
HAL Id: lirmm-01237138
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237138

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Verification Approach from MDE Applied to Model
Based Systems Engineering: xeFFBD Dynamic

Semantics
Blazo Nastov, Vincent Chapurlat, Christophe Dony, François Pfister

To cite this version:
Blazo Nastov, Vincent Chapurlat, Christophe Dony, François Pfister. A Verification Approach from
MDE Applied to Model Based Systems Engineering: xeFFBD Dynamic Semantics. CSD&M : Complex
Systems Design & Management, Nov 2014, Paris, France. pp.225-238, �10.1007/978-3-319-11617-
4_16�. �lirmm-01237138�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237138
https://hal.archives-ouvertes.fr

A verification approach from MDE applied to Model

Based Systems Engineering: xeFFBD dynamic semantics

Blazo Nastov 1, Vincent Chapurlat 1, Christophe Dony2 and François Pfister1

bstract. Model Based System Engineering (MBSE) is “the formalized application of modeling

to support system requirements, design, analysis, verification and validation activities

beginning in the conceptual design phase and continuing throughout development and later life

cycle phases” [1]. Among other principles, it promotes creating and analyzing models all along

systems engineering. These models are used to discuss, to argue and finally to make decisions

that impact the achieved system (in terms of functioning, costs, safety, etc.). One of the main

expectations of MBSE is to permit engineers to dispose of models with a high level of

confidence. For this purpose, several model Verification and Validation (V&V) approaches

exist, aiming to ensure models’ quality in terms of construction (models are correctly built) and

in terms of relevance for reaching design objectives and stakeholders’ requirements. This paper

aims at discussing and evaluating an approach originally developed in the field of Model Driven

Engineering by proposing some adaptations. The approach is illustrated on a well-known

functional modeling language dedicated to MBSE field.

1. Introduction

Systems Engineering (SE) [2] is a process and a system thinking oriented approach

for designing complex systems. In this field, Model Based System Engineering

(MBSE) is considered as “the formalized application of [system] modeling” [3] all

along engineering activities requested in SE processes [1]. A model represents a

system under study so called System of Interest (SOI), considering it under one of the

various possible views e.g. functional, behavioral, physical, requirements, contextual,

etc. Once created, models allow system engineers to argue and make architectural

decisions. These decisions have impact on the realized system, its functioning, its

safety, induced costs and so on [4]. Therefore, engineers should have a high level of

confidence in models they are handling, before making any decision based on them.

So first, models have to be “well-constructed” (correctly built, respecting (meta)

modeling requirements and building rules) and second, they have to be the “right

models” in terms of 1) relevance for reaching design objectives and 2) respect to a

part of, or all, stakeholder’s requirements. Moreover, the level of confidence increases

if models verify their “well-constructiveness” and “model-rightness”, considered

separately and in interaction with other models of the SOI.

1 LGI2P, Ecole des Mines d’Alès, Parc Scientifique G. Besse, 30000 Nîmes, France

{Blazo.Nastov, Vincent.Chapurlat, Francois.Pfister}@mines-ales.fr

2 LIRMM, 161 rue Ada, 34392 Montpellier, France – dony@lirmm.fr

mailto:Francois.Pfister%7D@mines-ales.fr

Classically, models are the subject of study of Model Driven Engineering (MDE)

[5] and nowadays they are built using Domain Specific Modeling Languages

(DSMLs). So first and foremost is the creation of DSMLs, a process, defining the

languages’ abstract and concrete syntaxes. An abstract syntax is provided by a

metamodel representing, through a graph of classes and associations, the concepts of

a domain and their relations. A concrete syntax defines how instances of abstract

syntax concepts (forming a model) are concretely represented in a textual or graphical

form. In MBSE context, we focus on graphical representation of models. So

proposing the abstract syntax and a graphical concrete syntax of a DSML makes it

operational to create models, each of them seen as a graphical representation of a

particular point of view of a SOI. The literature highlights several frameworks for

creating DSMLs and graphical editors [6], [7], [8]. Unfortunately, such editors are of

“two dimensional drawing-board” nature because they do not deal with model well-

constructiveness or rightness. As a consequence, created models turn-out to be

“simple two dimensional drawings” of modeled concepts and relationships.

