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A verification approach from MDE applied to Model 

Based Systems Engineering: xeFFBD dynamic semantics  

Blazo Nastov 1, Vincent Chapurlat 1, Christophe Dony2 and François Pfister1 

bstract. Model Based System Engineering (MBSE) is “the formalized application of modeling 

to support system requirements, design, analysis, verification and validation activities 

beginning in the conceptual design phase and continuing throughout development and later life 

cycle phases” [1]. Among other principles, it promotes creating and analyzing models all along 

systems engineering. These models are used to discuss, to argue and finally to make decisions 

that impact the achieved system (in terms of functioning, costs, safety, etc.). One of the main 

expectations of MBSE is to permit engineers to dispose of models with a high level of 

confidence. For this purpose, several model Verification and Validation (V&V) approaches 

exist, aiming to ensure models’ quality in terms of construction (models are correctly built) and 

in terms of relevance for reaching design objectives and stakeholders’ requirements. This paper 

aims at discussing and evaluating an approach originally developed in the field of Model Driven 

Engineering by proposing some adaptations. The approach is illustrated on a well-known 

functional modeling language dedicated to MBSE field.  

1.   Introduction 

Systems Engineering (SE) [2] is a process and a system thinking oriented approach 

for designing complex systems. In this field, Model Based System Engineering 

(MBSE) is considered as “the formalized application of [system] modeling” [3] all 

along engineering activities requested in SE processes [1]. A model represents a 

system under study so called System of Interest (SOI), considering it under one of the 

various possible views e.g. functional, behavioral, physical, requirements, contextual, 

etc. Once created, models allow system engineers to argue and make architectural 

decisions. These decisions have impact on the realized system, its functioning, its 

safety, induced costs and so on [4]. Therefore, engineers should have a high level of 

confidence in models they are handling, before making any decision based on them. 

So first, models have to be “well-constructed” (correctly built, respecting (meta) 

modeling requirements and building rules) and second, they have to be the “right 

models” in terms of 1) relevance for reaching design objectives and 2) respect to a 

part of, or all, stakeholder’s requirements. Moreover, the level of confidence increases 

if models verify their “well-constructiveness” and “model-rightness”, considered 

separately and in interaction with other models of the SOI. 
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Classically, models are the subject of study of Model Driven Engineering (MDE) 

[5] and nowadays they are built using Domain Specific Modeling Languages 

(DSMLs). So first and foremost is the creation of DSMLs, a process, defining the 

languages’ abstract and concrete syntaxes. An abstract syntax is provided by a 

metamodel representing, through a graph of classes and associations, the concepts of 

a domain and their relations. A concrete syntax defines how instances of abstract 

syntax concepts (forming a model) are concretely represented in a textual or graphical 

form. In MBSE context, we focus on graphical representation of models. So 

proposing the abstract syntax and a graphical concrete syntax of a DSML makes it 

operational to create models, each of them seen as a graphical representation of a 

particular point of view of a SOI. The literature highlights several frameworks for 

creating DSMLs and graphical editors [6], [7], [8]. Unfortunately, such editors are of 

“two dimensional drawing-board” nature because they do not deal with model well-

constructiveness or rightness. As a consequence, created models turn-out to be 

“simple two dimensional drawings” of modeled concepts and relationships.  

The main idea of this work is to add a third dimension, allowing designers to create 

models that can be simulated and questioned, achieving some of the Verification and 

Validation (V&V) objectives and to ensure the coherence between all models of the 

same SOI. Some solutions are proposed in the field of MDE [9], [10], [11], but 

unfortunately they remain, not or hardly applied in the field of SE due to their 

insufficiency for reaching SE objectives. In this paper, we discuss and evaluate an 

existing approach coming from MDE by applying it on a DSML, often considered by 

systems engineers and architects as a relevant functional description language named 

eFFBD [12] in order to emerge an extension that reaches SE objectives.  

The paper is structured as follows. Section 2 discusses the importance of DSML 

semantics and introduces approaches and concepts that allow defining such semantics. 

Some limitations of studied approaches are discussed and afterwards an approach 

exceeding discussed limitations is proposed. Section 3 evaluates that approach by 

applying it on the eFFBD language in order to create an executable extension. Section 

4 proposes contributions that allow the adaptation of the approach in the field of SE, 

before concluding about research perspectives in Section 5. 

