
HAL Id: lirmm-01235435
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01235435

Submitted on 30 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Process to Identify Relevant Substitutes for Healing
Failed WS-* Orchestrations

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif

To cite this version:
Okba Tibermacine, Chouki Tibermacine, Foudil Cherif. A Process to Identify Relevant Substi-
tutes for Healing Failed WS-* Orchestrations. Journal of Systems and Software, 2015, 104, pp.1-16.
�10.1016/j.jss.2015.02.028�. �lirmm-01235435�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01235435
https://hal.archives-ouvertes.fr

Accepted Manuscript

A Process to Identify Relevant Substitutes for Healing Failed WS-*
Orchestrations

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif

PII: S0164-1212(15)00043-6
DOI: 10.1016/j.jss.2015.02.028
Reference: JSS 9472

To appear in: The Journal of Systems & Software

Received date: 21 March 2014
Revised date: 4 December 2014
Accepted date: 10 February 2015

Please cite this article as: Okba Tibermacine, Chouki Tibermacine, Foudil Cherif, A Process to Identify
Relevant Substitutes for Healing Failed WS-* Orchestrations, The Journal of Systems & Software
(2015), doi: 10.1016/j.jss.2015.02.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2015.02.028
http://dx.doi.org/10.1016/j.jss.2015.02.028

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Our proposal is an identification process of substi-
tutes for failed services

• The original contribution is the identification of
complex service substitutes

• We use in this process an efficient and complete
similarity measurement method

• The proposed process has been experimented on
real world Web services

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Process to Identify Relevant Substitutes for Healing
Failed WS-* Orchestrations

Okba Tibermacinea, Chouki Tibermacineb, Foudil Cherifa

aBiskra University, LESIA, P.B. 145 R.P, Biskra 07000, Algeria
bLIRMM, CNRS and Montpellier University, France

Abstract

Orchestrating web services aims to compose multiple services into workflows that answer complex user requirements.
Web services are software components which are exposed to errors and failures that can occur during web service or-
chestration execution. Thus, many error-handling and healing approaches have been proposed to guarantee reliable
orchestrations. Some of these approaches rely on the identification of relevant service substitutes to heal (by substitu-
tion) the defected services. In this paper, we propose an identification process of web service substitutes for healing
failed web service orchestrations based on the measurement of similarity between service interfaces. The process
reveals both simple and complex (compositions of) substitutes. We validated the approach via a set of experiments
conducted on a collection of real web services.

Keywords: Web services orchestration, Web service selection, Formal Concept Analysis, Similarity measurement.

1. Introduction

One of the most challenging topics in web service
technology that was addressed by many researchers in
industry and academia is web service composition de-
sign and maintenance (Fan and Kambhampati (2005)).
Web service compositions are software components that
satisfy client needs, and which no unique web service
can satisfy. They enable developers to rapidly create
new applications by reusing existing services.

Web services are software components that are ex-
posed to errors and failures that may have different ori-
gins: a failure in the network, the unavailability of the
application server or the database server, an error or
an exception in the program implementing the service,
etc. Some of these faults cannot be detected immedi-
ately, and could have many consequences on the com-
positions using them (Li et al. (2007)). In the literature,
many works tackle the recovery actions for healing web
services using different techniques of diagnosis, moni-
toring, exception handling, substitution and adaptation
(Alhosban et al. (2013); Ardagna et al. (2006); Ding and
Xiang (2013); Psaier and Dustdar (2011) and Simmonds
et al. (2010a)).

Email addresses: o.tibermacine@univ-biskra.dz (Okba
Tibermacine), tibermacin@lirmm.fr (Chouki Tibermacine),
foud_cherif@yahoo.fr (Foudil Cherif)

Identifying and selecting substitutes is a crucial and
challenging task, especially with the absence of behav-
ioral descriptions about web services. Thus, many ap-
proaches have been proposed for service selection. The
study of the similarity between web services is one
of the basic techniques used by these approaches. It
has been extensively studied in many works (Ait-Bachir
(2008), Crasso et al. (2008), Kokash (2006) and Tiber-
macine et al. (2013)). The goal behind studying similar-
ity is to: 1) select and retrieve from directories services
that match some criteria, 2) identify substitutes (replace-
ments) between web services or between their opera-
tions, 3) determine service composability, i.e. whether
in two operations, belonging to two services, the out-
put of the first operation is similar to the input of the
second operation. Hence, the first service can be com-
posed with the second service. Thus, an efficient simi-
larity assessment could be considered as a key solution
for seeking relevant substitutes in order to heal (recon-
struct) failed orchestrations. Since it is better to replace
deficient services by similar ones (simple substitutes)
or a composition of services (complex substitutes), in-
stead of building a new web service orchestration from
scratch.

In a previous work (Azmeh et al. (2011)), we have
proposed an approach that identifies simple substitutes;
i.e. one operation that replaces one other operation (1-

Preprint submitted to Journal of Systems and Software February 14, 2015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to-1 substitute). Nevertheless, some operations cannot
be replaced by simple operations. This is frequently due
to the complexity of their implemented functionality
which sometimes makes them the only operations avail-
able in the Web. Their failure brings developers to look
for other operations which can be composed together to
obtain an equivalent functionality. These compositions
are considered as N-to-1 substitutes; i.e. orchestrate n
services/operations to replace one service/operation in
case of failure. In this paper, we cover this shortcoming
by proposing a process that reveals both simple (1-to-1)
and complex (N-to-1) substitutes.

The approach uses the WSDL (Web Service Descrip-
tion Language) interface description of the failed web
service (partner link) to discover, from a service pool, a
set of web service candidates that offer the same or re-
lated functionalities. The set is then refined using a fil-
tering algorithm that exploits the similarity assessment
technique proposed in (Tibermacine et al. (2013)), in
order to keep only web services that have similarity re-
lationships between them. Using the same similarity
assessment technique, a similarity matrix between the
input and the output of web service operations is built,
and then it is exploited to create a concept lattice using
Formal Concept Analysis (FCA (Ganter et al. (2005))).
FCA is a formal technique that enables to build classifi-
cations of objects. In our case, the objects are web ser-
vices and their operations. A process of refinements is
applied on the similarity matrix and its associated for-
mal concepts to build the final concepts and the final
lattices. A navigation and interpretation mechanism is
used to identify, from the resulted lattices, all simple
(1-to-1) and complex (N-to-1) substitutes for the failed
operations in the defected partner link.

The main contributions of this paper are:

• Automatic browsing mechanism for the identifica-
tion of simple and complex substitutes based on the
similarity between web service interfaces.

• Selection, filtering and clustering algorithm based
on service interface similarity for service candidate
organization.

• A validation of the proposed approach through an
illustrative case study and an experiment.

The paper is organized as follows: In Section 2, a
background material is presented about the Formal Con-
cept Analysis technique and its application on the web
service context. In addition, an overview about the as-
sessment of similarity between web services is also cov-
ered. In Section 3, we present the proposed approach il-
lustrated by an example; we start by a general overview,

then we present our illustrative example, and finally we
explain in details the process of service substitutes iden-
tification and its components. The validation experi-
ment conducted on real web services is described in
Section 4. The paper concludes by a literature review
Section, a summary of the contributions and some per-
spectives.

2. Background

In this section, we present a background material
about Formal Concept Analysis and its application in
the context of web service classification. Then, we give
an overview about the similarity assessment between
web services, focusing more particularly on the assess-
ment technique adopted for this work.

2.1. Formal Concept analysis

Formal concept Analysis (FCA) (Ganter et al.
(2005),Wille (2009)) is a technique of data mining and
branch of mathematical lattice theory. FCA is used,
among others, in data analysis, information retrieval,
software engineering and data mining. FCA analyzes
data which describes a relationship between groups of
objects that share common attributes and provides an
associated graphical representation. The main goal of
FCA is to model concepts of thought as a unit of two
parts:

• The concept Extension which comprises all objects
that belong to the concept.

• The concept Intention which contains all attributes
that these objects share.

The notion of formal context of objects and their at-
tributes is essential for the application of FCA. The For-
mal context is an incidence table indicating which at-
tributes belongs to which object. Mathematically, a for-
mal context (G,M,I) consists of:

• G: a set of formal objects,

• M: a set of attributes, and

• I: an Incidence relation between the objects and the
attributes. I ⊂ G × M is a binary relation where
(G,M) ∈ I is read: ”object g has attribute m” such
that g ∈ G and m ∈ M.

A formal context is represented as a cross-table where
the rows represent G, the columns represent M and the
incidence I is represented by a series of crosses x as

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

odd even prime composite square
1 x x
2 x x
3 x x
4 x x x
5 x x
6 x x
7 x x
8 x x
9 x x x
10 x x

Table 1: A formal context for a set of objects G and set of attributes
M

shown in the example presented in Table 1 (example
taken from (Azmeh et al. (2010))).

In this example (Table 1), we have a formal context K
for a set of objects G = {1,2,3,4,5,6,7,8,9,10} and a set
of attributes M = {odd, even, prime, composite, square}.
From the formal context K, FCA generates a set of all
possible formal concepts where every formal concept is
a maximal collection of objects (Extent) sharing a max-
imal set of attributes (Intent).

Mathematically, the set of common attributes is de-
fined σ(G)={m ∈ M| (g,m) ∈ I, ∀g ∈ G}. Analogously,
the set of common objects is defined as ρ(G) = {g ∈
G|(g,m) ∈ I,∀m ∈ M}. A formal concept is a pair of
sets (G,M) such that M = ρ (G) and G = σ (G).

For example, in Table 1, C1 =

({3, 5, 7} , {odd, prime}) is a formal concept because
only objects 3, 5 and 7 share the attributes odd and
even (and vice-versa). By contrast, ({4, 9} , {square})
is not a formal concept because Extent {4, 9} is not
maximal: object 1 shares the same attribute. The set of
all concepts of a given formal context forms a partial
order via super-concept and sub-concept ordering ≤.
Either,(G1,M1) ≤ (G2,M2) ⇔ G1 ⊆ G2. Or dually,
(G1,M1) ≤ (G2,M2)⇔ M1 ⊆ M2. The set of all formal
concepts of a given formal context and the partial order
relation form a concept lattice (Galois lattice). Figure 1
depicts the resulting concept lattice for the previous
example, where (a) represents the resulting lattice, and
(b) a focus on concept c1. The Concept lattice was built
with Concept Explorer (ConExp) tool1

The visualization of the lattice facilitates the detec-
tion of relationships between concepts. For example in
Figure 1 (a), the concept y = ({4}, {even, composite,
square}) is a sub-concept of x, where x = ({6, 8, 10},

1Available online: http://conexp.sourceforge.net/

{even, composite}). In this case, y inherits the attributes
of x, and extends it by the attribute square.