The main idea of this work is to add a third dimension, allowing designers to create

models that can be simulated and questioned, achieving some of the Verification and

Validation (V&V) objectives and to ensure the coherence between all models of the

same SOI. Some solutions are proposed in the field of MDE [9], [10], [11], but

unfortunately they remain, not or hardly applied in the field of SE due to their

insufficiency for reaching SE objectives. In this paper, we discuss and evaluate an

existing approach coming from MDE by applying it on a DSML, often considered by

systems engineers and architects as a relevant functional description language named

eFFBD [12] in order to emerge an extension that reaches SE objectives.

The paper is structured as follows. Section 2 discusses the importance of DSML

semantics and introduces approaches and concepts that allow defining such semantics.

Some limitations of studied approaches are discussed and afterwards an approach

exceeding discussed limitations is proposed. Section 3 evaluates that approach by

applying it on the eFFBD language in order to create an executable extension. Section

4 proposes contributions that allow the adaptation of the approach in the field of SE,

before concluding about research perspectives in Section 5.

2. Towards execution and validation of DSMLs

Abstract syntaxes of DSMLs partially define language semantics through their

underlying structure and the vocabulary naming concepts and relationships.

Unfortunately, such semantics may sometimes be ambiguous, since different

engineers may have different understanding of a single model. Therefore, in order to

have equal and non-ambiguous understanding, it is essential to define in a precise and

non-ambiguous manner DSMLs semantics.

Semantics are either static, independent of any behavior, or dynamic, describing

the dynamic comportment of models’ elements (can be advisedly called “dynamic

model” or “dynamic comportment” or “DSML behavior”). There are three ways to

formalize dynamic semantics description. First, operational semantics describes

model comportment as a sequence of states, transitions between states and a machine

that executes such a state model. Second, denotational (translational) semantics

transforms DSML concepts into other DSML concepts with predefined dynamic

comportment. Last, axiomatic semantics describes in a declarative way the evolution

of model properties [13]. In this paper we focus on defining DSMLs behavior using

dynamic semantics.

Literature highlights several approaches and tools for defining dynamic semantics

for a given DSML. For instance, Kermeta [9] is an executable metamodeling

language that defines operational semantics for a given DSML (in imperative way).

Another example is the Atlas Transformation Language (ATL) [14] that (in

declarative way) defines operational semantics through endogenous transformations

and denotational semantics through exogenous transformations. Additionally,

metamodeling languages together with constraints definition languages can be used to

define axiomatic semantics. Meta Object facilities (MOF) [15] is usually used to

define metamodels and OCL (Object Constraint Language) [16] to add constraints to

metamodel e.g. pre and post conditions, invariants and so on. However, these tools

and approaches are related to software engineering and programming languages

which somehow make them difficult to use for SE experts. Indeed, dynamic

semantics of dedicated DSML is to be described and formalized with minimal efforts

from experts by assisting them and automating the process as much as possible.

MetaModel
(M2)

MetaMetaModel
(M3)

Action Language or
Model Transformation

Metamodeling Language
(e.g. MOF)

SDMM
States Definition

MetaModel

EDMM
Events Definition

MetaModel

DDMM
Domain Definition

MetaModel

TM3
Trace management

MetaModel

Semantics
Semantics Mapping

<<conforms to>><<conforms to>>

<<merge>>

<<merge>>
<<trigerredBy>>

<<import>>
<<changes>>

<<merge>>

Figure 1: The executable DSML Pattern [11]

Another approach, supporting state-based execution of DSMLs is proposed in [11].

The approach is schematized in Figure 1 as a pattern composed of four structural parts

related to each other and of a fifth part providing the dynamic semantics relying on

the previous four. Modeling concepts and relationships between them are defined in

the Domain Definition MetaModel (DDMM) package. The DDMM does not usually

contain execution-related information. Such kind of information is defined in the

State Definition MetaModel (SDMM) package through several sets of states assigned

to DDMM concepts that can evolve during execution. Model execution is described

as successive state changes of DDMM concepts provoked by stimuli. The Event

Definition MetaModel (EDMM) package defines different types of stimuli (events),

together with their relationship to DDMM concepts and SDMM states. Applied

stimuli are either injected by the environment (exogenous kind) or produced internally

by the system in response to other stimuli (endogenous kind). The Trace Management

MetaModel (TM3) provides monitoring mechanism of model execution by capturing

stimuli. The last and key part is the package Semantics, composed of evolution rules,

describing how the running model SDMM evolves over DDMM concepts (changing

their state) according to the stimuli defined in the EDMM. Evolution rules can be

either defined as operational semantics or as denotational semantics.