2.   Towards execution and validation of DSMLs 

Abstract syntaxes of DSMLs partially define language semantics through their 

underlying structure and the vocabulary naming concepts and relationships. 

Unfortunately, such semantics may sometimes be ambiguous, since different 

engineers may have different understanding of a single model. Therefore, in order to 

have equal and non-ambiguous understanding, it is essential to define in a precise and 

non-ambiguous manner DSMLs semantics.  

Semantics are either static, independent of any behavior, or dynamic, describing 

the dynamic comportment of models’ elements (can be advisedly called “dynamic 

model” or “dynamic comportment” or “DSML behavior”). There are three ways to 

formalize dynamic semantics description. First, operational semantics describes 

model comportment as a sequence of states, transitions between states and a machine 

that executes such a state model. Second, denotational (translational) semantics 



transforms DSML concepts into other DSML concepts with predefined dynamic 

comportment. Last, axiomatic semantics describes in a declarative way the evolution 

of model properties [13]. In this paper we focus on defining DSMLs behavior using 

dynamic semantics. 

Literature highlights several approaches and tools for defining dynamic semantics 

for a given DSML. For instance, Kermeta [9] is an executable metamodeling 

language that defines operational semantics for a given DSML (in imperative way). 

Another example is the Atlas Transformation Language (ATL) [14] that (in 

declarative way) defines operational semantics through endogenous transformations 

and denotational semantics through exogenous transformations. Additionally, 

metamodeling languages together with constraints definition languages can be used to 

define axiomatic semantics. Meta Object facilities (MOF) [15] is usually used to 

define metamodels and OCL (Object Constraint Language) [16] to add constraints to 

metamodel e.g. pre and post conditions, invariants and so on. However, these tools 

and approaches are related to software engineering and programming languages 

which somehow make them difficult to use for SE experts. Indeed, dynamic 

semantics of dedicated DSML is to be described and formalized with minimal efforts 

from experts by assisting them and automating the process as much as possible. 
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Figure 1: The executable DSML Pattern  [11] 

Another approach, supporting state-based execution of DSMLs is proposed in [11]. 

The approach is schematized in Figure 1 as a pattern composed of four structural parts 

related to each other and of a fifth part providing the dynamic semantics relying on 

the previous four. Modeling concepts and relationships between them are defined in 

the Domain Definition MetaModel (DDMM) package. The DDMM does not usually 

contain execution-related information. Such kind of information is defined in the 

State Definition MetaModel (SDMM) package through several sets of states assigned 

to DDMM concepts that can evolve during execution. Model execution is described 

as successive state changes of DDMM concepts provoked by stimuli. The Event 

Definition MetaModel (EDMM) package defines different types of stimuli (events), 

together with their relationship to DDMM concepts and SDMM states. Applied 

stimuli are either injected by the environment (exogenous kind) or produced internally 

by the system in response to other stimuli (endogenous kind). The Trace Management 

MetaModel (TM3) provides monitoring mechanism of model execution by capturing 



stimuli. The last and key part is the package Semantics, composed of evolution rules, 

describing how the running model SDMM evolves over DDMM concepts (changing 

their state) according to the stimuli defined in the EDMM.  Evolution rules can be 

either defined as operational semantics or as denotational semantics. 

3.   Application in the field of SE 

This section proposes to extend the eFFBD functional modeling language by 

building and tooling its dynamics in order to become able to interpret and animate 

eFFBD models, and to prove their evolution rules. Similar solution has been proposed 

by [17] using translational semantics, transforming eFFBD models into Petri Nets 

models. [18] argues that translational semantics solutions limit V&V objectives. 