In the context of web services, FCA has been suc-
cessfully applied for web service selection, because it
offers a formal classification and browsing mechanism
thereby allowing the organization of web services in
groups that share common characteristics (e.g. similar-
ity values, keywords, QoS attributes, operation signa-
tures, and/or functionalities). In addition, FCA allows
to visually representing this classification by concept
lattices that facilitate the navigation and the browsing
for needed services and their potential substitutes.

Technically, a concept in the web service context is
modeled in a unit of two parts:

1. Concept Extension (G) which comprises all the
considered web services. In specific cases, the con-
cept extension comprises parts of the web services
such as the operations, or even more the input and
output messages.

2. Concept Intention (M) which holds the manipu-
lated attributes that could be keywords, operations,
messages, functionalities, QoS attribute, or only
meaningful strings that represent any other web
service (operation/message) characteristics.

In this approach, the role of FCA is the classifica-
tion of service candidates in a set of concepts. Each
concept holds services (operations) that are considered
similar to each other. FCA reveals specialization re-
lationships (composition and substitution) between the
concepts, and organizes them into concept lattices for
facilitating the retrieval of service substitutes.

During FCA application for the classification of web
services, we build the so-called square concepts. They
are defined as concepts with equal intention and ex-
tension sets (Azmeh (2011)); i.e. these concepts form
square gatherings on the binary context matrix. They al-
low the identification of groups of mutually related ob-
jects (web services, operations, or messages). A better
recognition of square concepts is achieved by perform-
ing mutual column/line interchange in the binary con-
text matrix. Concrete examples about square concepts
are provided during the presentation of the approach.

2.2. Web service Similarity

Similarity measurement is essential for many pattern
recognition problems such as clustering, classification
and retrieval problems. The similarity is defined as the
measure of how close to each other two instances are.
The closer instances are to each other, the larger is the
similarity value. The similarity is assessed in the form
of real values that are comprised in the range [0, 1].

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Resulting formal concept Lattice

Thus, if the compared instances are sufficiently simi-
lar, the similarity value approaches 1, otherwise it ap-
proaches 0.

For the web service context, many similarity mea-
sures have been proposed to assess the similarity be-
tween web services or their parts, like operations and
messages, according to their syntactic and semantic
structure depicted in the web services WSDL files.

Mathematically, let O be a set of web services ele-
ments (Web Services, operations, messages). We define
the similarity measure S im:O × O=⇒[0,1] where:

• ∀ei, j ∈ O→ S im(ei j, ei j) = 1 (service element with
itself).

• ∀ei, j, el,k ∈ O, i , l⇒ S im(ei j, eik) ∈ [0, 1] (service
elements in different services).

This generic function (Sim) has different concretiza-
tions. We use in the current work the similarity assess-
ment function proposed in (Tibermacine et al. (2013)).
The function assesses the similarity between differ-
ent parts after analyzing WSDL interface descriptions.
These parts include services, operations, input and out-
put messages, parameters, simple and complex types
and documentation elements. The function incorpo-
rates, at the same time, different structural and semantic
similarity metrics between identifiers. Stoilos (Stoilos
et al. (2005)), JaroWinkler (Winkler (1990)) and Leven-
shtein (Levenshtein (1966)) are examples of the struc-
tural metrics, and Jiang, Lin, Pirro Seco and Resnik
(Pirró (2009)) are WordNet based semantic metrics used
in the similarity assessment process. Moreover, the sim-
ilarity between message structures with complex type

schema is evaluated using schema matching through a
similarity-flooding algorithm, where complex types are
modeled as labeled-oriented graphs.

Two operations are accepted as similar only if their
similarity value (score) returned by the Sim function is
greater or equal to a specific threshold; i.e. a similar-
ity threshold (θ ∈ [0, 1]) which is the lower limit of the
similarity value of two objects (services, messages, op-
eration etc.) to be considered as similar. We consider
five classes of similarities (very high, high, medium,
low, and very low). A similarity value that ranges in
[0.6, 0.8[is considered as a high similarity value, while
a value that ranges in [0, 0.2[is a very low similarity
value. Hence, if we fix the similarity thresholds to 0.85
for instance, we are accepting to be similar only com-
pared objects with very high similarity values. A more
relaxed threshold such 0.55 allows to consider, as simi-
lar, all compared objects with medium to very high sim-
ilarity scores.

We use in this work the similarity assessment tech-
nique that we described in (Tibermacine et al. (2013))
mainly because of its (i) completeness (deals with com-
plex types of messages that we frequently find in real-
world services),(ii) accuracy (Tibermacine et al. (2014))
and (iii) the existence of a tool support (available on-
line: https://code.google.com/p/wssim/). Nevertheless,
the process is generic, and any other similarity assess-
ment method, such as the method of Liu et al.(Liu et al.
(2010)) or the approach of Garriga et al. (Garriga et al.
(2013)), can be adopted for similarity assessment in the
proposed substitute identification process.

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

on object intent and extents occur in order to obtain the final context. The analysis and the
interpretation of the object’s intent (object that represent the failed service) reveal the
possible substitutes.
Figure 3 outlines the general schema of the approach. The role of each component in the
identification process of service substitutes is detailed in the following subsections.

Figure 3: Global schema

Keyword and Signature extractor

At the beginning of the identification process, the keyword and signature extractor
component starts by analyzing the WSDL document of the failed service. The analysis aims
to extract: a) a set of keywords that describe the service and its failed operation, and b) the
signature of the concerned operation including the information about its input and output
messages.

Keyword & Signature
Extractor Service Retriever

Failed Service
 (Operation)
 Web Services

Ressource Pool

Service Filterer
Similarity Assessor

(WSSIM Tool)

Keyword
s

+ Signature

Context builder & FCA Classifier

Substitute
(Service Or
Orchestration
of Services)

1 2

3

5

4

Signatures

Lattice interpreter

6

Operation
Clustering

Similarity Matrix
Reconstruction

Scaling and Context
Matrix Building

Square Concept
Extraction

Operation-Group
Context Building

Group
Extending

Final Concept
Building

Lattice
Generation

Similarity
matrix

Lattice

WSDLs

WSDLs

Figure 2: Global schema of the substitute identification process

3. The proposed approach

This section covers the proposed process for substi-
tute identification. First, we give an overview about the
proposed process. Then, we present an example that we
use for illustrating the application of the identification
process. Finally, we describe in full details, within the
remaining subsections, the different components of the
process.

3.1. Overview
As mentioned previously, our approach is built upon

two techniques; the first is the similarity assessment be-
tween web services that enables to evaluate similarity
and composability relationships between a set of web
service candidates; and the second technique is FCA,
which is used for classifying the compared services to
retrieve substitutes. The identification process is de-
picted in Figure 2. It starts by analyzing the WSDL
document of the failed web service by the first com-
ponent (Component 1 in Figure 2). This component

extracts, from the WSDL specification a set of repre-
sentative keywords and the signature of the concerned
operation. Then, the service retriever (Component 2 in
Figure 2) uses the set of keywords to select from a web
service pool, all possible similar services, i.e. it selects
web services that hold at least one of the keywords and
may offer the same or related functionalities. Next, the
service filterer (Component 3 in Figure 2) analyses the
retrieved service candidates. It compares, trough simi-
larity assessment, the operation signatures of these ser-
vices with the signature of the failed one. The compo-
nent keeps in the filtered service set only services that
have operations which are similar to the failed service,
or services that have a composability relationship with
the similar services.

The next step is the construction of the similarity ma-
trix between the elements of the filtered set and the
failed service. Hence, Component 4 in Figure 2 assesses
the similarity scores between all operation inputs and
outputs (messages). The generated similarity matrix

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

allows the identification of similarity relationships be-
tween all operations. Indeed, the similarity matrix can
reveal simple substitutes. Nonetheless, the classifica-
tion of operations in related groups can reveal also hid-
den similarity dependencies between these operations,
which enables an identification of complex substitutes.
For this end, the approach uses the FCA technique.

The context builder and the FCA classifier (Compo-
nent 5 in Figure 2) transforms the similarity matrix into
a formal concept after many adjustments on the ma-
trix itself. First, it groups similar operations in clus-
ters, which reduces the size of the matrix and enhances,
at the end of the FCA classification, the visualization
and the interpretation of the generated lattice. Second,
it rebuilds the similarity matrix based on the identified
groups. Next, the component builds the context ma-
trix corresponding to the reconstructed similarity ma-
trix. After that, the FCA classifier analyses the context
matrix to select square concepts. In fact, square con-
cepts are concepts with equal intention (operations in-
put and output messages) and extension (operations in-
put and output messages) sets. These concepts allow
the component to construct another context called the
operation-group context. In this context, the extensions
are the service operations (or clusters representatives),
and the intentions are groups of operations identified as
square concepts. Afterwards, the component extends
these intentions by adding similarity relationships to the
elements of each group. Finally, the component builds
the final concept matrix and generates its corresponding
operation lattice.

The lattice interpreter (Component 6 in Figure 2)
browses the lattice and interprets its content. It focuses
on analyzing the extension of the failed operation to ex-
tract the list of simple and complex substitutes.

3.2. Illustrative Example

We use for illustration a weather widget example.
The widget uses an orchestration of web services to
show weather information of the user’s region based on
its IP address. The widget interacts mainly with the web
service WWS (WidgetWeatherService). This web ser-
vice itself invokes an orchestration of two services GWP
(GettingWeatherProcess); the WU (WsUsers) web ser-
vice that affords IP information, and the FW (Fast-
Weather) web service that returns weather information.
Figure 3 shows the BPEL (Business Process Execution
Language) abstract description associated to this exam-
ple. Now, let us assume that the invocation of the oper-
ation marked with a red cross in the figure (getWeather-
ByIP) initiates an error due to the unavailability of the

Figure 3: Abstract BPEL description for the weather widget example

service FW. This situation directly leads to the defec-
tion of the orchestration GWP. One possible solution,
to heal this orchestration, is to find a substitute for the
failed service (FW). Then, we reconstruct the orchestra-
tion using the identified substitute. In the next subsec-
tions, we use the weather widget as a running example
for illustrating our process’ components.

3.3. Keyword and Signature extractor

The identification process starts from Component 1
in Figure 2. The component parses and analyses the
WSDL interface description of the failed web service
to extract a set of keywords. These keywords repre-
sent semantically the functionalities implemented by the
web service. The set of keywords are used as crite-
ria for the selection of web service candidates that may
offer equivalent functionalities. Moreover, the compo-
nent extracts the signature of the failed operation. Later,
this signature is used for similarity evaluation and candi-
date filtering, where the system removes all candidates,
which do not hold similar operations or do not have sim-
ilarity relationships with similar operations.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.3.1. Keyword Extraction
Technically, the keyword and signature extractor

component retrieves the representative keyword set
from the parsed WSDL document through the follow-
ing steps:

• The component retrieves all the identifiers from the
WSDL file. Then, it adds them to an identifier set
(IdSet).

• The component tokenizes the identifiers of the Id-
Set. It adds the extracted tokens to the Keyword
Set (KeywordSet).

