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Abstract. Architecture constraints are specifications defined by devel-
opers at design-time and checked on design artifacts (architecture de-
scriptions, like UML models). They enable to check, after an evolution,
whether an architecture description still conforms to the conditions im-
posed by an architecture pattern, style or any design principle. One pos-
sible language for specifying such constraints is the OMG’s OCL. Most
of these architecture constraints are formalized as ”gross” specifications,
without any structure or parameterization possibilities. This causes dif-
ficulties in their reuse. We propose in this work a process for trans-
lating architecture constraints into a special kind of components called
constraint-components. This makes these specifications reusable (easily
put and checked out in/from repositories), parametrizable (generic and
applicable in different contexts) and composable with others. We imple-
mented this process by considering the translation of OCL constraints
into constraint-components described with an ADL called CLACS.

Keywords: Architecture Constraint, Component, Reusability, OCL

1 Introduction: Context and Problem Statement

Architecture constraints are specifications of invariants that are checked by ana-
lyzing architecture descriptions. This kind of constraints should not be confused
with functional constraints, which are checked by analyzing the state of the run-
ning components constituting the architecture. For example, if we consider a
UML model (an architecture description) containing a class Employee (a com-
ponent in that architecture) which has an integer attribute age, a functional
constraint presenting an invariant in this class could impose that the values of
this attribute (slot of an object) must be included in the interval [16-70] for all
instances of this class. This kind of constraints is inherently dynamic. They can
be checked only at runtime.

On the other side, architecture constraints are specifications where archi-
tecture descriptions, and not component states, are analyzed [27]. They define
invariants imposed by the choice of a particular design principle, architectural
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style or pattern, like the layered architecture style [25], where “components in
non-adjacent layers must not be directly connected together”. This is an exam-
ple of an architecture constraint. OCL [17] is an OMG standard which specify
two types of constraints : functional (constraints navigate in UML models) and
architectural (constraints navigate in MOF metamodels).

Functional constraints are used in Design by Contract for ensuring the defi-
nition of accurate and checkable interfaces for software components [21]. Archi-
tecture constraints are used during the evolution of a software architecture for
guaranteeing that changes do not have bad side effects on the applied architec-
ture patterns or styles, and thus on the quality [28].

Many architecture constraints have been formalized for the existing archi-
tecture patterns proposed in the literature and practice of software engineer-
ing [32,14,3]. But unfortunately, most of them are “gross” textual specifications.
They do not offer any structure. Therefore, it is difficult to reuse them in oth-
er/different contexts. This is the reason why we propose in this paper a process
to transform them into more structured assets in order to facilitate their reuse.
In addition, our experience with architecture constraint specification leads us
to say that most of the time, architecture constraints are composed of many
“independent” parts that are assembled together via logical operators. Some of
these parts are shared between several architecture constraints and have their
own semantics. The idea of this paper is to propose a way to build OCL basic
constraints as entities embedded in a special kind of software components, that
can be reused, assembled, composed into higher-level ones and customized using
standard component-based techniques.

In this paper, we propose to translate automatically architecture constraints
specified in design stage into “constraint-components”. We propose a two-step
process which takes as input a gross OCL architecture constraint specification
expressed in the UML metamodel, and which provides as output constraints-
components expressed with CLACS ADL. We propose to generate architecture
constraints as “constraint-components” [30] so that we can put them on “shelves”
and thereafter make them reusable, customizable and composable with others
to produce more complex constraints.

The remaining of this paper is organized as follows. In the following section,
we give an illustrative example of the input and the output of the proposed pro-
cess. These will serve as running examples throughout the paper. In Section 3,
we describe in detail the steps of our process. In Section 4, we expose an eval-
uation of the approach. Before concluding and presenting the future work, we
discuss the related work in Section 5.

