
HAL Id: lirmm-01237144
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237144

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wringing out objects for programming and modeling
component-based systems

Petr Spacek, Christophe Dony, Chouki Tibermacine, Luc Fabresse

To cite this version:
Petr Spacek, Christophe Dony, Chouki Tibermacine, Luc Fabresse. Wringing out objects for pro-
gramming and modeling component-based systems. COOMPL: Combined Object-Oriented Modeling
and Programming Languages, Jul 2013, Montpellier, France. ACM Digital Library, 2nd International
Workshop on Combined Object-Oriented Modeling and Programming Languages (COOMPL’13) -
co-located with ECOOP, 2013, <10.1145/2493187.2493189>. <lirmm-01237144>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237144
https://hal.archives-ouvertes.fr

Wringing out Objects for Programming and Modeling

Component-based Systems

Petr Spacek, Christophe Dony,

Chouki Tibermacine
LIRMM, CNRS and Montpellier II University

161, rue Ada

34392 Montpellier Cedex 5 France

{spacek,dony,tibermacin}@lirmm.fr

Luc Fabresse
Université Lille Nord de France

Ecole des Mines de Douai

941 rue Charles Bourseul

59508 DOUAI Cedex France

luc.fabresse@mines-douai.fr

ABSTRACT
Languages and technologies used to implement component-
based software are not component-based, i.e. while the de-
sign phase happens in the component world, the program-
ming phase occurs in the object-oriented world. When an
object-oriented language is used for the programming stage,
then the original component-based design vanish, because
component concepts like requirements and architectures are
not treated explicitly. This makes it difficult to keep model
and its implementation causally connected. We present
a new pure reflective component-based programming and
modeling language where all core component concepts are
treated explicitly and therefore keeping original component-
design alive. The language makes it possible to model
and program component-based software using the same lan-
guage plus its uniform component-based meta-model and
integrated reflection capabilities make the language and its
applications open and flexible.

Categories and Subject Descriptors
D.1 [Programming techniques]; D.2.11 [Software Ar-

chitectures]: Languages; D.3 [Programming languages]

General Terms
Languages, Programming, Modeling

Keywords
programming, modeling, metamodeling, reflection, inheri-
tance, requirements, architecture, component

1. INTRODUCTION
Nowadays trend is to develop complex software by assem-
bling reusable software pieces called components. The core
component concepts: explicit external contract and explicit

internal composition facilitate modeling phase of software
design process. For these purposes, many component ori-
ented frameworks and models exist and provide tools and

languages [6, 12] making them suitable for formal architec-
ture design, reasoning and manipulation.

However, programming phase facilitation is mainly focused
on generating code skeletons into target programming lan-
guages, which are very often object-oriented. In other
words, while the design phase happens in the component
world, the programming phase occurs in the object-oriented
world. In our work we address this by proposition of a pure
component-based language, which combines modeling capa-
bilities of Architecture Description Languages (ADLs) [12]
with implementation powers of standard programming lan-
guages.

Although object-oriented languages provide conceptual
means for understanding and organizing knowledge about
phenomena and concepts from the real-world (applica-
tion domain, in our case component-based software), only
a small percentage of the final code relates to the real
world, i.e. modeling and programming coupling disappears.
When an object-oriented language is used, then the orig-
inal component-based design may vanish in the program-
ming stage, because component concepts like requirements
and architectures are treated implicitly. Consider the fol-
lowing example where we use Java to model a very simple
text-editor component.

class TextEditor {
private ISpellChecker sc;
public TextEditor() { }
public void setSpellChecker(ISpellChecker sc) {...}
public ISpellChecker getSpellChecker() {...}
...

}

The global semantics of the sc attribute with the getter and
setter operations is: “a text-editor requires a spell-checker”.
Unless users of such an editor read the editor’s documenta-
tion or its code, they are not aware of the fact that the editor
requires a spell-checker. The information is not explicit.