Fortunately, such limitations are exceeded by operational semantics that allow 

achieving V&V objectives on a source model rather than a third party model. So the 

expected result is xeFFBD i.e. an executable eFFBD that we consider as “self-

sufficient” in achieving these V&V objectives. In [19] a short history and various 

evolutions of a particular DSML named FFBD (Functional Flow Block Diagram) and 

its main evolution named eFFBD (enhanced FFBD) is presented. It is considered as a 

functional-modeling language preferred in the SE community [20]. This DSML 

provides system designers with a framework to describe the behavior of complex, 

distributed, hierarchical, concurrent and communicating systems [21]. For instance, 

Figure 2 shows the functional architecture of an interface highlighting parallelism, 

selection, loop and other complex constructs allowed in eFFBD.  

r
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Figure 2: eFFBD example 

Our proposition to achieve executable eFFBD along the above discussed 

methodology is presented in the following section. 

Creating an executable DSML is divided into two major phases. First, a language 

executable metamodel is defined containing domain (in DDMM), execution-related 



(in SDMM and EDMM) and monitoring (in TM3) information. Second, semantics are 

defined describing how execution-related information evolves over domain concepts. 

3.1   Phase 1: executable metamodel definition 

Executable metamodel definition phase includes four construction stages: DDMM 

definition, SDMM definition, EDMM definition and TM3 definition. We apply such 

process to eFFBD as shown in Figure 3. 

xeFFBD Diagram

xeFFBD Construct

xeFFBD DDMM

xeFFBD SDMM

xeFFBD EDMM xeFFBD TM3

<<import>>

xeFFBD Flow

<<merge>>

  

Figure 3: Creating executable metamodel for eFFBD - construction stages 

First, language or domain concepts and relationships are defined. This construction 

stage is identical to a (non-executable) DSML metamodel definition. The created 

metamodel is called DDMM since it contains domain concepts and relationships. In 

order to reduce language complexity and to improve readability and 

understandability, we split the DDMM into three packages: xeFFBD Diagram, 

xeFFBD Construct and xeFFBD Flow, each one representing a different aspect of the 

eFFBD language. xeFFBD DDMM is then created by merging all three packages, 



using the “merge” predefined package operator of MOF. 

The xeFFBD language defines three kinds of core elements: Function, Resource 

and Item. Function describes what a system must do. They transforms one or more 

input Items in one or more output Items respecting transformation rules, possibly 

under control of triggers. Resource is something (data, material or energy e.g. human 

operator, consumable, plans, etc.) that is requested and utilized or consumed during 

an inputs/outputs transformation. Requested resources are considered as independent 

from transformation goal and they are requested for function execution that modifies 

them. Item is something (data, material or energy) that is requested and transformed 

by function in order to provide another(s) distinct Item(s). Taking into account its 

type, an Item can be consumed or can remain available during certain time duration 

after which its value becomes obsolete and unusable. These core elements are 

characterized by temporal attributes e.g. minimal and maximal time of execution, life 

time, etc. 

xeFFBD Diagram is the core package describing a xeFFBD diagram as a 

quadruplet of  begin and end operators, main branch and set of input/output objects 

carried by flows. Begin and end describe starting and finishing points in a diagram. 

The branch is composed of several control constructions named exFFBD Constructs, 

described hereafter. Two sorts of input/output objects are then available: items and 

resources respectively carried out by item flows and resource flows as detailed below. 

Last, a diagram is temporized element, having started and finished execution time. 

xeFFBD Construct package represents different constructions recurring into a 

xeFFBD Diagram. These constructions allow engineer to describe how functions are 

chained and the different manners of their execution, introducing the possibility to 

describe function parallelism, sequence, exclusion, and selection. A construct can 

either be 1) a function control construct composed of a set of functions (eventually 

one unique function) put in a sequence, or 2) an operator control construction 

containing minimum one branch beginning on a begin operator and ending on an end 

operator. Four types of operator control construction are introduced: AND, OR, 

Iteration and Loop.  A fifth one, named replication construction, is not considered at 

this moment. AND and OR constructions contain minimum two branches and they 

represent respectively parallel and exclusive execution of branches. Iteration and 

Loop constructions represent two possibilities of repetitive execution of one branch 

differing in the stop condition. Iteration fixes a number of iterations, while loop stops 

on a Boolean condition. Constructions are temporized elements having started and 

finished execution time. 

xeFFBD Flow package describes three types of flows that can be represented in a 

xeFFBD model: functional flow, item flow and resource flow. A functional flow 

describes the order in which functions are executed (related to the primitive relation 

successor/predecessor between two functions). It is represented by the functional flow 

class connecting functional flow connectable elements which are either operators or 

functions. A Resource Flow describes requested Resources of a function that 

consumes them and restores them after execution, modifying eventually some of 

resource characteristics such as its quality and quantity levels. For this a Resource 