3. Application in the field of SE

This section proposes to extend the eFFBD functional modeling language by

building and tooling its dynamics in order to become able to interpret and animate

eFFBD models, and to prove their evolution rules. Similar solution has been proposed

by [17] using translational semantics, transforming eFFBD models into Petri Nets

models. [18] argues that translational semantics solutions limit V&V objectives.

Fortunately, such limitations are exceeded by operational semantics that allow

achieving V&V objectives on a source model rather than a third party model. So the

expected result is xeFFBD i.e. an executable eFFBD that we consider as “self-

sufficient” in achieving these V&V objectives. In [19] a short history and various

evolutions of a particular DSML named FFBD (Functional Flow Block Diagram) and

its main evolution named eFFBD (enhanced FFBD) is presented. It is considered as a

functional-modeling language preferred in the SE community [20]. This DSML

provides system designers with a framework to describe the behavior of complex,

distributed, hierarchical, concurrent and communicating systems [21]. For instance,

Figure 2 shows the functional architecture of an interface highlighting parallelism,

selection, loop and other complex constructs allowed in eFFBD.

r

© MAP Système 2010

Figure 2: eFFBD example

Our proposition to achieve executable eFFBD along the above discussed

methodology is presented in the following section.

Creating an executable DSML is divided into two major phases. First, a language

executable metamodel is defined containing domain (in DDMM), execution-related

(in SDMM and EDMM) and monitoring (in TM3) information. Second, semantics are

defined describing how execution-related information evolves over domain concepts.

3.1 Phase 1: executable metamodel definition

Executable metamodel definition phase includes four construction stages: DDMM

definition, SDMM definition, EDMM definition and TM3 definition. We apply such

process to eFFBD as shown in Figure 3.

xeFFBD Diagram

xeFFBD Construct

xeFFBD DDMM

xeFFBD SDMM

xeFFBD EDMM xeFFBD TM3

<<import>>

xeFFBD Flow

<<merge>>

Figure 3: Creating executable metamodel for eFFBD - construction stages

First, language or domain concepts and relationships are defined. This construction

stage is identical to a (non-executable) DSML metamodel definition. The created

metamodel is called DDMM since it contains domain concepts and relationships. In

order to reduce language complexity and to improve readability and

understandability, we split the DDMM into three packages: xeFFBD Diagram,

xeFFBD Construct and xeFFBD Flow, each one representing a different aspect of the

eFFBD language. xeFFBD DDMM is then created by merging all three packages,

using the “merge” predefined package operator of MOF.

The xeFFBD language defines three kinds of core elements: Function, Resource

and Item. Function describes what a system must do. They transforms one or more

input Items in one or more output Items respecting transformation rules, possibly

under control of triggers. Resource is something (data, material or energy e.g. human

operator, consumable, plans, etc.) that is requested and utilized or consumed during

an inputs/outputs transformation. Requested resources are considered as independent

from transformation goal and they are requested for function execution that modifies

them. Item is something (data, material or energy) that is requested and transformed

by function in order to provide another(s) distinct Item(s). Taking into account its

type, an Item can be consumed or can remain available during certain time duration

after which its value becomes obsolete and unusable. These core elements are

characterized by temporal attributes e.g. minimal and maximal time of execution, life

time, etc.

xeFFBD Diagram is the core package describing a xeFFBD diagram as a

quadruplet of begin and end operators, main branch and set of input/output objects

carried by flows. Begin and end describe starting and finishing points in a diagram.

The branch is composed of several control constructions named exFFBD Constructs,

described hereafter. Two sorts of input/output objects are then available: items and

resources respectively carried out by item flows and resource flows as detailed below.

