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Methodology for Automatic Movement Cycle Extraction using
Switching Linear Dynamic System

Roberto de Souza Baptista, Antônio Padilha Lanari Bó and Mitsuhiro Hayashibe

Abstract— Human motion assessment is key for motor-
control rehabilitation. Using standardized definitions and spa-
tiotemporal features - usually presented as a movement cy-
cle diagram- specialists can associate kinematic measures to
progress in rehabilitation therapy or motor impairment due
to trauma or disease. Although devices for capturing human
motion today are cheap and widespread, the automatic inter-
pretation of kinematic data for rehabilitation is still poor in
terms of quantitative performance evaluation. In this paper
we present an automatic approach to extract spatiotemporal
features from kinematic data and present it as a cycle diagram.
This is done by translating standard definitions from human
movement analysis into mathematical elements of a Switching
Linear Dynamic System model. The result is a straight-forward
procedure to learn a tracking model from a sample execution.
This model is robust when used to automatically extract the
movement cycle diagram of the same motion (the Sit-Stand-
Sit, as an example) executed in different subject-specific manner
such as his own motion speed.

I. INTRODUCTION

Human motion assessment is key in motor-control reha-
bilitation. Biomechanicists analyse kinematic measurements
using standard definitions to point out key events (the instant
of change in the orientation of the movement pattern) and
divide each motion type in components and phases according
to spatiotemporal features. This type of description - usually
presented as a movement cycle diagram- facilitates the
collection of normative data for each motion type across dif-
ferent populations. The standardized features and normative
data are used to monitor a patient’s progress and investigate
the effects of trauma or diseases in motor function capability
[1], [2], [3].

Automatic human motion tracking systems proliferated
in the last decades. From the gold standard multi-infrared-
camera systems to the low cost portable systems, such as
the Microsoft Kinect or inertial sensors, obtaining precise
kinematic human data today is affordable and widespread [3],
[4]. However, the post-processing techniques for automatic
spatiotemporal feature extraction from kinematic data are
still emerging.

In the context of human motion segmentation and clas-
sification for rehabilitation, an important distinction must
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be made about the meaning of the task of segmentation
and classification. One problem is to segment a sequence
of unknown movements into single executions followed by
the classification of movement type (labelling each single
execution according to a set of possible candidates), which
has been recently investigated with important results such as
done by Lin et al.[5] and Dios et al. [6]. Another problem
is: given a single execution (or a repetitive sequence) of a
known movement type (a sequence of steps, or a sequence of
sit-stand-sit movements), pinpoint the key events in order to
extract useful information, i.e. spatiotemporal features. This
paper deals with the latter .

Regarding problem of pinpointing events in a known
movement type the few current solutions are specifically
designed for each application: they depend on the type
of sensor, on the motion executed, and/or ignore standard
biomechanics descriptions [3], [7]. These approaches limit
the use of normative data and results from previous studies
to assess the quality of the motion. Besides, performance
comparison among techniques is impossible because of their
specificity.

This paper presents a methodology to automatically extract
spatiotemporal features from a set of kinematic measure-
ments of a previously known human motion using Switching
Linear Dynamic System(SLDS) modelling. a technique used
to represent complex, non-linear systems through a combi-
nation of simpler linear models [8], [9]. SLDS is useful for
modelling real world processes that exhibit multiples types
of behaviour, - which is particularly true for human motion -
and has been successfully applied to model human activities,
such as the detection of sleep apnea based on breathing
patterns during sleep [9] and distinguishing between gait and
jogging sequences based on video analysis[8].

In this paper we propose an automatic movement cycle
extraction with SLDS by taking motion example from the
Sit-Stand-Sit movement.

II. METHODOLOGY

A. Standard Definitions

In this work we aim to automatically extract a movement
cycle diagram using Switching Linear Dynamic Systems
modelling and the standard definitions for movement analysis
(with the Sit-Stand-Sit motion as an example).We take the
definitions used by [10] to describe the Sit-Stand-Sit move-
ment:
• Events (e) - each event is a single identifiable oc-

currence, characterized by a marked change in the
orientation of the recorded movement pattern.