Flow is characterized by two attributes: quantity and quality. Quantity attribute 

indicates the requested amount of resource, consumed as an input by a function in 

order to execute it (requested quantity), and provided as an output after execution of 

related functions (provided quantity). Quality attribute indicates the level of resource 



quality, requested as an input in order to execute related functions (requested quality), 

and restituted after function execution as an output altering then eventually the level 

of quality of the resource (provided quality) i.e. mixing for instance its availability 

and its efficiency. Item flow relates Item with function by input or output 

relationships. These relationships describe items that are needed and consumed as 

inputs for function execution and items that are provided as output after execution. 

Provided items are a result from transformation of inputs flows and eventually under 

the help or the control of resource flows. Note that there is a special kind of triggering 

items and resources that can trigger function execution, controlling then function start 

and/or stop conditions. Functional and resource flow have attributes (comment, 

condition and quantity, etc.), so they are represented in the metamodel using the class-

association pattern, while item flow is represented using associations. Once a DDMM 

is defined, the second construction stage consists in defining SDMM. In this stage, we 

define in the package xeFFBD SDMM, the possible states of some of previously 

defined domain concepts. First, domain concepts that may evolve have to be chosen. 

For instance, we chose the following: Construct, Function, Item and Resource. The 

third construction stage consists in defining the events requested for the evolution of 

evolving concepts together with their relationship with corresponding concepts. Such 

information is defined in the EDMM. For instance, we defined three types of events: 

construct event, function event and item event. 

Additionally, Figure 4 shows finite states automate associated to the concept 

Function. Here, on the one hand, function states are represented by automates’ states 

and on the other hand, different types of function event are represented by automates’ 

transitions. The evolution of concepts is represented as transition firing. In this sense, 

we consider here the input/output transformation described by a Function, is first 

possible (Authorized) i.e. the function can start but wait for Items (and eventually 

Resources) before being able to make the real transformation of energy, material and / 

or data (Execution) providing then the outputs items and resources (Finished). Due to 

external events, a function can be suspended and even aborted (Suspended, Aborted) 

e.g. in case of dysfunction of the component on which the function has been allocated.  

Sleep

Authorised Execution Suspended

Aborted
Finished

StartFunction

ExecuteFunction
ResumeFunction

SuspendFunction

AbortFunction
EndFunctionEndFunction

 
Figure 4: A finite states automate for the concept Function representing state evolution as 

transition firing 

In the case of Item and Resource, the state model is replaced by defining state 

variables named quantity and quality allowing us to reduce the number of possible 

states. For example, a resource of oil can be in state 50 liters, but also in state 100 

liters if a function provides as output another 50 liters of that same resource. 

The executable metamodel definition process ends by defining a monitoring 

mechanism considered as fourth stage of this process. For this, we propose the generic 

trace mechanism described in the approach, the TM3 package, shown in Figure 3. 



3.2   Phase 2: semantics definition 

As previously defined, xeFFBD metamodel contains execution-related (dynamic) 

information (e.g. packages SDMM and EDMM). Yet, xeFFBD metamodel is static, 

until the package Semantics (Figure 1) is defined. This package defines how and 

when dynamic information is executed on domain concepts, allowing state and 

property changes. For this, we adopt a proposed property-driven approach detailed in 

[22]. This approach describes how to formally define execution rules under the form 

of properties (described below), and how to become able to check some of those 

properties. Three types of properties can be expressed: structural properties, temporal 

properties and quantitative properties. The approach distinguishes properties checked 

on each model execution called universal properties from those checked once called 

existential properties.  

Model evolution is first, defined through universal and existential properties by 

preconditioning events, second, through transitions that are defined between domain 

concepts states and finally, through event-based transition firing. When fired, 

transitions invoke state changing of domain concepts. Figure 4 illustrates different 

states of Function, event-based transitions between states and corresponding events. 