2 Illustrative Example

To better understand the context of this work, we introduce an example of an
architecture constraint (Listing 1.1) enabling the checking of the topological
conditions imposed by the “Service Bus Architecture Pattern” [5]. This pattern
introduces three kinds of components: the customers, the producers and the
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bus. The bus is defined as an adapter that establishes the communication be-
tween customers and producers as they may have mismatching interfaces. The
architecture constraint which specifies the conditions imposed by this pattern
is expressed in OCL using the UML metamodel [27] in the following listing. A
detailed specification of the UML component model is presented in [16].

1 context Component inv :
2 l e t bus : Component
3 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
4 −>s e l e c t ( c : C l a s s i f i e r | c . oc l I sKindOf (Component )
5 and c . oclAsType (Component ) . name=’esbImpl ’ )
6 customers : Set (Component )
7 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
8 −>s e l e c t ( c : C l a s s i f i e r | c . oc l I sKindOf (Component )
9 and ( c . oclAsType (Component ) . name=’ cust1 ’

10 or c . oclAsType (Component ) . name=’ cust2 ’
11 or c . oclAsType (Component ) . name=’ cust3 ’ ) )
12 producers : Set (Component )
13 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
14 −>s e l e c t ( c : C l a s s i f i e r | c . oc l I sKindOf (Component )
15 and ( c . oclAsType (Component ) . name= ’ prod1 ’
16 or c . oclAsType (Component ) . name=’prod2 ’
17 or c . oclAsType (Component ) . name=’prod3 ’ ) )
18 in
19 −− The bus should have at l e a s t one input port
20 −− and one output port
21 bus . ownedPort−>e x i s t s (p1 , p2 : Port |
22 p1 . provided−>notEmpty ( ) and p2 . requ i red−>notEmpty ( ) )
23 and
24 −−Customers should have output por t s only
25 customers−>f o rA l l ( c : Component |
26 c . ownedPort−>f o rA l l ( requ i red−>notEmpty ( )
27 and provided−>isEmpty ( ) ) )
28 and
29 −−Customers should be connected to the bus only
30 customers−>f o rA l l (com : Component |
31 com . port−>f o rA l l (p : Port | p . end−>notEmpty ( )
32 implies
33 s e l f . ownedConnector −>e x i s t s ( con : Connector |
34 bus . ownedPort−>e x i s t s ( pb : Port |
35 con . end . ro l e−>i n c l ude s (pb) ) and
36 con . end−>i n c l ude s (p . end ) ) ) )
37 and
38 −−Producers should have input por t s only
39 producers−>f o rA l l ( c : Component |
40 c . ownedPort−>f o rA l l ( provided−>notEmpty ( )
41 and requ i red−>isEmpty ( ) ) )
42 and
43 −−Producers should be connected to the bus only
44 producers−>f o rA l l (com : Component |
45 com . port−>f o rA l l (p : Port | p . end−>notEmpty ( )
46 implies
47 s e l f . ownedConnector−>e x i s t s ( con : Connector |
48 bus . ownedPort−>e x i s t s ( pb : Port |
49 con . end . ro l e−>i n c l ude s (pb) ) and
50 con . end−>i n c l ude s (p . end ) ) ) )

Listing 1.1. Bus architecture pattern constraint in OCL/UML

When applying our proposed approach, we change the format of the con-
straint (Listing 1.1) from a textual “gross” specification into an architecture
description made of “constraint-components” and ”query-components”. These
components are described with an ADL named CLACS [30] (pronounced Klax).
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By “gross” specification, we mean a specification that does not offer enough
structure, reusability and parameterization.

In the literature, there are many languages enabling the specification of ar-
chitecture constraints (see [27] for a survey). Each one has its advantages and its
particular application context. However, CLACS is the only language that pro-
vides a component model for software architecture constraint specification. The
architecture constraints modeled with this language are constraint-components
in which the checked invariants are still specified using OCL. But these OCL con-
straints navigate in CLACS metamodel and not in the UML’s one. The choice of
UML is simply motivated by the fact that it is an industrial standard1, and that
OCL is its original constraint language. We can consider here a repository of
architecture constraints that can be fed by the software architecture community,
by using these general modeling languages, which are UML and OCL.