Last, a diagram is temporized element, having started and finished execution time.

xeFFBD Construct package represents different constructions recurring into a

xeFFBD Diagram. These constructions allow engineer to describe how functions are

chained and the different manners of their execution, introducing the possibility to

describe function parallelism, sequence, exclusion, and selection. A construct can

either be 1) a function control construct composed of a set of functions (eventually

one unique function) put in a sequence, or 2) an operator control construction

containing minimum one branch beginning on a begin operator and ending on an end

operator. Four types of operator control construction are introduced: AND, OR,

Iteration and Loop. A fifth one, named replication construction, is not considered at

this moment. AND and OR constructions contain minimum two branches and they

represent respectively parallel and exclusive execution of branches. Iteration and

Loop constructions represent two possibilities of repetitive execution of one branch

differing in the stop condition. Iteration fixes a number of iterations, while loop stops

on a Boolean condition. Constructions are temporized elements having started and

finished execution time.

xeFFBD Flow package describes three types of flows that can be represented in a

xeFFBD model: functional flow, item flow and resource flow. A functional flow

describes the order in which functions are executed (related to the primitive relation

successor/predecessor between two functions). It is represented by the functional flow

class connecting functional flow connectable elements which are either operators or

functions. A Resource Flow describes requested Resources of a function that

consumes them and restores them after execution, modifying eventually some of

resource characteristics such as its quality and quantity levels. For this a Resource

Flow is characterized by two attributes: quantity and quality. Quantity attribute

indicates the requested amount of resource, consumed as an input by a function in

order to execute it (requested quantity), and provided as an output after execution of

related functions (provided quantity). Quality attribute indicates the level of resource

quality, requested as an input in order to execute related functions (requested quality),

and restituted after function execution as an output altering then eventually the level

of quality of the resource (provided quality) i.e. mixing for instance its availability

and its efficiency. Item flow relates Item with function by input or output

relationships. These relationships describe items that are needed and consumed as

inputs for function execution and items that are provided as output after execution.

Provided items are a result from transformation of inputs flows and eventually under

the help or the control of resource flows. Note that there is a special kind of triggering

items and resources that can trigger function execution, controlling then function start

and/or stop conditions. Functional and resource flow have attributes (comment,

condition and quantity, etc.), so they are represented in the metamodel using the class-

association pattern, while item flow is represented using associations. Once a DDMM

is defined, the second construction stage consists in defining SDMM. In this stage, we

define in the package xeFFBD SDMM, the possible states of some of previously

defined domain concepts. First, domain concepts that may evolve have to be chosen.

For instance, we chose the following: Construct, Function, Item and Resource. The

third construction stage consists in defining the events requested for the evolution of

evolving concepts together with their relationship with corresponding concepts. Such

information is defined in the EDMM. For instance, we defined three types of events:

construct event, function event and item event.

Additionally, Figure 4 shows finite states automate associated to the concept

Function. Here, on the one hand, function states are represented by automates’ states

and on the other hand, different types of function event are represented by automates’

transitions. The evolution of concepts is represented as transition firing. In this sense,

we consider here the input/output transformation described by a Function, is first

possible (Authorized) i.e. the function can start but wait for Items (and eventually

Resources) before being able to make the real transformation of energy, material and /

or data (Execution) providing then the outputs items and resources (Finished). Due to

external events, a function can be suspended and even aborted (Suspended, Aborted)

e.g. in case of dysfunction of the component on which the function has been allocated.

Sleep

Authorised Execution Suspended

Aborted
Finished

StartFunction

ExecuteFunction
ResumeFunction

SuspendFunction

AbortFunction
EndFunctionEndFunction

Figure 4: A finite states automate for the concept Function representing state evolution as

transition firing

In the case of Item and Resource, the state model is replaced by defining state

variables named quantity and quality allowing us to reduce the number of possible

states. For example, a resource of oil can be in state 50 liters, but also in state 100

liters if a function provides as output another 50 liters of that same resource.

The executable metamodel definition process ends by defining a monitoring

mechanism considered as fourth stage of this process. For this, we propose the generic

trace mechanism described in the approach, the TM3 package, shown in Figure 3.

3.2 Phase 2: semantics definition

As previously defined, xeFFBD metamodel contains execution-related (dynamic)

information (e.g. packages SDMM and EDMM). Yet, xeFFBD metamodel is static,

until the package Semantics (Figure 1) is defined. This package defines how and

when dynamic information is executed on domain concepts, allowing state and

property changes. For this, we adopt a proposed property-driven approach detailed in

[22]. This approach describes how to formally define execution rules under the form

of properties (described below), and how to become able to check some of those

properties. Three types of properties can be expressed: structural properties, temporal

properties and quantitative properties. The approach distinguishes properties checked

on each model execution called universal properties from those checked once called

existential properties.