For instance, if event StartFunction is applied on an instance of Function that is in 

state Sleep, a transition is fired changing its state into Authorized. 
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(Function)
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StartConstruct
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EndConstruct
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FinishConstruct
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time
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Figure 5: execution of a simple exFFBD model 

We consider that execution of lower level embedded constructions is controlled 

(i.e. started and finished) by higher level embedding constructions respecting an 

ordering given by a functional flow. Figure 5 illustrates an example of such execution 

control describing applied events and invoked state changes of components 

represented by different type of arrows. A simple xeFFBD diagram is represented by 

a starting point (entering arrow), an ending point (exiting arrow) and a main branch. 

A sequence is placed inside that branch, containing three functions: F1, F2 and F3. In 

this example, input and output object flows are not represented in order to ease the 

readability of the figure. The execution occurs as detailed hereafter. Each Construct 

controls the execution of Branches and Constructs it contains. So, the diagram starts 

the main branch which starts the sequence. Since a sequence contains functions, it 

also controls their execution. First, it starts the beginning function (F1), and 

afterwards it waits for finished functions, to end their execution and to start the 

execution of following functions (end F1 and start F2). This process is repeated until 

the ending function (F3) ends and then the sequence itself finishes execution. The 

main branch ends the sequence, before finishing its proper execution. The diagram 



waits for the main branch to finish execution, in order to end it. The end of the main 

branch execution means that the diagram can first, finish and then end its execution.  

Functions are contained in a sequence, so the formal definition of their execution 

starting and ending is defined by the dynamic behavior of the Sequence construct as 

described in previous example. Next, due to lack of space we formally define only a 

dynamic behavior of functions using the previously described property-driven 

approach. An input/output transformation described by the Function is first possible 

i.e. the function can start but has to wait for Items and eventually Resources (Figure 6, 

Eq.1) before being able to make the real transformation of energy, material and / or 

data (Figure 6, Eq.2) providing then the outputs items and resources and finishing its 

execution respecting minimal and maximal execution time (Figure 6, Eq.3). 

For f  Function

(Eq. 1)

{ (f.state==authorised) AND
(  i  f.itemInputs,(i.state==present)) AND
(  j  f. resourceFlowInputs, (

(j.requestedQuantity >= j.sourceResource.availableQuantity) AND
(j.requestedQuality == j.sourceResource.quality)))) 

implies executeFunction(f) }

(Eq. 2)
{ (f.state==execution) implies (
( i  f. itemInputs, (consumeItem(i))) AND
( j  f. resourceFlowInputs, (j.sourceResource.availableQuantity -= j.requestedQuantity)) }

(Eq. 3)
{ ((f.state==execution) AND ((internalTime - f.startedTime) >= minimalTime) AND

((internalTime - f.startedTime) <= maximalTime)) implies ( finishFunction(f)) }

(Eq. 4)

{ (f.state==finished) implies (
(  i  f. itemOutputs, (provideItem(i))) AND
( j  f. resourceFlowOutputs, (j.targetResource.availableQuantity += j.providedQuantity)))}

 
Figure 6: Semantics mapping by defining evolution properties of Function concept 

Let us note that due to external events, a function can be suspended temporarily, 

can resume its execution or can abort (Suspended, Aborted). These external events 

can be then shared with other constructs from other modeling languages. For instance, 

the function behavior can depend on the component behavior that performs this 

function. So, the event Suspended can be a common event shared between xeFFBD 

and a future DSML named xPBD (executable Physical Block Diagram currently 

under study). 

4.   Application discussion and expected contributions 

State notion and formalization. Considered approach describes concepts’ execution 

as successive state change. This induces to define a set of states considered by the 

user as sufficient for his V&V objectives. Unfortunately, some concepts, such as 

Resource from xeFFBD, may be characterized by a continuum of states. For this, we 

propose three solutions. The first solution consists in defining a finite number of 

states. For instance, resource states model can be reduced to a two state model, 

containing: sufficient or insufficient states. However, this solution is too limitative for 

V&V objectives. The second solution consists in introducing a set of state variables 



describing possibly infinite number of states that can evolve continuously. This 

solution allows describing high level of detail. For instance resource state model can 

be represented by quality and quantity variables. The third one consists in mixing the 

previous two solutions, linking discrete states defined in the state model and state 

variables. For instance, Item state model is composed of a state quality variable and 

two states: present and absent. These three solutions are applied in SDMM package 

and are now under development. 