• The component treats the KeywordSet as follows :

– It removes all redundant words.

– It removes all stop words.

– It stems words.

– Finally, it enriches the set by adding words
synonyms.

Thus, the component produces a set of keyword (Key-
wordSet) that represents the failed web service.

3.3.2. Signature Extraction
Component 1 extracts also the signature of the failed

operation after parsing the whole WSDL document.
The signature is produced in textual format that includes
operations identifier and the signature of its input and
output messages. By its turn, the signature of messages
holds their identifiers and a list of simple and complex
parameters.

3.4. Service Retriever

The service retriever (Component 2 in Figure 2) uses
the elements of the keyword set to search for web ser-
vice candidates that may offer the same functionalities
of the failed service. The component retrieves these
candidate services by either seeking available resource
pool using Algorithm 1, or directly by requesting web
service engines such as Service Xplorer2.

Algorithm 1 takes as input the initial keywordSet
(extracted from the failed service by Component 1),
and a set of available services in the service pool (Re-
sPoolSet). The algorithm analyzes each web service in
the pool. If an analyzed service do not hold any key-
word similar to those in the keywordSet, the service is
shifted to the analyzed service set (examinedServSet).

2Service Xplorer: http://eil.cs.txstate.edu/ServiceXplorer/

Algorithm 1 Candidate Selection
Input: KeywordSet, ResPoolSet
Output: SelectedServSet
Begin

1: Boolean matches ;
2: Create wordSet’;
3: Create examinedServSet;
4: while (ResPoolSet!=φ) do
5: wsdl = getElement(ResPoolSet);
6: wordSet’ = Keyword Extraction(wsdl);
7: matches = false;
8: for all (String word in wordSet’) do
9: if (Contains(KeywordSet, word)) then

10: matches = true; break;
11: end if
12: end for
13: if (matches) then
14: for all (String w in wordSet’) do
15: Add w To KeywordSet;
16: end for
17: Add wsdl To SelectedServSet;
18: while (examinedServSet!=φ) do
19: wsdl’ = getElement(examinedServSet);
20: Add wsdl’ To resPoolSet;
21: DeleteElement wsdl’ from examinedServSet ;
22: end while
23: else
24: Add wsdl To examinedServSet;
25: end if
26: DeleteElement wsdl from ResPoolSet ;
27: end while

End

Otherwise, the service is shifted to the selected service
set (selectedServSet), and its keywords are added to the
keywordSet (lines 14-16). A re-analysis of the previ-
ously analyzed but not selected services is necessary,
because the new added keywords could belong to one
of the analyzed services. Consequently, the elements of
the examinedServSet are shifted back to the ResPoolSet
(lines 18-22). Finally, the algorithm returns a set of se-
lected service candidates.

Note that within the returned service set, we have at
least one service that shares some keywords with the
failed web service. The other services share keywords
between each other, which is interpreted by the exis-
tence of dependencies (similarity or composability rela-
tionships) between them. Component 3 and 4 check and
evaluate respectively these dependencies.

3.5. Service Filterer

The filterer component refines the set of web service
candidates. It removes services that do not have a sim-
ilarity relationship with the failed service according to
the signature provided by component 1. The similar-
ity relation is interpreted by the fact that a given service
holds an operation that is similar by its input or output
message to the input or the output message of the failed
operation/service. Or, it is similar by its input or output
message to the input or the output message of an oper-

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

File
Service
Name

Input Output

Name Parameter Name Parameter

IP02.xml
(IP2Geo)

IP2Geo ResolveIp
IpAdress :String
Licence : String

ResolveIp City : String

IP07.xml
(GeometryInfo)

Geometry IPQuery
Ip : String
key : String

IPQuery Code : String

IP15.wsdl
(p2LocationWebService)

IP2Loc IP2Location
IpAdress :String
Licence : String

IP2Location City : String

W02.wsdl
(WeatherByZip)

Weather GetWeatherByZip Zip : String GetWeatherByZip
CityTo1ZipResult
: String

w03.wsdl
(Weather)

Weather GetWeather Zip : String getWeatherforZipCode
getWeatherfor-
ZipCodeResponse
: String Array

w06.WSDL
(WeatherService)

Weather GetWeather Zip : String getWeatherReturn
getWeatherReturn
: String Array

Z23.asmx
(ZIP)

ZIPCode CityToZipCode City : String CityToZipCode
CityToZipCode
: String

Figure 4: Filtered web services information

ation/service already evaluated as similar to the failed
one.

The component uses the filtration algorithm (Algo-
rithm 2). This algorithm takes as input the signature
of the failed operation (extracted by Component 1), the
selected service set (retrieved by Component 2) and a
similarity threshold that represents the accepted lower
limit to consider two operations as similar. The algo-
rithm keeps in the filtered services set (filteredService-
Set) all services that hold an operation that is similar to
the failed one, or services that hold operations that are
similar to operations that are similar, by their turn, to the
failed one.

To illustrate the remaining steps, we use the weather
widget example. The service selector component re-
trieves a set of 142 services from a total of 3792 web
services including 15927 operations in the resource ser-
vice pool. Then, the service filterer component reduces
the number of selected services to 7. Figure 4 summa-
rizes the information about the concerned operations in
the filtered services while the non-similar operations are
ignored. The failed service in the example is ”Fast-
Weather” service (the file W15 is not included in Fig-
ure 4), and the failed operation in the orchestration is
”GetWeatherByIp”.

3.6. Similarity Assessor

The role of the similarity assessor component is to
measure the similarity values between input and out-
put messages that belong to the operations in the filtered
service candidates. The component arranges these val-
ues in a similarity matrix. Figure 5 depicts the generic

form of this matrix. Practically, the component uses
WsSim tool3 for the similarity measurement. However,
the component is generic, and any other similarity as-
sessment approach can be integrated.

Actually, the elements to consider for the interpreta-
tion of the similarity matrix (Figure 5) are the following:

• WS =
{
Wsy|1 ≤ y ≤ l

}
. WS is the filtered Web ser-

vice set (filteredServSet). Wsi is the service num-
ber i in the filtered service set.

• OP = {Opx|1 ≤ x ≤ n}. OP is the operation set.
∀Opx,Opx ∈ Wsy|1 ≤ y ≤ l; i.e. all the operations
in the operation set are belonging to a service in
the Web Service Set.

• The function S im(A, B) evaluates the similarity be-
tween messages A and B where :

– A,B ∈MS; MS = { Opi.InputMessage⋃
Opi.OutputMessage|Opi ∈ OP }. MS is

the message set that groups the input and out-
put messages of the operations.

– ∀ A∈MS,∀ B ∈MS, A = B⇒ Sim(A,B)=1.

– ∀ A∈ MS,∀ B ∈ MS, A , B ⇒ Sim(A,B)∈
[0, 1].

• Op j ∈ OP and Opk ∈ OP are the compared opera-
tions and both belong to the operation Set.

3Available online: https://code.google.com/p/wssim/

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Operation Filtration
Input: Signature, selectedServSet, similarity Threshold θ
Output: FiltredServiceSet
Begin

1: Boolean matches ;
2: Create examinedServSet;
3: while (selectedServSet!=φ) do
4: wsdl = getElement(selectedServSet);
5: parsedWsdl = wsdlParser(wsdl);
6: matches = false;
7: for (int i=0; i <parsedWsdl.operationCount; i++) do
8: operationInfo = parsedWsdl.getOperation(i);
9: if (Sim(signature.InputMessage, operationInfo.InputMessage)≥ θ‖

Sim(signature.InputMessage, operationInfo.OutputMessage)≥ θ‖
Sim(signature.OutputMessage, operationInfo.InputMessage)≥ θ‖
Sim(signature. OutputMessage, operationInfo. OutputMessage)≥ θ
) then

10: matches= true ; break;
11: end if
12: end for
13: if (matches) then
14: Add wsdl To FiltredServiceSet;
15: Boolean matches’ ;
16: Create examinedServSet’;
17: examinedServSet’ = Duplicates(examinedServSet);
18: while (examinedServSet’!=φ) do
19: wsdl’ = getElement(examinedServSet’);
20: parsedWsdl’ = wsdlParser(wsdl’);
21: matches’= false;
22: for (int i=0; i <parsedWsdl.operationCount; i++) do
23: for (int j=0; j <parsedWsdl’.operationCount; j++) do
24: operationInfo= parsedWsdl.getOperation(i);
25: operationInfo’ = parsedWsdl’.getOperation(j);
26: if (Sim(operationInfo.InMessage,

operationInfo’.InMessage)≥
θ‖Sim(operationInfo.InMessage,
operationInfo’.OutMessage)≥
θ‖Sim(operationInfo.OutMessage,
operationInfo’.InMessage)≥ θ‖Sim(signature.
OutputMessage, operationInfo. OutputMessage)≥ θ)
then

27: matches’= true ; break;
28: end if
29: end for
30: end for
31: if (matches’) then
32: Add wsdl’ To FiltredServiceSet;
33: DeleteElement wsdl’ from examinedServSet ;
34: end if
35: DeleteElement wsdl’ from examinedServSet’ ;
36: end while
37: else
38: Add wsdl To examinedServSet;
39: end if
40: DeleteElement wsdl from selectedServSet ;
41: end while

End

𝐎𝐩𝟏 𝐎𝐩𝟐 … 𝐎𝐩𝒏

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

…

In
p

u
t

O
u

tp
u

t

𝐎𝐩𝟏
Input 1 𝐒𝑰𝟏_𝑰𝟐 𝐒𝑰𝟏_𝑶𝟐 … 𝐒𝑰𝟏_𝑰𝒏 𝐒𝑰𝟏_𝑶𝒏

output 1 𝐒𝑶𝟏_𝑰𝟐 𝐒𝑶𝟏_𝑶𝟐 … 𝐒𝑶𝟏_𝑰𝒏 𝐒𝑶𝟏_𝑶𝒏

𝐎𝐩𝟐
Input 𝐒𝑰𝟐_𝑰𝟏 𝐒𝑰𝟐_𝑶𝟏 1 … 𝐒𝑰𝟐_𝑰𝒏 𝐒𝑰𝟐_𝑶𝒏

Output 𝐒𝑶𝟐_𝑰𝟏 𝐒𝑶𝟐_𝑶𝟏 1 … 𝐒𝑶𝟐_𝑰𝒏 𝐒𝑶𝟐_𝑶𝒏

…

…

…

…

…

…

…

…

…

𝐎𝐩𝒏

Input 𝐒𝑰𝒏_𝑰𝟏 𝐒𝑰𝒏_𝑶𝟏 𝐒𝑰𝒏_𝑰𝟐 𝐒𝑰𝒏_𝑶𝟐 … 1

output 𝐒𝑶𝒏_𝑰𝟏 𝐒𝑶𝒏_𝑶𝟏 𝐒𝑶𝒏_𝑰𝟐 𝐒𝑶𝒏_𝑶𝟐 … 1

Figure 5: A generic form for the similarity matrix (SimMatrix)

• S I j Ik = S im(Op j.InputMessage,Opk.InputMessage),
S I j Ik is the similarity score between the input
message of operation Op j and the input message
of operation Opk.