Model evolution is first, defined through universal and existential properties by

preconditioning events, second, through transitions that are defined between domain

concepts states and finally, through event-based transition firing. When fired,

transitions invoke state changing of domain concepts. Figure 4 illustrates different

states of Function, event-based transitions between states and corresponding events.

For instance, if event StartFunction is applied on an instance of Function that is in

state Sleep, a transition is fired changing its state into Authorized.

F1
(Function)

F2
(Function)

F3
(Function)

a Branch

a Sequence

StartConstruct
(sleepexecution)

EndConstruct
(finishedsleep)

FinishConstruct
(execution finished)

StartFunction
(sleepauthorized)

EndFunction
(finishedsleep)

time

F1 duration F3 durationF2 duration

Figure 5: execution of a simple exFFBD model

We consider that execution of lower level embedded constructions is controlled

(i.e. started and finished) by higher level embedding constructions respecting an

ordering given by a functional flow. Figure 5 illustrates an example of such execution

control describing applied events and invoked state changes of components

represented by different type of arrows. A simple xeFFBD diagram is represented by

a starting point (entering arrow), an ending point (exiting arrow) and a main branch.

A sequence is placed inside that branch, containing three functions: F1, F2 and F3. In

this example, input and output object flows are not represented in order to ease the

readability of the figure. The execution occurs as detailed hereafter. Each Construct

controls the execution of Branches and Constructs it contains. So, the diagram starts

the main branch which starts the sequence. Since a sequence contains functions, it

also controls their execution. First, it starts the beginning function (F1), and

afterwards it waits for finished functions, to end their execution and to start the

execution of following functions (end F1 and start F2). This process is repeated until

the ending function (F3) ends and then the sequence itself finishes execution. The

main branch ends the sequence, before finishing its proper execution. The diagram

waits for the main branch to finish execution, in order to end it. The end of the main

branch execution means that the diagram can first, finish and then end its execution.

Functions are contained in a sequence, so the formal definition of their execution

starting and ending is defined by the dynamic behavior of the Sequence construct as

described in previous example. Next, due to lack of space we formally define only a

dynamic behavior of functions using the previously described property-driven

approach. An input/output transformation described by the Function is first possible

i.e. the function can start but has to wait for Items and eventually Resources (Figure 6,

Eq.1) before being able to make the real transformation of energy, material and / or

data (Figure 6, Eq.2) providing then the outputs items and resources and finishing its

execution respecting minimal and maximal execution time (Figure 6, Eq.3).

For f  Function

(Eq. 1)

{ (f.state==authorised) AND
( i  f.itemInputs,(i.state==present)) AND
( j  f. resourceFlowInputs, (

(j.requestedQuantity >= j.sourceResource.availableQuantity) AND
(j.requestedQuality == j.sourceResource.quality))))

implies executeFunction(f) }

(Eq. 2)
{ (f.state==execution) implies (
( i  f. itemInputs, (consumeItem(i))) AND
( j  f. resourceFlowInputs, (j.sourceResource.availableQuantity -= j.requestedQuantity)) }

(Eq. 3)
{ ((f.state==execution) AND ((internalTime - f.startedTime) >= minimalTime) AND

((internalTime - f.startedTime) <= maximalTime)) implies (finishFunction(f)) }

(Eq. 4)

{ (f.state==finished) implies (
( i  f. itemOutputs, (provideItem(i))) AND
( j  f. resourceFlowOutputs, (j.targetResource.availableQuantity += j.providedQuantity)))}

Figure 6: Semantics mapping by defining evolution properties of Function concept

Let us note that due to external events, a function can be suspended temporarily,

can resume its execution or can abort (Suspended, Aborted). These external events

can be then shared with other constructs from other modeling languages. For instance,

the function behavior can depend on the component behavior that performs this

function. So, the event Suspended can be a common event shared between xeFFBD

and a future DSML named xPBD (executable Physical Block Diagram currently

under study).