The result of our translation process is shown in Fig. 1. We notice the presence
of two kinds of component descriptors (query and constraint). Query-components
embed OCL definition constraints that return a value whose type is different
from Boolean and constraint-components embed OCL definition constraints
that return only Boolean values. Indeed, our architecture constraint specification
will be decomposed in a set of OCL definition constraints and these constraints
will be embedded in these two kinds of components to reuse them.

There are three let expressions in the architecture constraint (Listing 1.1).
Each one (Lines 2 - 5, 6 - 11, 12 - 17) is supposed to be defined basically in a sepa-
rate query-component descriptor. But let expressions 2 and 3 are similar accord-
ing to a similarity measure which is defined in the following section. That is why
they are represented by only one query-component (ParticipantsIdentification).

There are five constraint-components on the right of the figure. These com-
ponents represent the OCL definitions that are extracted from our initial
constraint and then parametrized. These definitions are called throughout
the constraint and they will potentially serve other constraints.

There are in total five sub-constraints in the architecture constraint (List-
ing 1.1). Each one (Lines 21 - 22, 25 - 27, 30 - 36, 39 - 41 and 44 - 50) is supposed
to be defined basically in a separate component descriptor. But in this exam-
ple, sub-constraints 2 and 4 can be grouped in the same component descriptor
(PortConstraint) because they check similar “aspects”. They check if all the
components in a given set of instances (customers in the first sub-constraint
and producers in the second) have specific kinds of ports (input or output).
PortConstraint descriptor provides two operations which enable the checking
of these two sub-constraints. On the other side, sub-constraints 3 and 5 check
exactly the same invariant (in contrast to sub-constraints 2 and 4), except that
they apply on different sets of components (customers for sub-constraint 3 and
producers for sub-constraint 5). Thus, there is a single component descriptor

1 Even if a recent empirical study [23] found out that UML is not fully (but selectively)
used by developers in industry, and that it is used informally, there is a general
agreement that UML is the de facto standard modeling language known by a large
number of developers.
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Fig. 1. Sample of approach results

(ConnectToBusConstraint) which is generated for these two sub-constraints.
This constraint-component provides a single operation which is parameterized
with the set of components on which the constraint should be checked.

We can see (on the top of the figure) the constraint checked by the composite,
in which there are five operation invocations to the three internal components
(on the left of the figure). These internal components (that constitute our initial
constraint) call the operations that are declared in the others components using
the name of the provided port. These later descriptors will be registered in a
repository and will be potentially useful for other constraints. In other words,
for each new “gross” constraint specification to decompose, we will measure the
similarity between the OCL definitions extracted from it i.e. after applying
the decomposition and the paramterization (see Section 3, subsection 3.1), and
the registered OCL definitions embedded in the components, According to
the similarity result, we can reuse an existing OCL definition constraint and
also modify it, if necessary.
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For this example, we will obtain, in addition to the descriptor of the “main”
component (BusPatternArchitecture), three constraint-component descriptors
(instead of five) corresponding to our initial constraint. These three compo-
nents are connected to the two query-components (BusIdentification and
ParticipantsIdentification) and five other constraint-components. These
query-components provide queries that are shared between the constraint- com-
ponents.

Through this “componentization”, CLACS constraint-component and query-
component descriptors can be reusable (instantiated many times in different con-
texts), composable (instances of them can be connected together or connected
within a composite component to build complex constraint-components) and pa-
rameterizable (to check that customers or producers are connected only to the
bus, we can pass the right arguments to the operation of ConnectToBusConstraint
descriptor).

In the following section, we describe in detail the steps of the constraint
translation process illustrated with examples.

3 Transformation of constraints into components

Our process is composed of two main steps. The first one consists in extracting
sub-constraints from the constraint. These sub-constraints will be specified as
parametrized OCL definitions. The second step consists in embedding these
generated OCL definitions into components in order to make them reusable.
We will detail these two steps in the following subsections.