• S O j Ik=Sim(Op j.OutputMessage,
Opk.InputMessage), S O j Ik is the similarity
score between the output message of operation
Op j and the input message of operation Opk.

• S I j Ok=Sim(Op j.InputMessage,
Opk.OutputMessage), S I j Ok is the similarity
score between the input message of operation Op j

and the output message of operation Opk.

• S O j Ok=Sim(Op j.OutputMessage,
Opk.OutputMessage), S O j Ok is the similar-
ity score between the output message of operation
Op j and the output message of operation Opk.

Moreover, we give the following definitions to figure
out similarity and substitutability relations between op-
erations from the similarity matrix.

Definition 1 (Similar Operations): we consider two
operations as similar if and only if the similarity value
between operation inputs and the similarity value be-
tween operation outputs; both are greater than or equal
to a threshold θ′. θ′ is fixed experimentally. Math-
ematically, ∀Opx ∈ OP,∀Opy ∈ OP, and x , y,
Sim(Opx.inputMessage, Opy.inputMessage)≥ θ’, and
Sim(Opx.inputMessage, Opy.inputMessage)≥ θ’ ⇔
Opx ≡ Opy. Opx is similar (equivalent) to Opy.

Definition 2 (1-to-1 substitute): from Definition 1,
similar operations to a failed operation are 1-to-1 sub-
stitute to this operation; If Op f is the failed operation,
∀ Opx ∈ OP, f , x and Op f ≡ Opx then Opx is 1-
to-1 substitute to Op f . These two definitions allow op-

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

W15.I W15.O IP02.I IP02.O IP07.I IP07.O IP15.I IP15.O W02.I W02.O W03.I W03.O W06.I W06.O Z23.I Z23.O

W15.I 1 0,935 0,579 0,702 0,192 0,65 0,103 0,381 0,577 0,577 0,172 0,577 0,172 0,491 0,362

W15.O 1 0,108 0,423 0,551 0,184 0,511 0,519 0,611 0,684 0,612 0,966 0,612 0,739 0,254 0,119

IP02.I 0,935 0,108 1 0,65 0,116 0,65 0,113 0,362 0,095 0,376 0,571 0,376 0,571 0,119 0,502

IP02.O 0,579 0,423 1 0,544 0,758 0,507 0,687 0,095 0,121 0,093 0,395 0,093 0,571 0,901 0,124

IP07.I 0,702 0,551 0,65 0,544 1 0,68 0,304 0,435 0,263 0,447 0,27 0,447 0,286 0,565 0,565

IP07.O 0,192 0,184 0,116 0,758 1 0,582 0,681 0,252 0,604 0,277 0,248 0,277 0,212 0,895 0,121

IP15.I 0,65 0,511 0,65 0,507 0,68 0,582 1 0,472 0,378 0,472 0,262 0,472 0,279 0,128 0,312

IP15.O 0,103 0,519 0,113 0,687 0,304 0,681 1 0,227 0,373 0,277 0,492 0,277 0,549 0,912 0,135

W02.I 0,381 0,611 0,362 0,095 0,435 0,252 0,472 0,227 1 0,983 0,417 0,983 0,463 0,547 0,789

W02.O 0,577 0,684 0,095 0,121 0,263 0,604 0,378 0,373 1 0,64 0,683 0,64 0,683 0,535 0,483

W03.I 0,577 0,612 0,376 0,093 0,447 0,277 0,472 0,277 0,983 0,64 1 1 0,465 0,382 0,756

W03.O 0,172 0,966 0,571 0,395 0,27 0,248 0,262 0,492 0,417 0,683 1 0,51 0,769 0,246 0,176

W06.I 0,577 0,612 0,376 0,093 0,447 0,277 0,472 0,277 0,983 0,64 1 0,51 1 0,382 0,756

W06.O 0,172 0,739 0,571 0,571 0,286 0,212 0,279 0,549 0,463 0,683 0,465 0,769 1 0,246 0,321

Z23.I 0,491 0,254 0,119 0,901 0,565 0,895 0,128 0,912 0,547 0,535 0,382 0,246 0,382 0,246 1

Z23.O 0,362 0,119 0,502 0,124 0,565 0,121 0,312 0,135 0,789 0,483 0,756 0,176 0,756 0,321 1

Figure 6: Case study similarity matrix (SimMat))

eration clustering and similarity matrix reconstruction
which are explained in the next subsections.

For Illustration, Figure 6 shows the similarity matrix
(SimMat) between the input and the output messages of
the operations presented in Figure 4, and the input and
output messages of the failed operation (getWeather-
ByIp) in the service (W15). The matrix SimMat is an in-
stance of the generic matrix depicted in Figure 5. Lines
and columns in SimMat represent inputs and outputs of
the concerned operations (each service is represented by
one operation in this example). The cells of SimMat
hold the similarity values between lines and columns
(operation’s input/output, input/input, output/input or
output/output).

3.7. Context builder and FCA classifier
The context builder and FCA classifier is Component

5 in Figure 2. This component classifies and visualizes
the operations that belong to service candidates in a lat-
tice. This organization exploits the similarity matrix to
reveal substitution relationships between operations, in
a navigable way within a generated lattice. The context
builder and the FCA classifier conduct many transfor-
mations depicted inside the component (Component 5,
Figure 2). It starts by grouping similar operations in
clusters, which directly identifies simple (1-to-1) sub-
stitutes because operations in the same cluster represent
substitutes for each other.

Next, the component reduces the lines and columns
number in the similarity matrix based on the constructed
clusters, which reduces consequently the lattice size,
and hence the complexity of its interpretation. Then, the

component uses the reduced similarity matrix for build-
ing its associated context matrix that includes the input
and output messages in addition to their operations.

Afterwards, the classifier analyses the context ma-
trix to recognize the square concepts, i.e. the maxi-
mal collections of messages (intentions) that share the
same similarity relationships with other messages (ex-
tensions). Then, the component forms groups of simi-
lar messages. Each group holds the objects (input and
output messages) of the corresponding square concept.
These groups maintain the similarity relationships be-
tween messages of the same group, which represent
possible compositions between operation output (output
message) and another operation input (input message).

In order to show these composition relationships, the
component builds what we call Operation-Group con-
text matrix. The objects in this context matrix are the
operations and the attributes are the groups of messages
extracted from the square concepts. In the next step,
the component extends the groups of messages (the at-
tributes of the last context matrix) by adding for each
input message its output message, and for each output
message its similar messages. This step is crucial be-
fore building the final context because it identifies all
composition sequences (which operation could be com-
posable with another). These composition sequences
present, during the visualization of the lattice, the com-
plex (N-to-1) substitutes.

After that, the component builds the final concepts
based on the extended groups. These concepts hold the
relationships between operations and their possible sub-
stitutes. Finally, the classifier generates the lattice that

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑰𝑷) *𝐼𝑃0 𝐼𝑃07 𝐼𝑃 5+

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑾) *𝑊 𝑊4 𝑊6+

𝐶𝑙𝑢𝑠𝑡𝑒𝑟3(𝒁𝟐𝟑) *𝑍 3+

Figure 7: Clusters identified from SimMat

W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O

W15.I 1 0,935 0,579 0,381 0,577 0,491 0,362

W15.O 1 0,108 0,423 0,611 0,684 0,254 0,119

IP.I 0,935 0,108 1 0,362 0,095 0,119 0,502

IP.O 0,579 0,423 1 0,095 0,121 0,901 0,124

W.I 0,381 0,611 0,362 0,095 1 0,547 0,789

W.O 0,577 0,684 0,095 0,121 1 0,535 0,483

Z23.I 0,491 0,254 0,119 0,901 0,547 0,535 1

Z23.O 0,362 0,119 0,502 0,124 0,789 0,483 1

Figure 8: Clusters similarity matrix (CLSimMat)

corresponds to the final context. This lattice classifies
operations in groups that share common attributes. In
this case, the attributes hold the possible substitutes for
each operation. Component 6 interprets the lattice and
extracts complex (N-to-1) substitutes.

In the following subsections, we detail each transfor-
mation step using our illustrative example.

3.7.1. Operation clustering
In this step, the component groups operations in a set

of clusters using Algorithm 3. This algorithm analyzes
the similarity matrix for constructing clusters of simi-
lar operations. The operations are grouped in the same
cluster if their similarity values are greater than or equal
to a given similarity threshold (Lines 15-16 of Algo-
rithm 3). The threshold is fixed experimentally. It repre-
sents the lower accepted limit for the similarity value to
consider two compared objects (messages), in the ma-
trix, as similar.

On the one hand, the identification of clusters reduces
the complexity of the computation in the next steps. On
the other hand, it reveals simple (1-to-1) substitutes; i.e.
operations in the same cluster which are simple substi-
tutes for each other.

For instance, if we consider the operation clustering
for our example using this algorithm, the similarity ma-
trix (depicted in Figure 6), with a similarity threshold θ’
that is equal to 0.65 (θ’=0.65), produces the 3 clusters
(IP, W, and Z23) shown in Figure 7.

Afterwards, the similarity matrix has to be recon-
structed based on the identified clusters as we will ex-
plain in the following subsection.

Algorithm 3 Operation Clustering
Input: OP, SimMatrix, similarity Threshold θ’
Output: Clusters
Begin

1: Boolean Added ;
2: int nbc = 0 ;
3: while (OP!=φ) do
4: op = getElement(OP);
5: Added = false ;
6: DeleteElement op from OP ;
7: if (nbc==0) then
8: nbc ++ ;
9: Create clusternbc ;

10: Add op To clusternbc ;
11: else
12: int i ; Added = false;
13: while (i ≤ nbc) do
14: op’ = getElement(clusteri) ;
15: if (GetSimScore(SimMatrix, op.InputMessage,

op’.InputMessage)≥ θ’ && GetSimScore(SimMatrix,
op.OutputMessage, op’.OutputMessage)≥ θ’) then

16: Add op To clusteri;
17: Added = true;
18: break;
19: else
20: i++ ;
21: end if
22: if (!Added) then
23: nbc++;
24: Create Clusternbc;
25: Add op To Clusternbc;
26: end if
27: end while
28: end if
29: end while

End

3.7.2. Similarity matrix reconstruction
The component reconstructs the original similarity

matrix (SimMat) based on the identification clusters.
The new generated matrix is the Cluster Similarity Ma-
trix (CLSimMat). The component reduces the number
of lines and rows in the original matrix (SimMat). Thus,
it keeps one operation from each cluster, and it removes
the remaining operations. Note that each operation is
represented by two lines (two columns) in the matrix.
The first line (column) represents its input message and
the second its output message.

For instance, Figure 8 shows the cluster similarity
matrix (CLSimMat) which resulted from the reconstruc-
tion of the similarity matrix SimMat depicted in Figure
6, based on the identified clusters presented in Figure 7.