• Components (c) - are defined as those constituent parts
of the movement, that are bounded by events within the
same variable.

• Phases - are collections of components and are also
bounded by events, but the boundaries can be estab-
lished using events from different components.

• Movement cycle - is a sequence of one occurrence of
all phases in the movement.

Note that some movements, such as only the Sit to Stand
transition, are non-cyclic (movements with distinct starting
and ending positions) and therefore a sequence of movement
cycles is impossible. Although we are using as an example
the Sit-Stand-Sit movement, which is cyclic, the proposed
approach is also suited for non-cyclic movements.

B. Switching Linear Dynamic Systems

Switching Linear Dynamic System - also called in the
literature Switching State-Space Models, Switching Kalman
Filter Models or Jump-Markov Model- is a technique used to
represent complex, non-linear systems through a combination
(or switching) of simpler linear state-space models.

It is a state-space model in the form:

xt+1 = A(st+1)xt + vt+1(st+1) (1)
yt = Cxt + wt, with

x0 = v0(s0)

where xt ∈ <N is the hidden state of the state-space model,
vt is the state noise, yt ∈ <M is the observed measurement
of the system, wt is the measurement noise. A(st) is the
state transition matrix and C is the observation matrix, as in
a conventional linear dynamic system state-space model.

The switching variable, st, belongs to a set of S discrete
symbols {c1, . . . , cS} and its process evolves in time accord-
ing to the model:

Pr(st+1|st) = s′t+1Πst, with (2)
Pr(s0) = π0

where the state transition matrix Π, whose elements are
Π(i, j) = Pr(st+1 = ci|st = cj), represents the probability
of st+1 = ci, given that st = cj .The state transition matrix
A(st) and the measurement noise v(st) ∼ N(0, Q(st))
are associated with a switching variable st, which indi-
cates which model (A(st), vt) is used at each time t. The
Switching Linear Dynamic System approach develops the
probabilistic equations for learning the parameters of the
models (specially A(cS), Q(cS),Π) and tracking of the
observed measurements in a time-series (specially st, xt),
combining two well known probabilistic approaches: the
Kalman Filter and Hidden Markov models. In this work we
implemented the procedure shown in [8] using MatLab (The
MathWorks,Inc.,Natick,MA,USA).

C. Translating Standard Definitions to SLDS

In this section we describe the correspondence of the
standard definitions for movement analysis to the elements
of the SLDS modelling. As an example we will use the

knee angular displacement. Figure 1 shows a typical curve
captured in our experiments for a Sit-Stand-Sit sequence. To
completely describe the sit-stand-sit motion other variables,
such as trunk tilt, are usually combined to the knee angular
displacement. But since the goal of this paper is to show the
application of the SLDS approach to segment human motion,
for simplicity we use the knee angular displacement.

According to the definitions from Section II-A we have
four events (e1, e2, e3, e4), which are marked with arrows.
In consequence there are four components, which physically
correspond to Sit (c1), Knee Extension (c2) , Stand (c3), Knee
Flexion (c4). We can group the components in phases: the
rising phase is composed by c1, c2 and the descending phase
by c3, c4. A complete movement cycle consists of one rising
and one descending phase.

In terms of SLDS elements, the four components corre-
spond to four possible states for the switching variable, or
S = {c1, c2, c3, c4}. The four events correspond to a change
in the value of the switching variable. Modelling of the
knee angle’s dynamics during each component is done by
four different state-space models, (Ai, Qi). The interaction
between these models is governed by the switching state’s
transition matrix Π. Note that the dynamic behaviour in the
first component (Sit,c1) is similar to the third component
(Stand,c3). However, they differ because one is proceeded
by a knee extension and the other by knee flexion. This
condition is incorporated in the transition matrix Π. A
physical interpretation is that it is impossible to immediately
move from a standing position to sit, without performing
a knee extension.Using the dataset presented in Figure 1
we learned the parameters for the SLDS to represent the
sit-stand-sit movement. In this dataset the periods of the
knee extension and knee flexion components are within the
average for healthy adults shown in [10]. Besides estimating
in which state the switching variable is, we also have an
estimation of the continuous values of the knee angular
displacement (the xt in equation 1). This information is not
the focus of the present work, but it is certainly a useful
feature for future applications.