Note that OCL constraints are predicates in the first order logic. They have
a simple and intuitive concrete syntax. Even if the transformations presented in
this paper apply on OCL, the proposed work can be generalized to any equivalent
predicate logic language. This is not demonstrated experimentally in our work,
but as the reader can notice, the syntactic tokens handled in our transformations
are general to predicate logic.

3.1 Constraint refactoring

We propose first to extract sub-constraints as OCL definitions and then we
identify parameters for them and we will obtain at the end an invariant which
uses these definitions. These definitions are parametrizable and will be regis-
tered in a repository to be used by other constraints. To obtain this new form of
our invariant, we propose a multi-step transformation micro-process. All steps
use as input the abstract syntax tree of the initial constraint.

Let expressions extraction Sometimes a sub-expression is used several times
in an OCL constraint. The operator let allows to report and set the value (i.e
initialize) a variable that can be used in the expression which follows the inv.
def is a type of constraints which is used to declare and define the values of
attributes or returned values of operations.
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The first step in our approach is to extract the let expressions from our
textual constraint specification and define them as constraints stereotyped with
def. These OCL definition constraints must return a value whose type is
different from Boolean. At the same time, we modify our textual constraint i.e,
the constraint undergoes changes and call these generated OCL definitions in
their appropriate places. At this level, our initial constraint will be as follows:

1 context Component
2 −− l e t e xp r e s s i on s ex t r a c t i on
3 def : l e tBus ( ) : Component = s e l f . r e a l i z a t i o n .
4 r e a l i z i n gC l a s s i f i e r −>s e l e c t ( c : C l a s s i f i e r | c . oc l I sKindOf (Component )
5 and c . oclAsType (Component ) . name = ’ esbImpl ’ )
6 def : l etCustomers ( ) : Set (Component ) = s e l f . r e a l i z a t i o n .
7 r e a l i z i n gC l a s s i f i e r −>s e l e c t ( c : C l a s s i f i e r | c . oc l I sKindOf (Component )
8 and ( c . oclAsType (Component ) . name = ’ cust1 ’ or
9 c . oclAsType (Component ) . name = ’ cust2 ’ or

10 c . oclAsType (Component ) . name = ’ cust3 ’ ) )
11 def : l e tProduce r s ( ) : . . .
12 inv :
13 l e tBus ( ) . ownedPort −>i n c l ude s (p1 , p2 : Port | p1 . provided
14 −>notEmpty ( ) and p2 . r equ i r ed −>notEmpty ( ) )
15 and
16 l etCustomers ( )−>f o rA l l ( c : Component | c . ownedPort
17 −>f o rA l l ( requ i red−>notEmpty ( )and provided−>isEmpty ( ) ) )
18 and . . .
19 and . . .
20 and . . .

Listing 1.2. Constraint after extracting let expressions

Constraint decomposition Second, we decompose automatically the obtained
constraint into a set of sub-constraints. This decomposition is primary based on
logical operators used at the top level (Lines 15, 18, 19 and 20 in Listing 1.2).
Operands of these operators are considered here as sub-constraints. This set of
sub-constraints is refined recursively into a tree of sub-constraints if these sub-
constraints can be decomposed again. The stopping condition of the recursion is
that no logic operator is found in the sub-constraint. All these sub-constraints
will be represented as OCL definition constraints. The refactoring of the con-
straint (i.e modification of the constraint invariant) is performed every time we
generate a new definition. At this level we obtain a bag of OCL definition
constraints that return a Boolean value. Listing 1.3 represents an excerpt of our
constraint during the decomposition stage.