Towards condition and event based transition approach. In order to understand 

concepts’ evolution, one has to simultaneously visit three packages: DDMM, SDMM 

and EDMM, and the evolution rules defined in the semantics package. We consider 

that this makes created languages difficult to read and understand. In order to ease 

readability and improve understandability, we propose a representation of previously 

stated packages, using finite state automata. Conditions and events are responsible for 

a transition firing. First, a Condition (True by default) is a Boolean function computed 

on variables, attributes of any concept from the local DDMM and external variables 

corresponding to other concepts from another DDMM. So inter and intra conditions 

are distinguished. Intra conditions have to be satisfied by a currently manipulated 

model, while inter conditions correspond to conditions that have to be satisfied by one 

or several other models from the same SOI whose behavior interacts with the 

behavior of studied model. Second, it is always possible to distinguish two events and 

there exist a default event e always occurring. A Transition can be then fired when 

associated event is received, and if and only if, associated condition is verified. The 

work now consists of formalizing these notions and linking the transition behavior 

with discrete event system theory. 

Towards model transient states detection and management. Temporal evolution 

rules (named properties by [13]) are currently defined using Temporal OCL (TOCL). 

This induces the examination of defined properties taking into account a unique scale 

of time. However, the notion of “model stability” is by hypothesis essential for 

models representing critical, parallel or distributed systems. A “transient state” of a 

concept is a state such that it is possible to change that state without modifying the 

inputs, as defined for instance in the case of Sequential Function Chart in [23]. A 

model is stable if and only if each instance of a modeling concept used in this model 

is itself in stable state. We propose here to extend considered approach by a double 

scale of time named external and internal time modeled by two independent logical 

clocks. Values of each variable vi appearing in conditions and occurring events 

associated to transitions of a state model M are read and then frozen in external time. 

M evolves taking into account vi by using then an internal scale when performing 

execution rules allowing then to detect transient states and to reach the next stable 

state of M. The external time depends on environment evolution and is a logical 

modeling of physical scale time. It is defined as a set of moments ordered by taking 

into account events apparition. It is initialized when a simulation starts. The internal 

time is initialized at each moment defined in external time and there are no common 

temporal dimensions between internal and external scales. The evolution algorithm 

allowing transient states detection is schematized in Figure 7. 

Towards properties modeling languages and checking techniques. Literature 

highlights several  property-driven approaches with associated V&V techniques [24], 

[25] that will be explored and applied in the prosed frame of work.  

Towards modeling languages and models interoperability. As illustrated in 



Section 3, we propose to become able to link formally the resulting interpretation and 

execution of several DMSLs each dedicated to the description and the analysis of a 

view of a given SOI (behavioral, physical, functional, etc.). This will allow 

contributing to become able to check the coherence of SOI models even considering 

different points of view and different modeling objectives. It is a question of linking 

the dynamic semantics i.e. SDMM and EDMM have to be extended introducing 

requested and shared concepts and evolution rules. 

Tooling. Unfortunately, tools supporting the considered approach do not exist at 

this moment. An extension of Diagraph [6] is now under development taking into 

account proposed improvements. 

Read external inputs of the system model (set of state models)

Te := Te+1

Initialise external clock: Te := 0

Initialise internal clock: Ti := 0

Write external outputs of the system model

is stability
reacheable?

Analyse resulting
execution path and 
expected properties

is state model 
transient ?

Ti := Ti+1

Read inputs from other state models

Compute next state

Write outputs in internal time

For each state model

y

Bounded Te?

y

 

Figure 7: proposed evolution algorithm including stability reaching objectives 

5.   Conclusion and Perspectives 

This paper presents an approach from the field of MDE for defining semantic of a 

DSML. The approach is considered here as a formal and relevant way for achieving 

models V&V objectives. It is applied to a functional modeling language largely used 

in MBSE domain. This application however, makes appear some questions that seem 

crucial and remain partially or completely uncovered. Conceptual as technical 

improvements are then proposed in order to complement this approach. The research 

and development work is now on going intending to fully support executable DSMLs 

creation process and to deploy it on MBSE domain. 
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