3.7.3. Scaling and context matrix building
In this step, the component scales the matrix accord-

ing to a given similarity threshold θ’. The component
removes, from the cluster similarity matrix (CLSimMa-
trix), all the values that are less or equal to the threshold
θ’. The removed values are presented by blank cells in
the similarity matrix (e.g., matrix (a) in Figure 9). The
deletion of these values represents the elimination of all
relationships between the messages that are not consid-

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O

W15.I 1 0,935 W15.I x x

W15.O 1 0,684 W15.O x x

IP.I 0,935 1 IP.I x x

IP.O 1 0,901 IP.O x x

W.I 1 0,789 W.I x x

W.O 0,684 1 W.O x x

Z23.I 0,901 1 Z23.I x x

Z23.O 0,789 1 Z23.O x x

(a) The scaled Matrix (b) The Context matrix (ContextMat)

Figure 9: Scaled and context matrix

W15.I IP.I W15.O W.O IP.O Z23.I W.I Z23.O

W15.I x x

IP.I x x

W15.O x x

W.O x x

IP.O x x G1 =

Z23.I x x G2 =

W.I x x G3 =

Z23.O x x G4 =

(a) The Interchanged Context Matrix (IContextMat) (b) The Identified groups

{���. �	, ��. �}

{���. �	,�.�}

{��.�	, ���. �}

{�. �	, ���. �	}

Figure 10: Square Concepts, Interchanged Context Matrix and identified groups

ered as similar. Thus, they will not appear in the context
matrix nor in the generated lattice later.

Then, the component replaces all the remaining val-
ues in the matrix which are replaced by ’x’ to obtain the
context matrix (ContextMat). For illustration, Figure 9
shows in (a) the scaled version of the CLSimMatrix pre-
sented in Figure 8, and in (b) its context version based
on the similarity threshold θ’ that is equal to 0.65.

We recall that both objects and attributes of the built
context (presented by ContextMat) are input and output
messages, and the relationship between objects and at-
tributes is the similarity relationship.

3.7.4. Square concepts extraction
In this step, the component analyses the context ma-

trix (ContextMat) to extract groups of messages that
have mutual similarity relationships. These groups
of messages are used by the component for detecting
composability relationships between operations. These
groups are presented in the context matrix by square
concepts. By definition, a square concept is a collection
of objects with equal extension and intention sets. They
are better viewed in the context matrix by interchanging
lines and columns. For instance, Figure 10 shows the

square concepts marked by the blue squares in the inter-
changed context matrix (a). In addition, the component
forms four corresponding groups as it is depicted in part
(b) of the figure.

3.7.5. Operation-Group Context building
According to the groups identified in the previ-

ous step, the component builds a new context matrix
called the Operation-Group Context Matrix (OPGCon-
textMat). The objects of the new context are the opera-
tions. The attributes are the groups of mutually similar
messages (objects of the square concepts) identified pre-
viously. The relationships between the objects and the
attributes are the membership of at least one message
in the attribute to one operation. Figure 11 shows the
OPGContextMat constructed for our example based on
the groups identified in part (b) of Figure 10.

3.7.6. Group Extending
In this step, the component extends the attributes of

the OPGContextMat to hold composition sequences.
These consequences show the composition relation-
ships between the operations (e.g., operation 1 is com-
posed with operation 2 and the latter is composed with

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

{W15.I , IP.I} {W15.O , W.O} {IP.O , Z23.I} {W.I , Z23.O}

W15 x x

IP x x

W x x

Z23 x x

Figure 11: Operation-group context matrix (OPGContextMat)

Iteration 0 : (Initial groups)

G1={W��.I , IP.I}
G2={	W��.O, W.O}
G3={IP.O, Z��.I}
G4={W.I, ���.O}

Iteration 1 :

G1’={���.I-���.O , ��.I-	��.O }
G2’={	���.O, �.O}
G3’={��.O, ���.I- ���.O }
G4’={W.I - W.O , ���.O}

Iteration 2 :

G1’={���.I-���.O , ��.I-	��.O=>���.I }
G2’={	���.O, �.O}
G3’={��.O, ���.I- ���.O => W.I }
G4’={W.I - W.O , ���.O}

………

Iteration 4 :

G1’={W15.I - W15.O , IP.I - IP.O => Z23.I - Z23.O =>W.I - W.O}
G2’{W15.O , W.O}
G3’ {IP.O , Z23.I - Z23.O =>W.I - W.O}
G4’= {W.I - W.O , Z23.O}

Figure 12: Extended groups

operation 4 and so on). These consequences are built
based on the similarity between messages identified
from the square concepts identified in Section 3.7.4.

The component extends the attributes (extension of
the OPGContextMat) by applying the following steps:

• Step 1: for every operation input, add its output
(e.g. Op1.In becomes Op1.In − Op1.Out).

• Step 2: for every operation output, add its sim-
ilar inputs by looking at the initial groups (e.g.
Op5.Out becomes Op5.Out ⇒ Op1.Out).

• Step 3: repeat step 1 and step 2 until no change
occurs.

The application of these steps on the groups, depicted
in part (b) of Figure 10, is illustrated in Figure 12. The
component produces 4 extended groups (shown in Fig-
ure 12). These groups contain different composition se-
quences such as ”Z23.I- Z23.O => W.I-W.O” in group
G3’.

3.7.7. Final Context Building
In this step, the Context Builder and the FCA Clas-

sifier component uses the extended groups as attributes
for building the final context matrix (FinContMat). The
objects of FinContMat are the same operation candi-
dates. Crosses are added in this context if one operation
has at least one message in the corresponding attribute.

For instance, Figure 13 shows the final context of the
illustrative example.

3.7.8. FCA classification and lattice generation
In the final transformation step, Component 5 uses

Concept Explorer (Yevtushenko (2000)) to generate the
operation lattice corresponding to the final formal con-
text elaborated previously. The lattice classifies oper-
ations in related groups. Each group has common at-
tributes (intention). In this lattice, the attributes con-
tain the possible substitutes for each operation. Com-
ponent 6 interprets the lattice and extracts complex (N-
to-1) substitutes for the failed operation in the defected
web service. Figure 14 depicts the operation lattice as-
sociated to the final context shown in Figure 13.

3.8. Lattice Interpreter

The Lattice Interpreter (Component 6 in Figure 3)
queries the generated lattice for determining the substi-
tutes of the failed operation. More precisely, the com-
ponent parses the intent label of the failed operation to
extract composition sequences that could be appropriate
substitutes. The component uses the following steps for
the interpretation of the intent label:

• Step 1: operation input and its output separated
by the minus sign (-) are replaced by the name of
the operation itself (e.g. Op1.In-Op1.Out becomes
Op1.)

• Step 2: the sign (⇒) between operations means
composability between them (e.g. Op1 ⇒ Op2

means Op1 can be composed with Op2).

• Step 3: if the intent holds an orchestration (⇒
sign) and all the elements in that orchestration are
operations (but not only the input or the output
of operation as Op.In or Op.Out), then the se-
quence of operations (orchestration) is a potential
substitute (N-to-1 substitute) for the selected object
(failed operation).

For our example, if we select the object labeled W15
in the lattice (the failed operation), and we look at its
intent (see Figure 15), we obtain the following:

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

{W15.I-W15.O , IP.I-IP.O => Z23.I-Z23.O =>W.I-W.O} {W15.O , W.O} {IP.O , Z23.I-Z23.O => W.I-W.O} {W.I - W.O , Z23.O}

W15 x x

IP x x

W x x x x

Z23 x x x

Figure 13: Final Concept Matrix

Figure 14: Final Lattice

• W15.O, W.O: means that the output message of
operation W15 is similar (equivalent) to the output
message of operations in cluster2(W). This does
not offer any valuable information.

• W15.I-W15.O, IP.I-IP.O⇒Z23.I-Z23.O⇒W.I-
W.O: if we follow step 1 we obtain W15,
IP⇒Z23⇒W. The first part (parts are separated
by semicolons) does not offer any valuable in-
formation because operation W15 is similar to
itself. For the second part, if we follow steps 2
and 3 we get an orchestration of three operations
IP⇒Z23⇒W. This orchestration is a substitute
for the failed operation W15.

Additionally, IP and W represent Cluster1 and
Cluster2. So, elements in the same cluster can be used
interchangeably. Consequently, we obtain a set of sub-
stitutes (6 orchestrations), as illustrated in Figure 16.

The lattice interpreter component returns a set of sub-
stitutes for the failed operation. These substitutes are
simple operations (1-to-1 substitutes), and sets of oper-
ations that form composite sequences which are consid-
ered as complex (N-to-1) substitutes.

Figure 15: Final lattice interpretation

4. Experiment and Validation

According to the previous descriptions, the key con-
cept of the approach is the similarity between a web
service orchestration and single web service candidates
(similarity between the input/output of the orchestra-
tion with the input/output of the substitute). So, start-
ing from a given similarity degree (threshold), we con-
sider the service as equivalent/substitute to the orches-
tration. Thus, if any of these substitutes fails, it effort-
lessly could be replaced by its equivalent orchestration
(1-to-N substitution) and vice-versa (N-to-1 substitu-
tion). We performed some experiments on a set of real
web services to evaluate the approach efficiency and ef-
fectiveness. The experiments are conducted following
four steps: data set selection, orchestration extraction,
substitute extraction, and finally experiment evaluation.

We focus on the validation of the idea of complex
substitute identification, because the selection of simple
substitutes is a particular case in our approach that has
been already addressed in the literature (details in Sec-
tion 5). Before starting this experiment, we have made
an investigation on the number of operations that have
no simple substitutes in the WS-Dream dataset (Zhang
et al. (2011)). We have found, using WsSim tool, that
among 15952 operations in 3794 web services, there

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

��������	(��) = {����, ����, ����}

��������(�) = {��,��,��}

��������(���) = {���}

��� = IP +	���+ W

x

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

Figure 16: List of (N-to-1) substitutes

are 3809 operations with no simple substitute (23.88%).
This rate motivates our interest to the validation of com-
plex substitute identification.

4.1. Methodology

We have conducted the experimental process on fol-
lowing these steps:

• Select a set of web services (dataset),

• Extract possible combinations that could be con-
sidered as service orchestrations,

• Manually check the obtained combinations to de-
fine the set of orchestrations,

• Extract possible substitutes for each orchestration,

• Manually check the obtained substitutes,

• Measure results in terms of well know metrics (re-
call, precision, accuracy and F1-score).