1 context Component
2 def : de f1 ( c : C l a s s i f i e r ) : Boolean = c . oc l IsKindOf (Component )
3 def : de f2 ( c : C l a s s i f i e r ) : Boolean = c . oclAsType (Component ) . name
4 = ’ esbImpl ’
5 def : l e tBus ( ) : Component = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
6 −>s e l e c t ( c : C l a s s i f i e r | def1 ( c ) and def2 ( c ) )
7 def : de f3 ( c : C l a s s i f i e r ) : Boolean = c . oc l IsKindOf (Component )
8 def : de f4 ( c : C l a s s i f i e r ) : Boolean = c . oclAsType (Component ) . name
9 = ’ cust1 ’ or c . oclAsType (Component ) . name = ’ cust2 ’ or

10 c . oclAsType (Component ) . name = ’ cust3 ’
11 def : l etCustomers ( ) : Set (Component ) = s e l f . r e a l i z a t i o n .
12 r e a l i z i n gC l a s s i f i e r −>s e l e c t ( c : C l a s s i f i e r | def3 ( c ) and def4 ( c ) )
13 . . .
14 def : part1 ( ) : Boolean = letBus ( ) . ownedPort
15 −>i n c l ude s (p1 , p2 : Port | def7 ( p1 ) and def8 ( p2 ) )
16 def : part2 ( ) : . . .
17 def : de f11 (p : Port ) : Boolean = p . end−>notEmpty ( )
18 def : de f12 (p : Port ) : Boolean = s e l f . ownedConnector
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19 −>e x i s t s ( con : Connector | l e tBus ( ) . ownedPort −>e x i s t s (pb : Port |
20 con . end . r o l e −>i n c l ude s (pb) ) and con . end −>i n c l ude s (p . end ) )
21 def : part3 ( ) : Boolean = letCustomers ( )
22 −>f o rA l l (com : Component | com . port
23 −>f o rA l l (p : Port | def11 (p) implies def12 (p) ) )
24 def : part4 ( ) : . . .
25 def : part5 ( ) : . . .
26 inv :
27 part1 ( ) and part2 ( ) and part3 ( ) and part4 ( ) and part5 ( )

Listing 1.3. Bus architecture pattern Constraint during the decomposition stage

In Listing 1.3, the constraint is composed of five “main” OCL sub-constraints
(part1(), part2(), part3(), part4() and part5()). These sub-constraints can be de-
composed again into other sub-constraints due to the recursive process 2. For
instance def4() contains the operator or, so it will be decomposed again. All
these sub-constraints are defined as OCL definitions (def:) presented before
the inv:. We can observe that there are some OCL definitions that have pa-
rameters. The reason to make some parameters at this stage (the decomposition)
is to have the possibility to define all the generated OCL definitions with the
same context as that of the constraint (Line 1).

Redundancy removal After the constraints decomposition, we obtain a bag
of OCL definitions. In this step, we remove all redundant definitions and then
we update the constraint. For instance, in Listing 1.3 def1() and def3() are
syntactically identical. Now we have a set of OCL definition constraints that
constitute our textual constraint.

Constraint Parameterization When creating the signature of the operation
that wraps a constraint, we add a parameter in this signature everywhere we find
a literal value of a given data type. The type of these parameters is obtained from
the abstract syntax tree of the constraint. For instance def2() in Listing 1.3 will
be defined as follows:

1 context Component
2 def : de f2 ( c : C l a s s i f e r , name : S t r ing ) : Boolean = c . oclAsType (Component ) .

name = name

Listing 1.4. OCL definition constraint paramatrizable

In this stage, we need to measure the similarity between the OCL definitions.
This measure allows to optimize our process, i,e. remove some redundant OCL
definitions (obtained in the parametrization stage). For example def4() in
Listing 1.3 will be defined at this stage as follows:

1 context Component
2 def : de f17 ( c : C l a s s i f i e r , name1 : S t r ing ) : Boolean =
3 c . oclAsType (Component ) . name = name1
4 def : de f18 ( c : C l a s s i f i e r , name2 : S t r ing ) : Boolean =
5 c . oclAsType (Component ) . name = name2
6 def : de f19 ( c : C l a s s i f i e r , name3 : S t r ing ) : Boolean =
7 c . oclAsType (Component ) . name = name3
8 def : de f4 ( c : C l a s s i f i e r , name1 : Str ing , name2 : Str ing , name3 : S t r ing ) :
9 Boolean = def17 ( c , name1)and def18 ( c , name2) and def19 ( c , name3) .

