news/meetings/tc/mn/specialevents/ecl/Juliot-Acceleo.pdf
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://lci.cs.ubbcluj.ro/ocle/
http://lci.cs.ubbcluj.ro/ocle/
http://lci.cs.ubbcluj.ro/ocle/
http://octopus.sourceforge.net
http://octopus.sourceforge.net
http://octopus.sourceforge.net

Automatic Translation of OCL Meta-Level Constraints into Java Meta-programs 15

19. OMG: Object constraint language, version 2.3.1, document formal/2012-01-01. http:
//www.omg.org/spec/OCL/2.3.1/PDF/. URL http://www.omg.org/spec/
OCL/2.3.1/PDF/

20. Petre, M.: Uml in practice. In: Proceedings of the 35th International Conference on Software
Engineering (ICSE 2013), pp. 722–731. IEEE Press (2013)

21. Reenskaug, T.: Thing-model-view editor an example from a planning system, xerox parc tech-
nical note (may 1979)

22. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. Pren-
tice Hall (1996)

23. Tibermacine, C.: Software Architecture 2, chap. Software Architecture: Architecture Con-
straints. John Wiley and Sons, New York, USA (2014)

24. Tibermacine, C., Fleurquin, R., Sadou, S.: On-demand quality-oriented assistance in
component-based software evolution. In: Proceedings of the 9th ACM SIGSOFT International
Symposium on Component-Based Software Engineering (CBSE’06), pp. 294–309. Springer
LNCS, Vasteras, Sweden (2006)

25. Zdun, U., Avgeriou, P.: A catalog of architectural primitives for modeling architectural pat-
terns. Information and Software Technology 50(9), 1003–1034 (2008)

http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/PDF/