Moreover, component architectures described in current
component-oriented frameworks and models are not easily
verifiable and transformable. The solutions do not offer ca-
pability to manipulate model entities at run-time and there-
fore architecture constraints and transformations has to be
defined in 3rd party languages [7, 19]. Only few solutions

inspired by models@run.time philosophy [3], provide a re-
flective solution with a casual connection between a model
and its run-time representation, but even if they do so, the
run-time manipulation is object-oriented.

In our work we focus on modeling and programming
component-based systems. We believe that component sys-
tems should be implemented in languages where components
have first-class status and are able to explicitly express what
they offer (provisions) and what they need (requirements),
in order to implement desired behavior. They also should be
able to explicitly describe internal composition, called archi-

tecture, i.e. to be composed of other components (internal
components or sub-components.)

Like in [10] or UML, we also see components as just spe-
cial objects able to explicitly describe provisions, require-
ments and architectures. Components’ contracts are defined
in terms of ports, which are connection and communication
units each described by a name, an interface, a role (provided
or required) and a visibility (external or internal). Provi-
sions of a component are defined via provided ports and
conceptually they resemble interfaces an object implement.
Requirements of a component are defined via required ports
and conceptually they are related to attributes. External
required ports resemble public (or accessible via getters and
setters) attributes. Internal required ports resemble pro-
tected and private attributes. An architecture is a system
of internal components and of connections between them. It
resembles assignments to private and protected attributes in
the constructor method of an object.

In this work we present a reflective component-based lan-
guage named Compo making it possible to model and pro-
gram component-based software using the one language.
Our proposal has the following original contributions:

• Components are seen as extended objects in which
requirements, architecture descriptions, connection
points, etc. are explicit. This core idea aids in bridging
the gap between component-based modeling and pro-
gramming by revealing the original design intentions
and therefore helping to understand.

• It applies component-oriented reification to build up
an executable meta-model designed on the idea of
“everything is a component”, allowing intercession on
component descriptors and their instances.

• Its reflection capabilities make it possible to develop
standard component-based application, to perform
advanced architecture checking, code refactoring or
model transformations, all using the same language.

The rest of this paper is organized as follows. Section 2
presents Compo’s standard syntax, constructs and use when
modeling and programming component-oriented software;
Section 3 presents advanced example of use: a model trans-
formation verified by constraints components. Section 4 de-
scribes Compo implementation. Comparison with related
works is presented in Section 5 and we conclude in Section
6 by discussing future work.

Figure 1: The relations between terms: phenomena,

concept, descriptor and component

2. THE LANGUAGE
In the following we present Compo’s programming and mod-
eling capabilities on a walk-through example in which we
design and implement a very simple HTTP server.

Modeling stage. The HTTP server concept is an abstrac-
tion of the real world phenomena of an entity serving clients’
requests. Compo component model is based on a descrip-
tor/instance dichotomy where components are instances of
descriptors (similarly to object/class dichotomy.) As shown
in Figure 1, a descriptor describes a concept and its instances
are models of the phenomena the concept abstracts.

Descriptor HTTPServer {
provides {

default : { run (); status () }
}
internally requires {

fE : FrontEnd;
bE : BackEnd;

}
architecture {

connect fE to default@(FrontEnd.new ());
connect bE to default@(BackEnd.new ());
...
connect backEnd@fE to default@bE;

}
...

}

Listing 1: The HTTPServer descriptor - modeling

stage.

At a glance, the Listing 1 shows a definition of a descriptor
named HTTPServer describing very simple HTTP servers.
It defines a default provided port through which it pro-
vides the services run and status. It states that a server is
composed of two internal components, an instance of Fron-
tEnd accessible via the internal required port fE, and an
instance of BackEnd accessible via the internal required port

bE1. These internal components are connected together so
that the front-end can invoke services of the back-end.