4.2. Data Selection

In this experiment, we have selected 64 web service
WSDL documents from the WS-Dream dataset (Zhang
et al. (2011)). In fact, the data set contains 3792 web
services, but we limited the number of used services to
64 to be able to check manually the obtained results in
reasonable time. The first service is a weather service,
and the remaining services are selected among the oth-
ers using the selection and filtering algorithms presented
previously. The list of the used services and experiment
results are accessible for download at the following ad-
dress: https://sites.google.com/site/wservicesubstitues/

Figure 17: Number of obtained substitutes

4.3. Orchestration extraction

From the dataset, we extracted all possible orchestra-
tions from the web services. We assessed the similar-
ity values between these web services, more precisely
between their operations. We fixed the composability
threshold (θ) at 0.95; which means that two operations
are considered composable if the similarity between the
output of the first operation and the input of the second
operation is greater or equal to 0.95. We selected this
score after several experiments to obtain a reduced num-
ber of orchestrations. Using this composability thresh-
old (θ= 0.95) we obtained 113 orchestrations. The man-
ual verification of these extracted orchestrations vali-
dated the composability between these combinations.
Lower thresholds allowed the selection of a larger num-
ber of combinations. But a manual adaptation between
inputs and outputs is needed to consider these combina-
tions as acceptable.

4.4. Substitute extraction

In the next set of experiments, we used different sim-
ilarity thresholds to automatically extract possible sub-
stitutes for each element in the orchestration set. Fig-
ure 17 shows the values of the extracted substitutes ac-
cording to different similarity threshold values (θ). Ob-
viously, we obtain a larger selection once we use relaxed
similarity threshold values (θ ≤ 0.70 and θ ≥ 0.60). Nev-
ertheless, the manual examination shows that relaxed
threshold values leads to obtain a lot of substitutes that
need a manual adaptation (parameters of complex type
to adapt). Consequently, we fixed the threshold value
(θ) to 0.75.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.5. System performances
The machine used for this experiment is running with

an Intel processor (I3-2100 CPU 3.10 GHZ) and RAM
of 4 GB under Windows 7 Operating System (64 bits).
Figure 18 summarizes the execution times for each run
depending on the chosen similarity threshold value. Ex-
ecution times in part (a) of Figure 18 include execution
times for WSDL parsing, similarity measurement be-
tween services, similarity matrix reconstruction, combi-
nation of operation extraction, and finally matrix anal-
ysis and substitute identification. Part (b) of the same
figure depicts the obtained values for the WSDL pars-
ing and substitute extraction times.

The WSDL document parsing time ranges from 0.3
to 0.4 seconds for the same number of WSDL files. The
analysis of the similarity matrix to identify substitutes
ranges from 0.07 to 1.4 seconds. These values depend
on the matrix size which is correlated with the num-
ber of operations selected based on the used similar-
ity threshold. The values depicted in part (a) of Figure
18 are the execution times of the experiment runs. In
each run, the WSDL documents are parsed, the possi-
ble combinations (orchestration) are extracted, the sim-
ilarity matrix is constructed and then it is analyzed and
the substitutes are identified based on the fixed similar-
ity threshold. These execution times range from 360 to
372 seconds. They are inversely proportional with the
similarity threshold, thus, with the number of selected
operations.

4.6. Result measurement
Finally, we measure the effectiveness of the approach

by calculating some information retrieval metrics such
as recall, accuracy and precision. These metrics have
been broadly used in the context of web service discov-
ery and selection (Garriga et al. (2013),Rodriguez et al.
(2010)).

In Figure 19, table (a) shows the number of extracted
substitutes according to the fixed thresholds. Column
”By tool” depicts the number of the substitutes that are
extracted automatically; that are considered by the tool
as correct substitutes for the orchestrations. Column
”Manually checked” contains the number of substitutes
that are manually verified. These values are used to
identify:

• The number of true positives (number of substi-
tutes that are identified by the tool and that are cor-
rect),

• The number of the false positives (number of sub-
stitutes that are identified by the tool and that are
incorrect),

• The number of false negatives (number of substi-
tutes that are correct but that are not identified by
the tool),

• The number of true negatives (number of substi-
tutes that are incorrect and that are not identified
by the tool).

Values summarized in table (b) Figure 19 are used to
calculate the following IR metrics:

• Precision: is the number of true results divided by
the number of all returned results.

Precision (P) = T P
T P+FP = 0.731

• Accuracy: is the number of true results (both true
positives and true negatives) in the obtained re-
sults.

Accuracy (A) = T P+T N
T P+FP+FN+T N = 0.732

• Recall: is the number of correct results divided by
the number of results that should be returned.

Recall (R) = T P
T P+FN = 0.98.

• F1-Score: is a measure of test accuracy. It can be
interpreted as a weighted average of both precision
and recall.

F1-Score= 2 × P×R
P+R = 0.836.

The experiment shows that the precision rate is rela-
tively low because of the number of the false positives.
These false positives are the operations that are identi-
fied by the tool and considered as substitutes for some
orchestrations. The manual verification shows that these
operations are semantically different than the orchestra-
tion, but the tool selected them as substitutes because
their input or output messages are syntactically similar
to the input of the first operation in the orchestration
or, respectively, the output of the last operation in the
orchestration. However, the experiment shows that the
accuracy rate is very high, and this is very important in
the case of identification of substitutes.

In summary, the metric values obtained from this
experiment on the one hand, and the case example
that illustrated the section presenting the approach on
the other hand, both show the practicability of the ap-
proach. Therefore, we can effectively retrieve (1-to-1)
and (N-to-1) substitutes for failed services. Neverthe-
less, this experiment showed some drawbacks that we
could avoid by taking into account the following:

• The better we measure the similarity and we fix its
threshold the better results we obtain.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 18: Experiments Execution time

• Relaxed thresholds have to be avoided for substi-
tutes identification.

• In case we choose medium thresholds, some sub-
stitutes need an adaptation (casting, complex type
conversion, etc.) to replace failed operations.
These service adaptations can be addressed at pro-
tocol level (Motahari Nezhad et al. (2007)).

4.7. Threats to validity

Conclusion, construct, internal and external threats
are the four categories of threats to validity proposed in
(Wohlin et al. (2000)). An extension of this framework
to cover Search-Based Software Engineering (SBSE)
experiments is proposed by Barros and Dias-Neto (Bar-
ros and Dias Neto (2011)). In this section, we discuss
the threats to validity of the conducted experiment ac-
cording to the former extension.

Conclusion validity threats have a concern with the
relationship between the treatment and the outcome.
The empirical design must make sure that there is a
statistical relationship between the involved parts. The
main conclusion threats include the non-consideration
of random variation, the lack of good descriptive statis-
tics and the luck of the use of a meaningful baseline
(Barros and Dias Neto (2011)). In this experiment,
we addressed the first threat by having many runs for
each fixed threshold to measure the execution time. We
note here that the number of experiment runs did not
affect the number of obtained substitutes. Moreover,
we cope with the remaining conclusion threats by com-
paring the obtained results with the manually identified
ones, which is considered as a solid comparison base-
line.

Construct validity threats are concerned with the re-
lation between theory and observation, ensuring that the
treatment reflects the construct of the cause and that the
outcome reflects the construct of the effect. In SBSE
experiments, construct threats involve using invalid ef-
ficiency and effectiveness measures and not discussing
the underlying model subject to optimization (Barros
and Dias Neto (2011)). We coped with these threats
by discussing the cost measures of the experiments (the
execution time). In addition, we addressed the validity
of the effectiveness measures using the recall, precision
and accuracy metrics, which are widely used in such ex-
periments.

Internal validity threats are concerned with the eval-
uation of the causality of the relationship between the
treatment and the outcome in an experimental study, or
the result of a factor upon which the researcher has no
control. Internal threats may include: 1) poor parame-
ter settings, 2) luck of discussion on code instrumenta-
tion, 3) luck of clear data collection procedures, and fi-
nally 4) the luck of a real problem instance (Barros and
Dias Neto (2011)). In this experiment, we cope with
these threats by presenting the most important parame-
ter (similarity and composability thresholds) used in the
experiment, by providing the source code of the simi-
larity assessor used in the approach, by conducting the
experiment using a set of real web services, and finally
by describing the data collection procedure.

External validity threats are concerned with the gen-
eralization of the observed results to a larger popula-
tion, outside the sample instances used in the exper-
iment. Specifically, these threats include the lack of
a clear definition of target instances, the lack of clear
instance selection strategy, and the fact of not having

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Number of
orchestrations

Number of substitutes

By Tool
Manually
checked

Ɵ=0.95
Ɵ’=0.75

113
605 442

Ɵ=0.95
Ɵ’=0.73

645 452

 (a)

TP (True Positive) FP (False Positive)

442 163

FN (False negative) TN (True Negative)

10 30

 (b)

Figure 19: Result of manual verification of extracted substitutes

enough diversity in instance size and complexity (Bar-
ros and Dias Neto (2011)). In this experiment, the exter-
nal threats come from the limited number of instances
of selected web services used in the experiment. Even
if we have selected these services from a large collec-
tion of (almost 3800) real web services, it is still diffi-
cult to generalize these results because they depend on
the studied set of web services. Nevertheless, the goal
of this experiment is to show the practicability and effi-
ciency of the proposed substitute identification process
on real-world data.

5. Related Work

Many works have been proposed in the literature, fo-
cusing on different aspects of web service discovery, se-
lection, classification, composition, composition heal-
ing and adaptation. In this section, we present a litera-
ture review for some of these research topics related to
the work presented in this paper.

5.1. Similarity evaluation for service discovery and se-
lection

The similarity evaluation between web services has
been studied by many researchers for service discovery
and selection. A survey with a comparative analysis be-
tween the proposed approaches has been presented in
(Kokash (2006) and Crasso et al. (2011)). Most of these
works use Information Retrieval (IR) techniques to in-
crease web service discovery precision without involv-
ing any additional level of semantic mark-up (Garriga
et al. (2013)).

In (De Antonellis et al. (2006)), the authors present
their tool (ARTEMIS) which calculates a set of simi-
larity coefficients to evaluate web service compatibility.
The tool clusters similar services based on the obtained
similarity coefficients.

Dong and his colleagues present a search engine
called ”Woogle” (Dong et al. (2004)). Based on simi-
larity search, Woogle returns similar Web services for a
given query. The search engine combines multiple tech-
niques to evaluate similarity between the services and
their operations. These techniques focus on operation
parameters as well as operations and service descrip-
tions. The authors introduced a clustering algorithm for
grouping description terms in a set of concepts. After
that, similarity between concepts is measured using a
simple information retrieval metric; the TF/IDF metric.

The similarity evaluation in (Kokash (2006)) is im-
plemented through combining lexical and structural
matching. Likewise, in (Plebani and Pernici (2009)),
the paper proposes a method for Web service retrieval
called URBE (Uddi Registry By Example). The re-
trieval is based on the evaluation of similarity between
Web service interfaces. The algorithm used in URBE
combines the analysis of Web services structure and the
terms used inside it.

(Ait-Bachir (2008)) studied the similarity measure-
ment between behavioral interfaces of web services by
simulation. Both structural and behavioral aspects of
services are considered in this study. Structural as-
pects represent service operations, messages and their
XML schema within the interface description docu-
ment. Moreover, the behavioral aspect, which is pre-
sented by finite state machines, is defined by control
flow and inter-dependencies between operations.