4. Application discussion and expected contributions

State notion and formalization. Considered approach describes concepts’ execution

as successive state change. This induces to define a set of states considered by the

user as sufficient for his V&V objectives. Unfortunately, some concepts, such as

Resource from xeFFBD, may be characterized by a continuum of states. For this, we

propose three solutions. The first solution consists in defining a finite number of

states. For instance, resource states model can be reduced to a two state model,

containing: sufficient or insufficient states. However, this solution is too limitative for

V&V objectives. The second solution consists in introducing a set of state variables

describing possibly infinite number of states that can evolve continuously. This

solution allows describing high level of detail. For instance resource state model can

be represented by quality and quantity variables. The third one consists in mixing the

previous two solutions, linking discrete states defined in the state model and state

variables. For instance, Item state model is composed of a state quality variable and

two states: present and absent. These three solutions are applied in SDMM package

and are now under development.

Towards condition and event based transition approach. In order to understand

concepts’ evolution, one has to simultaneously visit three packages: DDMM, SDMM

and EDMM, and the evolution rules defined in the semantics package. We consider

that this makes created languages difficult to read and understand. In order to ease

readability and improve understandability, we propose a representation of previously

stated packages, using finite state automata. Conditions and events are responsible for

a transition firing. First, a Condition (True by default) is a Boolean function computed

on variables, attributes of any concept from the local DDMM and external variables

corresponding to other concepts from another DDMM. So inter and intra conditions

are distinguished. Intra conditions have to be satisfied by a currently manipulated

model, while inter conditions correspond to conditions that have to be satisfied by one

or several other models from the same SOI whose behavior interacts with the

behavior of studied model. Second, it is always possible to distinguish two events and

there exist a default event e always occurring. A Transition can be then fired when

associated event is received, and if and only if, associated condition is verified. The

work now consists of formalizing these notions and linking the transition behavior

with discrete event system theory.

Towards model transient states detection and management. Temporal evolution

rules (named properties by [13]) are currently defined using Temporal OCL (TOCL).

This induces the examination of defined properties taking into account a unique scale

of time. However, the notion of “model stability” is by hypothesis essential for

models representing critical, parallel or distributed systems. A “transient state” of a

concept is a state such that it is possible to change that state without modifying the

inputs, as defined for instance in the case of Sequential Function Chart in [23]. A

model is stable if and only if each instance of a modeling concept used in this model

is itself in stable state. We propose here to extend considered approach by a double

scale of time named external and internal time modeled by two independent logical

clocks. Values of each variable vi appearing in conditions and occurring events

associated to transitions of a state model M are read and then frozen in external time.

M evolves taking into account vi by using then an internal scale when performing

execution rules allowing then to detect transient states and to reach the next stable

state of M. The external time depends on environment evolution and is a logical

modeling of physical scale time. It is defined as a set of moments ordered by taking

into account events apparition. It is initialized when a simulation starts. The internal

time is initialized at each moment defined in external time and there are no common

temporal dimensions between internal and external scales. The evolution algorithm

allowing transient states detection is schematized in Figure 7.

Towards properties modeling languages and checking techniques. Literature

highlights several property-driven approaches with associated V&V techniques [24],

[25] that will be explored and applied in the prosed frame of work.

Towards modeling languages and models interoperability. As illustrated in

Section 3, we propose to become able to link formally the resulting interpretation and

execution of several DMSLs each dedicated to the description and the analysis of a

view of a given SOI (behavioral, physical, functional, etc.). This will allow

contributing to become able to check the coherence of SOI models even considering

different points of view and different modeling objectives. It is a question of linking

the dynamic semantics i.e. SDMM and EDMM have to be extended introducing

requested and shared concepts and evolution rules.

Tooling. Unfortunately, tools supporting the considered approach do not exist at

this moment. An extension of Diagraph [6] is now under development taking into

account proposed improvements.

Read external inputs of the system model (set of state models)

Te := Te+1

Initialise external clock: Te := 0

Initialise internal clock: Ti := 0

Write external outputs of the system model

is stability
reacheable?

Analyse resulting
execution path and
expected properties

is state model
transient ?

Ti := Ti+1

Read inputs from other state models

Compute next state

Write outputs in internal time

For each state model

y

Bounded Te?

y

Figure 7: proposed evolution algorithm including stability reaching objectives

5. Conclusion and Perspectives

This paper presents an approach from the field of MDE for defining semantic of a

DSML. The approach is considered here as a formal and relevant way for achieving

models V&V objectives. It is applied to a functional modeling language largely used

in MBSE domain. This application however, makes appear some questions that seem

crucial and remain partially or completely uncovered. Conceptual as technical

improvements are then proposed in order to complement this approach. The research

and development work is now on going intending to fully support executable DSMLs

creation process and to deploy it on MBSE domain.