D. Experiments

To show the advantages of the SLDS approach we com-
pared it to an approach based on heuristics and threshold
classification, represented as a finite state machine (FSM)
model with transition thresholds based on the instant velocity
of the knee displacement. As in the SLDS model, the
dataset presented in Figure 1 was used to extract the FSM
model’s parameters. The simplest approach would be to set
the threshold to zero during the sit and stand component,
positive velocity for the knee extension component and
negative velocity of the knee flexion. Looking closely to
the instantaneous velocity shown in Figure 1, we see that
these values are not suitable because the velocity is not
constant during each component. This can be due to noise
in the sensor or small movements which are captured by
the sensors. As we will show in the results section, this
thresholds are extremely dependent on the sample dataset
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Fig. 1. Training dataset consisting of one execution of the Sit-Stand-Sit
movement cycle. Events (ei), components (ci) and the rising and descending
phases are marked. θ and θ̇ indicates angle and angular velocity.

used for modelling. Other heuristic approaches can be used
to extract a different model, but again they will be dependent
on the dataset used for modelling and the variable in question
[3].

Both models are crossvalidated in six scenarios: a sin-
gle execution of the Sit-Stand-Sit movement executed with
three different velocities, resulting in a ”fast”, ”normal” and
”slow” movement; a sequence of 5 consecutive Sit-Stand-
Sit, in which the subject was instructed to execute the knee
extension and knee flexion at his self-selected velocity; and a
sequence of 5 consecutive Sit-Stand-Sit movements in which
the subject was instructed to execute each repetition at a
randomly different velocity.

All datasets were recorded from the same subject (healthy,
male, 32 years-old).

III. RESULTS

The results for the movement cycle diagram for one repeti-
tion, executed at different velocities is shown in Figure 2. For
the first case, the ”fast” execution, both approaches had sim-
ilar results. in fact the finite state machine (FSM)/threshold
approach was more accurate in detecting the transitions,
matching the ground truth at t = 0.10s (transition c1 → c2)
and at t = 1.14 (transition c2 → c3). The switching linear
dynamical system (SLDS) model correctly estimated the
sequence of components, with a delay of one sample in the
events c2 → c3 and c3 → c4.

In the second case, the ”normal” velocity execution (which
is similar to the training data), the performance of the
FSM/threshold approach is poor. It estimates early c1 → c2
(at t = 0.31s). The transition c2 → c3 is correctly estimated.
But during component c3 there is an incorrect estimation
of c3 → c4, at t = 3.12s, which leads to a cycle through
c4 → c1 → c2 → c3, anticipating the correct c3 → c4
transition at t = 3.53s. Again the SLDS approach estimated

the events with one sample delay and correctly maintained
the estimation throughout the component.

Finally, in the ”slow” execution the FSM/threshold ap-
proach estimated the c1 → c2 transition very early on, at
t = 0.10s. It then lead immediately to the estimation of
transition c2 → c3 , and remained on c3 until t = 2.80s,
when it estimated c3 → c4 at t = 2.91. It then lead to a
cycle through c4 → c1 → c2 → c3, returning to the correct
component. The SLDS approach correctly estimated the
sequence of events, with two samples delay in the transition
detection at t = 0.83s, and one sample delay at t = 2.91s
and t = 5.19s.
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Fig. 2. Cross validation for the movement cycle extraction with the Switch-
ing Linear Dynamic System(SLDS) model and the Finite State Machine with
thresholds (FSM) model using datasets containing one movement execution
with different velocities: Normal, Fast and Slow. Red vertical lines represent
the beginning of each component in the manually segmented dataset (used
as ground truth).