The approach presented in (Crasso et al. (2008)) pro-
poses to discover the most relevant web services to a
given query. The approach is based on the represen-
tation of a web service description and queries within
classic space vectors. Then, it matches between the vec-
tors that represent services and the vector which repre-
sents the query using the Cosine metric. It returns the
nearest service to the given query.

Additionally, an approach for measuring the com-
patibility degree of services’ protocols is proposed in
(Ouederni et al. (2011)). The approach relies on a for-
mal comparison that is based on generic-flooding tech-
niques. The authors provide a formal model for describ-
ing web service interfaces with interaction protocols.

Another similarity measurement approach is pro-
posed in (Garriga et al. (2013)) for service selection.
The approach comprises an assessment process for ser-
vice interface compatibility. The assessment process

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is based on a structural scheme for service match-
ing. The scheme is divided into two main parts: au-
tomatic strong matching and semi-automatic potential
matching. The former involves similarity cases directly
recognized from Java interfaces of candidate services.
The latter involves cases that could be solved through
a semi-automatic assistance. The whole information
package gathered from this process provides an impor-
tant insight about candidate services and their required
adaptations for integration.

The approach described in (Tibermacine et al.
(2013)) uses different structure and semantic similarity
metrics to conduct a similarity assessment between dif-
ferent WSDL parts of the compared web services (op-
eration, messages, parameters, type ...). It uses also
a schema matching technique to evaluate the similar-
ity between input and output messages. The similarity
function is parameterized by a set of weights to allow
users determine which parts of a WSDL document have
more impact on the similarity score. We adopt this ap-
proach in the current work for the similarity assessment
between web services. Nevertheless, the identification
process of service substitutes is a generic, and it is not
limited by the use of a specific similarity measurement
approach. So, any other measurement approach, such as
(Garriga et al. (2013), Kokash (2006) and Plebani and
Pernici (2009)), could be incorporated during the simi-
larity matrix construction between service candidates.

5.2. Fault recovery in web service compositions

Different kinds of faults may occur during service
composition execution, and many strategies were pro-
posed to repair the failed services. In (Fugini and Mussi
(2006)), the authors present an approach for fault man-
agement in Web applications. The contribution is a self-
healing system that holds all possible faults and their
repair actions in a special registry. Authors present a
reference architecture for faults treatments and a set of
strategies for recovery. Moreover, a classification of
faults has been studies and schematized. The core of
the approach is based on searching substituting services
for repairing compositions.

Dobson (Dobson (2006)) proposes to transform a
BPEL process into a fault tolerance process using a
fault tolerance pattern. The transformation is achieved
by adding redundant behavior to the process. Baresi
in (Baresi et al. (2007) and Baresi and Guinea (2005))
present a supervision framework and a solution for self-
healing BPEL processes based on Dynamo. The frame-
work lies on the use of Aspect Oriented Programming
techniques, the separation of concerns principle and a

rule engine (JBoss rules) to allow recovery of faults in
service composition.

WS-Diamond is a project for self-healing web ser-
vices (Console and Team (2007)). It is based on a plat-
form for observing symptoms in complex composed ap-
plications. It aims to diagnosis occurring faults, and for
selection and execution of repair plans.

In (Simmonds et al. (2010b) and Simmonds et al.
(2010a)), the authors propose a framework for per-
forming runtime monitoring of web service-based ap-
plications against behavioral correctness properties de-
scribed as a finite-state automaton. The set of verified
properties specify forbidden and desired interactions be-
tween services. The execution traces of web service-
based applications described in BPEL are checked for
conformance at runtime. The framework proposes dif-
ferent adaptation strategies in case of violation of prop-
erties.

A QoS-driven self-healing method for reliable web
service composition was introduced in (Dai et al.
(2009)). The method predicts QoS and performance
during composition. It backups alternate web services
during the selection step. Then, in case of failure, it
re-selects from these backups based on QoS and per-
formance predictions. Moreover, authors use a Semi-
Markov process to predict the data transmission speed
over the network where services are executing.

Authors in (Behl et al. (2012)) propose a replication
architecture for executing workflows in fault-tolerant
and configurable manner. In the proposed architecture,
BPEL processes and Web services are actively repli-
cated using output and input proxies. An automatic
transformation of process definitions allows proxies to
intercept the communication between services transpar-
ently. The proxies make use of a ZooKeeper service for
coordination and dynamic configuration.

In this work, we focused on the selection of substi-
tutes based on similarity measurement between a web
service and a set of potential candidates. These sub-
stitutes that could be simple or complex serve as back-
ups for the different partner links in the orchestration.
Users can statically construct different execution scenar-
ios based on the identified substitutes. These scenarios
are the recovery plans in case of orchestration failure.
Hence, our approach can complete the previously men-
tioned works.

5.3. Web services classification using concept lattices

Many works have addressed the classification of web
services using concept lattices. In their paper (Peng and
Chen (2008)), the authors present a formal definition

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of web service classification and retrieval using formal
concept analysis. The essential of the approach is to
build lattices using formal contexts where objects are
web services and attributes represent the operations of
these services. Then, they retrieve similar services using
algorithms that navigate the lattices. In order to under-
stand relationships between web services, and among
operations of complex services, Aversano et al. (Aver-
sano et al. (2006)) propose an approach based on For-
mal Concept Analysis. The approach analyzes service
interfaces and documentations to build lattices. The
generated lattices allow analysts to cluster similar ser-
vices, highlight hierarchical relationships, and visual-
ize, in general, similarities and differences between the
analyzed services.

Restructuring of service registry at runtime using
Formal Concept Analysis is studied in (Chollet et al.
(2010)). The purpose behind this approach, as the au-
thors claim, is to speed up the selection process of
web services, and to improve decision making through
the building of concept lattices. The service registry
is viewed as a formal context where services are ob-
jects and service types are attributes. Non-functional
characteristics (security) are considered as additional at-
tributes.

The work proposed in (Fenza and Senatore (2010))
describes an approach for retrieving semantic web ser-
vices, taking into account user’s requirements and pref-
erences. The approach exploits the fuzzy formal con-
cept analysis for modeling concepts and relationships
extracted from web service resources. The user formu-
lates its query as conceptual terms, and through a con-
ceptual based mechanism it returns the list of semantic
web services that match the introduced query.

The authors in (Driss et al. (2010)) introduce a
requirement-centric approach that allows modeling
user’s requirements, discovering and selecting web ser-
vices. The authors use formal concept analysis only for
selecting automatically relevant high QoS services.

In addition, the authors in (Azmeh et al. (2008)) elab-
orate a tool named WSPAB. The tool uses formal con-
cept analysis to allow automatic discovery, classifica-
tion, and selection of web services. The tool builds
formal concepts where objects are web services and
attributes are operation signatures. Then, it generates
corresponding lattices that classify the studied web ser-
vices. The same authors propose another approach to
classify web services by keywords elicited from their
WSDL documents (Azmeh et al. (2010)). The approach
clusters similar services using FCA, so it is possible
later to identify relevant services and their substitutes
from concept lattices.

An extension to the previous approach based on Ra-
tional Concept Analysis (RCA) is proposed to select
composable web services driven by users requirements
at the design phase (Azmeh et al. (2011)). The approach
is based on four main steps including: service collec-
tion, validation and compatibility filtering, QoS level
calculation, and RCA classification. The resulting lat-
tices group services that have common QoS and com-
position levels. User requirements are expressed as new
services and they are classified in the corresponding lat-
tices.

In fact, in (Azmeh et al. (2011)) the user has to intro-
duce a requirement document that specifies an abstract
process with the needed functionality and the expected
QoS in each service, as well as the composability be-
tween each pair of services. Then, the approach selects
concrete web services for each element in the abstract
process. The selected services are simple and com-
posable with each other according to the composability
modes described initially in the requirement document.
Certainly, this approach selects elements for building
compositions, but the selected services are all simple.
Moreover, the solution is static (number of services in
the process is fixed) and totally guided by the user. In
the opposite, the solution that we propose is used at the
maintenance phase. It is dynamic, i.e. the approach
retrieves service substitutes with a variable number of
services in the composition for the same specification.
In addition, the approach does not need any abstract
description to guide the identification process; the ap-
proach browses automatically all composition possibili-
ties and finds appropriate substitutes for a failed service
described by its WSDL document.

Technically, we have updated the selection and the
filtration phases by proposing new similarity-based al-
gorithms. Then, we used a more complex similarity
method to measure the similarity between web service
candidates. We focus on the similarity between in-
put and output messages rather than the similarity be-
tween operations like Azmeh et al. did in their paper.
The study of similarity between service inputs and out-
puts can reveal both composition and similarity relation-
ships, but the similarity between operations reveals only
similarity relationships which leads to the discovery of
simple substitutes only. We also performed additional
tasks for the classification of services (e.g. Group ex-
tending and the steps applied in this task and those ap-
plied during the interpretation task). This refined pro-
cess enabled us to construct lattices that cluster opera-
tions and show their potential simple and complex sub-
stitutes.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6. Conclusion

In this paper, we proposed an approach for identify-
ing relevant web service substitutes for healing failed
service orchestrations. The approach relies on measur-
ing the similarity between web service interfaces. We
presented the necessary algorithms and techniques for
selecting, filtering, and clustering web service candi-
dates. We used a similarity matrix to determine the rela-
tion between services. We described the steps that aim
to find simple substitutes (1to1) and complex substitutes
(N-to-1). We incorporated FCA to classify and visualize
the relevant results. We have shown the practicability of
the approach using a case example. In addition, we val-
idated the approach via a set of experiments conducted
on a collection of real web services.

One of the original contributions of this work is the
identification of complex substitutes; i.e. a set of ser-
vices that can be orchestrated to replace a single service
based on the similarity measurement between these ser-
vices. The presented process is also generic, and other
similarity assessment approaches can be incorporated in
the substitute identification process.

As future works, we intend to study the similarity,
composability and substitution between stateful web
services. In fact, the current work focuses on conven-
tional Web services, which are stateless in nature as
they use request and response messages for communica-
tion, without keeping any state between requests. How-
ever, some web services applications require services
to record their communication. These stateful services
require a precise interaction protocol for session man-
agement, which makes the investigation for substitution
between such services a hard task.

Moreover, we intend to integrate this approach in a
fully automatic framework that ensures reliable web ser-
vice compositions. The framework will hold among
others; a web service monitor, an SLA (Service Level
Agreement) controller, an exception handler, a substi-
tute selector (based on the current work), a Quality of
Service (QoS) evaluator, and a composition adapter.

References

Ait-Bachir, A., 2008. Measuring similarity of service interfaces. In:
ICSOC PhD Symposium 2008. p. 59.

Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B., 2013. Self-
healing framework for cloud-based services. In: ACS International
Conference on Computer Systems and Applications (AICCSA).
IEEE, pp. 1–7.