References

1. INCOSE, “Systems Engineering Vision 2020,” INCOSE-TP-2004, September, 2007.

2. ISO/IEC, ISO/IEC 15288 : Systems and software engineering - System life cycle processes,

vol. 2008, no. 1. IEEE, 2008, p. 5.

3. J. a Estefan, “Survey of Model-Based Systems Engineering (MBSE) Methodologies 2 .

Differentiating Methodologies from Processes , Methods , and Lifecycle Models,” Jet

Propuls., 2008, vol. 25, pp. 1–70.

4. BKCASE Project, “System Engineering Book of Knowledge,” SEBoK v1.2. [Online].

Available: http://www.sebokwiki.org/.

5. S. Kent, “Model Driven Engineering,” Integr. Form. Methods, pp. 286–298, 2002.

6. F. Pfister, V. Chapurlat, H. Marianne, and C. Nebut, “A light-weight annotation-based

solution to design Domain Specific Graphical Modeling Languages,” in Proceedings of

Modelling Foundations and Applications - 9th European Conference, 2013.

7. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling

Framework. Addison-Wesley Professional, 2008, p. 744.

8. N. Pontisso and D. Chemouil, “TOPCASED Combining Formal Methods with Model-

Driven Engineering,” 21st IEEE/ACM Int. Conf. Autom. Softw. Eng., 2006.

9. J. M. Jézéquel, O. Barais, and F. Fleurey, “Model driven language engineering with

Kermeta,” in Lecture Notes in Computer Science, 2011, vol. 6491 LNCS, pp. 201–221.

10. S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model-Driven

Architecture. Addison-Wesley Professional, 2002, p. 416.

11. B. Combemale, X. Crégut, and M. Pantel, “A Design Pattern for Executable DSML,” in

The 19th Asia-Pacific Software Engineering Conference (APSEC), 2012, pp. 282 – 287.

12. DoD, “Systems Engineering Fundamentals,” Def. Acquis. Univ. Press, 2001.

13. B. Combemale, “Approche de métamodélisation pour la simulation et la vérification de

modèle -- Application à l’ingénierie des procédés.,” Phd - INPT, 2008 [in French].

14. F. Jouault, F. Allilaire, and J. Bézivin, “ATL: a QVT-like transformation language,”

Companion to 21st ACM SIGPLA, 2006, pp. 719–720.

15. OMG, “MOF Core specification,” v2.4.1, 2013. [Online]. Available:

http://www.omg.org/spec/MOF/2.4.1/PDF/.

16. OMG, “OCL : Object Constraint Language,” v2.4, 2014. [Online]. Available:

http://www.omg.org/spec/OCL/2.4.

17. C. Seidner, “EFFBDs Verification: Model checking in Systems Engineering,” Pdh

University of Nantes, 2009 [in French].

18. V. Chapurlat and C. Braesch, “Verification, validation, qualification and certification of

enterprise models: Statements and opportunities,” Comput. Ind., 2008, pp. 711–721.

19. C. Haskins, K. Forsberg, and M. Krueger, “Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities”, Systems Engineering, no. August. INCOSE

(International Council on Systems Engineering), 2011.

20. H. Chesnut, Systems Engineering Methods. Wiley & Sons, 1967.

21. B. Aizier, V. Chapurlat, S. Lisy-Destrez, D. Prun, C. Seidner, and J.-L. Wippler, “xFFBD:

towards a formal yet functional modeling language for system designers,” in 22nd Annual

INCOSE International Symposium, 2012.

22. B. Combemale, X. Cregut, P.-L. Garoche, X. Thirioux, and F. Vernadat, “A Property-

Driven Approach to Formal Verification of Process Models,” in Enterprise Information

Systems, 2009, pp. 286–300.

23. IEC 60848, Specification language GRAFCET for sequential function charts. Second

edition, 2000.

24. P. Dasgupta, A roadmap for formal property verification. Springer, 2010.

25. V. Chapurlat, “UPSL-SE: A model verification framework for Systems Engineering,”

Comput. Ind., 2013, vol. 64, no. 5, pp. 581–597.