Listing 1.5. Example of parametrization

2 In Listing 1.3, the decomposition is stopped in part4()
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We remark that def2() (see Listing 1.4), def17(), def18() and def19()

are similar. They are different only by the name of the parameter (the same
type of the parameter). Then, we remove def17(), def18() and def19() and
replace them by def2() presented in Listing 1.4. We also optimize the def4()

definition which will take as parameter c:Classifier and consumersNames:Set(String).
This is performed when comparing the OCL expressions before the “=” (c.name)
in each literal value. This comparison is done using the AST of the OCL con-
straint. Concerning how we measured the similarity between OCL definitions,
we implemented an automated process by analyzing the abstract syntax trees of
definitions body. Each pair of trees is compared. These should share a com-
mon root and a minimal sub-tree (obtained in a breadth-first traversal). This
ensures, to some extent, that constraints define predicates on the same kind
of architectural elements, which are obtained through navigations in the OCL
definition (reflected by these sub-trees). For the remaining sub-tree, an edit dis-
tance [26] is measured between each pair of sub-trees. If this measure is less than
a threshold3, we consider that the two definitions are similar.

At the end of this step, our invariant is completely decomposed in OCL
definition constraints. These constraints will be registered in a repository in
order to reuse them to create others constraint specifications.

3.2 Constraint transformation into CLACS components

In this section, we describe the transformation of OCL definitions generated
in the first step into CLACS components. A CLACS component is an instance
of a component descriptor (like an object is an instance of a class). A component
has a name, a description and a kind (business or constraint). It declares ports,
which are characterized by a direction (required or provided) and a visibility (in-
ternal or external). Each port has an interface which specifies a set of operation
signatures. Ports are linked via connectors. A connector receives operation invo-
cations through its source port and transmits them through its target port. In
our work, we focus on components of kind “constraint” and “query”, interfaces
and connectors of kind “constraintChecking” and “constraintEvaluation”.
For generating CLACS components, we proposed a multi-step transformation
micro-process:

Operation grouping Each CLACS query-component descriptor will embed an
OCL definition which returns a value whose type is different from Boolean
and each CLACS constraint-component will embed an OCL definition which
returns only boolean values. From the other side, among the generated OCL
definitions, each one that corresponds to a let in the constraint (Subsec-
tion 3.1, like letConsumers()) will be embedded in a query-component de-
scriptor and each one among the others will be embedded in a constraint-
component. In this case, we can obtain a large number of components. Therefore,
we propose to put together OCL definitions that check similar “aspects” in

3 The value of this threshold will be fixed empirically.
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the same component descriptors. By checking similar aspects, we mean check-
ing the connection, testing the kind, or some other property of a given ar-
chitectural element (a port or a connector for example). For that we use the
same technique of similarity measurement described before (Subsection 3.1, step
Constraints Parametrization). For example, the OCL definitions part2()

and part4() check the same aspect which is the kind of an architectural el-
ement (a Port). The two trees of these two sub-constraints have a common root
which is a component and a common sub-tree generated from the expression
.ownedPort->includes(p1,p2:Port| ). For the remaining sub-trees generated
from the remaining expressions of the two sub-constraints, we can observe that
there is a similarity between them (only two edit operations (node substitu-
tions): required and provided tokens are inverted). So these are grouped as
two operations in the same component descriptor.

Metamodel migration In this step, we transform constraint navigations writ-
ten in OCL/UML into OCL/CLACS. This is performed using a simple set of
declarative mappings that we have specified between the two metamodels (UML
and CLACS). These have been defined using the same template as in [29]. For
reasons of space limitation, we do not show these mappings. But note that, the
self keyword 4 is replaced by context, which is resolved to an implicit re-
quired port connected to a meta-descriptor of the business component on which
the constraint is checked. This connection resolution is made (lazily) when the
checking is launched.