Ardagna, D., Cappiello, C., Fugini, M., Mussi, E., Pernici, B., Ple-
bani, P., 2006. Faults and recovery actions for self-healing web
services. In: World Wide Web Conf.

Aversano, L., Bruno, M., Canfora, G., Di Penta, M., Distante, D.,
2006. Using concept lattices to support service selection. Interna-
tional Journal of Web Services Research (IJWSR) 3 (4), 32–51.

Azmeh, Z., 2011. A web service selection framework for an assisted
soa. Ph.D. thesis, Montpellier 2.

Azmeh, Z., Driss, M., Hamoui, F., Huchard, M., Moha, N., Tiber-
macine, C., 2011. Selection of composable web services driven by
user requirements. In: IEEE International Conference on Web Ser-
vices (ICWS). IEEE, pp. 395–402.

Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.,
2008. Wspab: A tool for automatic classification & selection of
web services using formal concept analysis. In: IEEE Sixth Euro-
pean Conference on Web Services(ECOWS’08). IEEE, pp. 31–40.

Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.,
2010. Using concept lattices to support web service compositions
with backup services. In: Fifth International Conference on Inter-
net and Web Applications and Services (ICIW). IEEE, pp. 363–
368.

Baresi, L., Guinea, S., 2005. Dynamo: Dynamic monitoring of ws-
bpel processes. In: In Proceedings of the International Conference
on Service-Oriented Computing (ICSOC05). Springer, pp. 478–
483.

Baresi, L., Guinea, S., Pasquale, L., 2007. Self-healing bpel processes
with dynamo and the jboss rule engine. In: International workshop
on Engineering of software services for pervasive environments:
in conjunction with the 6th ESEC/FSE joint meeting. ACM, pp.
11–20.

Barros, M. d. O., Dias Neto, A. C., 2011. Threats to validity in
search-based software engineering empirical studies. techreport
0006/2011, UNIRIO - Universidade Federal do Estado do Rio de
Janeiro.

Behl, J., Distler, T., Heisig, F., Kapitza, R., Schunter, M., 2012.
Providing fault-tolerant execution of web-service-based workflows
within clouds. In: Proceedings of the 2nd International Workshop
on Cloud Computing Platforms. ACM, p. 7.

Chollet, S., Lestideau, V., Lalanda, P., Moreno-Garcia, D., Colomb,
P., 2010. Heterogeneous service selection based on formal con-
cept analysis. In: 6th World Congress on Services (SERVICES-1).
IEEE, pp. 367–374.

Console, L., Team, W.-D., 2007. Ws-diamond: An approach to web
services-diagnosability, monitoring and diagnosis. In: Interna-
tional e-Challenges Conference, The Hague (October 2007).

Crasso, M., Zunino, A., Campo, M., 2008. Query by example for web
services. In: Proceedings of the 2008 ACM symposium on Applied
computing. SAC ’08. ACM, New York, NY, USA, pp. 2376–2380.
URL http://doi.acm.org/10.1145/1363686.1364251

Crasso, M., Zunino, A., Campo, M., 2011. A survey of approaches to
web service discovery in service-oriented architectures. Journal of
Database Management (JDM) 22 (1), 102–132.

Dai, Y., Yang, L., Zhang, B., 2009. Qos-driven self-healing web
service composition based on performance prediction. Journal of
Computer Science and Technology 24 (2), 250–261.

De Antonellis, V., Melchiori, M., Plebani, P., 2006. An approach
to web service compatibility in cooperative processes. In: Inter-
national Symposium on Applications and the Internet Workshops
(SAINTW’06). IEEE Computer Society, pp. 95–95.

Ding, Y., Xiang, R., 2013. A service-oriented exception handling
method based on exception classification. In: International Con-
ference on Sensor Network Security Technology and Privacy Com-
munication System (SNS & PCS). IEEE, pp. 63–68.

Dobson, G., 2006. Using ws-bpel to implement software fault
tolerance for web services. In: 32nd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, 2006.
SEAA’06. IEEE, pp. 126–133.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J., 2004.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Similarity search for web services. In: Proceedings of the Thir-
tieth international conference on Very large data bases - Volume
30. VLDB ’04. VLDB Endowment, pp. 372–383.

Driss, M., Moha, N., Jamoussi, Y., Jézéquel, J.-M., Ghézala, H.
H. B., 2010. A requirement-centric approach to web service mod-
eling, discovery, and selection. In: Service-Oriented Computing.
Springer, pp. 258–272.

Fan, J., Kambhampati, S., Mar. 2005. A snapshot of public web ser-
vices. SIGMOD Rec. 34 (1), 24–32.

Fenza, G., Senatore, S., 2010. Friendly web services selection exploit-
ing fuzzy formal concept analysis. Soft Computing 14 (8), 811–
819.

Fugini, M. G., Mussi, E., 2006. Recovery of faulty web applications
through service discovery. In: Proceedings of the 1st SMR-VLDB
Workshop, Matchmaking and Approximate Semantic-based Re-
trieval: Issues and Perspectives, 32nd International Conference on
Very Large Databases. pp. 67–80.

Ganter, B., Stumme, G., Wille, R., 2005. Formal Concept Analysis:
foundations and applications. Vol. 3626. springer.

Garriga, M., Flores, A., Mateos, C., Zunino, A., Cechich, A., 2013.
Service selection based on a practical interface assessment scheme.
International Journal of Web and Grid Services 9 (4), 369–393.

Kokash, N., 2006. A comparison of web service interface similarity
measures. Frontiers in Artificial Intelligence and Applications 142,
220.

Levenshtein, V., 1966. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady 10, 707.

Li, Y., Melliti, T., Dague, P., 2007. Modeling bpel web services for
diagnosis: Towards self-healing web services. In: WEBIST (1).
pp. 297–304.

Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J., 2010. Measuring similarity
of web services based on wsdl. In: IEEE International Conference
on Web Services (ICWS),. IEEE, pp. 155–162.

Motahari Nezhad, H. R., Benatallah, B., Martens, A., Curbera, F.,
Casati, F., 2007. Semi-automated adaptation of service interac-
tions. In: Proceedings of the 16th international conference on
World Wide Web. ACM, pp. 993–1002.

Ouederni, M., Salan, G., Pimentel, E., 2011. Measuring the compati-
bility of service interaction protocols. In: Proceedings of the 2011
ACM Symposium on Applied Computing. ACM, pp. 1560–1567.

Peng, D., Chen, Q., 2008. An efficient approach for managing replace-
ability of web services. In: Proceedings of the 2008 Fourth Interna-
tional Conference on Semantics, Knowledge and Grid. SKG ’08.
IEEE Computer Society, Washington, DC, USA, pp. 388–391.

Pirró, G., November 2009. A semantic similarity metric combining
features and intrinsic information content. Data Knowl. Eng. 68,
1289–1308.

Plebani, P., Pernici, B., 2009. Urbe: Web service retrieval based on
similarity evaluation. IEEE Transactions on Knowledge and Data
Engineering, 21 (11), 1629–1642.

Psaier, H., Dustdar, S., Jan. 2011. A survey on self-healing systems:
Approaches and systems. Computing 91 (1), 43–73.

Rodriguez, J. M., Crasso, M., Zunino, A., Campo, M., 2010. Improv-
ing web service descriptions for effective service discovery. Sci-
ence of Computer Programming 75 (11), 1001–1021.

Simmonds, J., Ben-David, S., Chechik, M., 2010a. Guided recov-
ery for web service applications. In: Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of soft-
ware engineering. ACM, pp. 247–256.

Simmonds, J., Ben-david, S., Chechik, M., 2010b. Monitoring and
recovery of web service applications. In: In Smart Internet, LNCS.
Springer, pp. 1–35.

Stoilos, G., Stamou, G., Kollias, S., November 2005. A string metric
for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V. R.,
Musen, M. A. (Eds.), Proceedings of the 4rd International Se-

mantic Web Conference (ISWC). Springer, Berlin, Heidelberg, pp.
624–637.

Tibermacine, O., Tibermacine, C., Cherif, F., 2013. Wssim: a tool for
the measurement of web service interface similarity. In: French-
speaking Conference on Software Architectures (CAL’13).

Tibermacine, O., Tibermacine, C., Cherif, F., 2014. A practi-
cal approach to the measurement of similarity between wsdl-
based web services. RNTI: Revue des Nouvelles Technologies de
l’Information Special Issue CAL 2013 (RNTI-L-7), 3–18.

Wille, R., 2009. Restructuring lattice theory: An approach based on
hierarchies of concepts. In: Ferr, S., Rudolph, S. (Eds.), Formal
Concept Analysis. Vol. 5548 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 314–339.

Winkler, W. E., 1990. String comparator metrics and enhanced deci-
sion rules in the fellegi-sunter model of record linkage. In: Pro-
ceedings of the Section on Survey Research. pp. 354–359.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B.,
Wesslén, A., 2000. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, Norwell, MA, USA.

Yevtushenko, S. A., 2000. System of data analysis concept explorer.
In: Proceedings of the 7th national conference on Artificial Intelli-
gence KII. Vol. 2000.

Zhang, Y., Zheng, Z., Lyu, M. R., 2011. Wspred: A time-aware per-
sonalized qos prediction framework for web services. In: IEEE
22nd International Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE, pp. 210–219.

Okba Tibermacine is a lecturer and PhD student in
computer science at Biskra University (Algeria), gradu-
ated from the same university with B.Sc (engineer) de-
gree, and received his M.S (magister) degree in com-
puter science from Batna University, Algeria. His cur-
rent research interests include SOA architectures, Re-
liability analysis, Error-handling and Self-healing Web
service compositions.

Chouki Tibermacine is an associate professor at
Montpellier University (France) since fall 2007. He re-
ceived his Ph.D. from the University of South Brittany
(France) in 2006 and his M.Sc in Distributed Systems
from the University of Paris VI (France) in 2003. His
current research focuses on the specification, evolution
and transformation of component-based and service-
oriented software architectures and programs. He super-
vised several PhD and Master theses which have been
successfully defended these last years. He participated
to several research projects with industrial (IBM, among
others) and academic partners. He co-authored about
thirty peer-reviewed articles and received the ACM
SIGSOFT Distinguished Paper Award at CBSE’11 and
CBSE’14. He is holding (for the period 2012-2016) the
scientific excellence fellowship from the University of
Montpellier.

Cherif Foudil is an Associate Professor of computer
science at Computer Science Department, Biskra Uni-
versity, Algeria. Dr. Cherif holds PhD degree in com-
puter Science. The topic of his doctoral dissertation is
Behavioral Animation: simulation of a crowd of virtual
humans. He also possesses B. Sc. (engineer) in com-

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

puter science from Constantine University 1985, and an
M.Sc. in computer science from Bristol University, UK
1989. He is currently the head of LESIA Laboratory.
His current research interest is in artificial intelligence,
artificial life, crowd simulation and software engineer-
ing.

24