In the 5 times Sit-Stand-Sit with ”normal” velocity, pre-
sented in Figure 3, the FSM/Threshold approach exhibited
the same misclassification issues seen on the cross validation
with one repetition. Missed estimation of the transitions lead
to cycle through before returning to the correct estimation at
t = 3.43s and at t = 16.72s. Again a premature estimation
c1 → c2, at t = 23.50s lead to an incorrect estimation of
c2 → c3 at which the estimation is locked until it transits
to another cycle through c3 → c4 → c1 → c2 → c3, at
t = 25.69s and returns to the correct estimation path. The
SLDS approach correctly estimated the sequence of events
and had minor delays in the transition detections.

Figure 4 shows the last experiment, the 5 times Sit-
Stand-Sit with varied velocity. The same issues for the
FSM/Threshold approach can be noticed again in this test:
at t = 9.15s and at t = 11.02s. The SLDS again correctly
estimated the sequence of components, with some delay in
the transition detection. Particularly at t = 15.08s, the SLDS
was able to detect a c4 → c2 transition. In this case, since
it is just a valley point, there was no consecutive samples
at the ”Sit” (or component c1). The FSM/Threshold had
to go through component c1, in order to reach the correct
estimation of c2.
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Fig. 3. Cross validation for the movement cycle extraction with the
Switching Linear Dynamic System(SLDS) model and the Finite State
Machine with thresholds (FSM) model using datasets containing a sequence
of 5 Sit-Stand-Sit movements executed with normal velocity. Red vertical
lines represent the beginning of each component in the manually segmented
dataset (used as ground truth).
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Fig. 4. Cross validation for the movement cycle extraction with the
Switching Linear Dynamic System(SLDS) model and the Finite State
Machine with thresholds (FSM) model using datasets containing a sequence
of 5 Sit-Stand-Sit movements executed with varied velocity. Red vertical
lines represent the beginning of each component in the manually segmented
dataset (used as ground truth).

IV. DISCUSSION

We showed that the modelling of the Sit-Stand-Sit motion
converting the standard definitions into elements of the SLDS
model results in an efficient and robust model to segment and
extract useful information, i.e. spatiotemporal features, and
generate the movement cycle diagram. The results support
that our approach is a straight-forward modelling procedure,
requires a small training dataset and is suited for classifying
and segmenting the components of a movement.

In the current stand we presented results for a univariate
case (only the knee angle was used). A more complete
description of the Sit-Stand-Sit motion, or other movement
types, such as gait, requires a combination of multi-joint
variables. The procedures and algorithms used here are suited
for the multivariate case, but we kept the initial investigation
to the univariate case. Further work is required to evaluate
the performance of the multivariate case.

Furthermore, the SLDS approach provides us more infor-
mation than we presented in this paper, such as the a priori
and posterior probabilities of st and xt in Equation 1. In
future works all this information can be used not only to
segment a known movement type for spatiotemporal feature
extraction, but also to distinguish between two different
motions, similar to the work presented by [5].

This result shifts from the heuristics based or custom build
algorithms which are strongly dependent on the dataset or
the movement studied. Since we strongly based our approach
on the standard definitions of the movement, the information
extracted can readily be compared to standardized results for
healthy and impaired subjects such as shown in [1], [11].

V. CONCLUSIONS

In this paper we presented a straight forward procedure for
automatic extraction of spatiotemporal features and genera-
tion of a movement cycle diagram combining the standard
definitions from movement analysis and switching linear
dynamic system modelling. The results for the Sit-Stand-
Sit example demonstrate that the resulting model has a good
performance to classify a known movement type executed in
various ways. The next step is to investigate the performance
of this methodology for the multivariate case and across
different populations.
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