CLACS architecture description generation Starting from the tree ob-
tained in the first step, a component-based architecture description in CLACS
is generated. This architecture description contains all the necessary constraint-
components and query-components (instances) connected together. These com-
ponents embed the refactored 5 architecture constraints that navigate henceforth
in CLACS metamodel.

4 Process Evaluation

We collected 25 architecture patterns characterized by their architecture con-
straints. In order to measure the reusability obtained in the result of our trans-
formation process, we choose the metric proposed by Gaffney and Durek in [13].
This metric is defined as follows:

C =

(
b +

(
E

n

)
− 1

)
R + 1

4 self is located in the initial constraint written in UML metamodel
5 A constraint is refactored when the different steps described above have been applied

on it.
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where:

– C: is the cost of software development (specification of an architecture con-
straint)

– b: is the cost of integrating the reused elements into the new artifact (inte-
gration of constraint-components in a composite)

– E: is the cost of developing a reusable element (a constraint-component)
– n: is the number of uses of reused elements
– R: is the proportion of reused elements

C is an important indicator of the effectiveness of the reuse obtained in the final
result of our transformation process. If there is no reuse at all, C is equal to 1.
The more effective the reuse is, the less C is. b and E relate to the estimated
cost of incorporating and developing, respectively, the reused elements. b is sup-
posed to be greater than 0 because it always takes effort to reuse an element.
E is supposed to be greater than 1 because the creation of a reusable element
requires an extra effort. E is the sum of the costs of developing a new element
(without reuse support) and reusing elements. For our experiment, R represents
the proportion of the patterns (constraint’s) structure which is reused to con-
struct other patterns (constraints). R is the number of the reused constraints
divided by the total number of constraints in the same pattern.

Fig. 2. R values for all patterns

Fig 2 shows the values of R for all patterns. As we can observe, the R value
is in the range 20-100. We can also observe that there are 13 (out of 25) patterns
having 100 % of their structure reused elsewhere. This reinforces our idea to
transform architectural constraints into a reusable structure.

Another value that we have measured is n, which represents how many times
a structure is reused in the whole set of evaluated constraints. Fig. 3 depicts
the frequency of reusable constraints in each pattern. This demonstrates the
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potential to promote the reusability of pattern structure in the construction
of a pattern library. We can see in Fig. 3 that the pattern P8 is composed of
constraint-components that are reused 55 times by other patterns. We have six
patterns that have a reusable structure called more than 50 times.

Fig. 3. n values for all patterns

b and E are difficult to measure because of various reasons as explained
in [12]. We take the b and E values estimated by [10] since our evaluation falls
into the polylithic category6. Thus, b and E are equal to 0.15 and 1.2 respectively
in our experiment.

Fig. 4. C values for all patterns

6 This category concerns structures that can be divided into individual parts and each
of them can be independently manipulated.
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Fig. 4 shows the cost of constructing the 25 patterns. C is in the range of 18
to 89. As we can observe, all of the patterns have a cost less than 1 which means
that the obtained reuse really has an effect in reducing pattern construction
cost.

5 Related works

Works related to our approach can be classified in different categories: i) lan-
guages and tools for the specification of architecture constraints, ii) techniques
for predicate/constraint transformations, iii) techniques for OCL constraints
refactoring and iv) methods for constraint reuse.

A state of the art on languages used for the specification of architecture con-
straints at design and at implementation stages is given in [27]. These languages
vary from embedded notations in existing ADLs, like Armani [22] for Acme [15],
to notations with a logic programming style, like LogEn [9] or Spine [2], or nota-
tions with (or for) object-oriented programming style, like CDL [20]or SCL [19].
In practice there are several tools for static code quality analysis that enable the
specification of architecture constraints, like Sonar (http://www.sonarqube.
org/), Lattix (http://lattix.com/),among others. All these languages and
tools do not provide any way for transforming or generating code starting from
specifications in OCL or any other predicate language. In addition, they pro-
vide either no or a limited parameterization and reusability of architecture con-
straints.
Hassam et al. [18] proposed a method for transforming OCL constraints dur-
ing UML model refactoring, using model transformations. Their approach uses
first an annotation method for marking the initial UML model in order to ob-
tain an annotated target model. Then, a mapping table is created from these
two annotations in order to use it for transforming OCL constraints of the ini-
tial model into OCL constraints of the target one. Their solution of constraint
transformation cannot be used straightforwardly because it needs some knowl-
edge about model transformation languages and tools. In our work, constraint
transformation is performed in a simple an ad-hoc way without using additional
modeling and transformation languages. In [11], the authors propose an approach
for generating (instantiate) models from metamodels taking into account OCL
constraints. Their approach is based on CSP (Constraint Satisfaction Problem).
They defined some formal rules to transform models and constraints associated
to them. Cabot et al. [4] worked also on UML/OCL transformation into CSP
in order to check quality properties of models. These approaches are similar to
our transformation process since the transformed/handled artifacts are the same
(OCL specifications and metamodels). They use the same OCL compiler as us
(DresdenOCL [8]) to analyze constraints. In contrast to CSP, this does not re-
quire an external tool for the interpretation of constraints. In addition, in our
approach, we transform only constraints. In the other approaches, everything
should be transformed into a CSP to be solved (the constraints + the model-
s/metamodels). Moreover, Bajwa and Lee presented in [1] a two-step process

http://www.sonarqube.org/
http://www.sonarqube.org/
http://lattix.com/
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for transforming SBVR rules (Semantics of Business Vocabulary and Business
Rules) into OCL constraints. The first step consists in realizing a mapping be-
tween SBVR rules elements and UML model elements. This step ensures that
the OCL constraint that will be generated is semantically checkable in a UMl
model. The second step consists in transforming an OCL model instance from
SBVR model instance using a mapping between the two metamodels (OCL and
SBVR). This paper uses model transformations techniques. Their process is trou-
blesome when the constraints have a gross specification (very large models). The
generated constraints are complex, not reusable and parametrizable.

OCL refactoring consists in simplifying the constraints and making them
more expressive. In [7], Correa et al. have as goal to improve the readability and
the comprehensibility of the constraint. Therefore, they prepared a catalog of
smells. They proposed refactorings for removing a given smell in the constraint.
It is true that this refactoring allows a greater comprehensibility of the con-
straints (validation in the paper) but these do not consider reuse. Besides, the
authors consider in their approach only the functional constraints and not ar-
chitectural ones. In [24], Reimann et al. complete the previous work of Correa et
al., they proposed new smells and new refactorings like a decomposition of OCL
constraints in atomic sub-constraints. These new refactorings does not address
the parameterization of the constraint which enables more reuse.

In [6], Chimak-Opoka proposed a library OCLLib which contains a group
of valid OCL constraints. The main objective of this library is to offer a set of
OCL constraints that are reliable, tested and can be reusable. But, no method
explain how to make the constraints customizable is presented. In [31], Ton
That et al. proposed a catalog of architecture pattern as constraint-components.
They defined for each pattern its architectural constraints, they decomposed
the constraints manually and embarked them in components. The component-
constraints built are reusable and parametrizable. In our approach, we realized
these transformations automatically and we use the result of this paper as an
oracle for our experimentation.

6 Conclusion and Future work

Architecture constraints are predicates that bring a valuable help for preserving
architecture styles, patterns or general design principles in a given application
after having evolved its architecture description. Such kind of specifications is
subject to reuse. They are frequently assembled together to build more complex
architecture constraints [30]. We have presented in this paper a process for trans-
lating architecture constraints into components. Our process is composed of two
main steps. The first one consists in describing OCL constraints, extracted from
“gross” textual constraint specifications, as OCL definitions. The second step
consists in generating automatically constraint-components from these defini-
tions. These components provide operations for checking the constraints. They
are specified in an ADL named CLACS.
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As a future work, we plan to make these generated constraint-components
checkable in the implementation stage on component-based programs. We would
like to automatically translate these constraint-components into checkable de-
scriptors at runtime.
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