In fact, at this moment (prior the programming stage) the
HTTPServer descriptor is fully comparable to component def-
initions in ADLs [12, 17] and it could be used as a regular
architecture description to generate a code skeleton into a
programming language. In this sense, Compo is an ADL,
but as you will see in the following, one of our contributions
is that the behavior of the description can be seamlessly im-
plemented without the need to switch into another language
or technology.

Programming stage. To program the run and status ser-
vices the server provides, we complete the HTTPServer de-
scriptor with the implementation of the status service and
with the delegation connection from the default port of the
server to the provided port default of the front-end. The
delegation states that the run service is implemented by the
front-end. The Listing 2 shows the completion of the de-
scriptor.

Figure 2 shows a diagram of the HTTPServer descriptor’s in-
stance after modeling and programming have been finished.

Descriptors. Let’s look at each point more precisely. A de-
scriptor defines the structure and behavior of its instances.
The behavior is given by a set of services definitions, for
example a part of an HTTPServer’s behavior is defined with
the status service. The structure is given by descriptions
of ports and connections. Descriptions of external (resp. in-
ternal) ports define an external contract (resp. an internal

contract). For example the external contract of HTTPServer
instances is defined by the declaration of the provided port
default and its internal contract is defined by the declara-
tion of the fE and bE internal required ports .

Descriptor HTTPServer {
provides { ... }
internally requires { ... }
architecture {

...
delegate default@self to default@fE;
...

}
service status () {

if(fE.isListening ())
{ return name.printString ()

+’is running ’;
} else {

return name.printString ()
+’is stopped ’;

};
}

}

Listing 2: The HTTPServer descriptor - programming

stage.

A component may be composed of (internal) components
(e.g. a HTTPServer is composed of an instance of Fron-

1For the sake of simplicity we do not show the FrontEnd and
BackEnd descriptors.

Figure 2: Diagram of an HTTPServer component

instance

tEnd connected to an instance of BackEnd) and it is then
called a composite. A composite is connected to its inter-
nal components via its internal required ports. The services
of a composite can then invoke the services of its internal
components through such ports. The system composed of
internal components and their connections is called the in-

ternal architecture of a composite. An example is given in
the architecture section in Listing 1.

An important feature of Compo is inheritance. The inte-
grated inheritance system2 [18] is quite innovative in the
context of CBSE, because it promotes modeling power with
covariant specializations and presents an approach to deal
with the child-parent incompatibility problem of inheritance
systems in CBSE. A descriptor can be defined as a sub-
descriptor of an existing one using the extends statement,
this gave us ability to reuse descriptors and to model hierar-
chies of descriptors. Sub-descriptors inherit all parts defined
by their super-descriptor and can extend or specialize them.
For example, a sub-descriptor can introduce new services
and its instances can access and reuse services defined by
its super-descriptor. This gives us ability to define behav-
ior that’s specific to a particular sub-descriptor, i.e. achieve
polymorphism of descriptors.

Our modeling scheme follows the idea of “everything is a

component” and represents descriptors as components. It is
directly inspired from [5] and conforms to the MOF solu-
tion [14]. Component is our root classifier, that conforms
to MOF::Reflection::Object. Descriptor is our basic meta-
classifier, that conforms to UML::Classes::Kernel::Classifier.
Descriptor is the descriptor of descriptors, i.e. a meta-
descriptor and all descriptors are instances of it. All de-
scriptors inherit from Component (except Component itself
which is the root of the inheritance tree). All descriptors
are components. Descriptor is instance of itself, it is its
own descriptor. This solves at the model level the infi-
nite regression on descriptions, the corresponding solution
at implementation level is to create by hand a bootstrap
first version of Component and Descriptor descriptors3, the
implementations of Component and Descriptor respectively.

2Single inheritance type
3Due to space reasons, we omit their Compo implementa-
tions

Descriptors Component and Descriptor define the basic in-
trospection and intercession behavior making it possible to
observe and adapt components dynamically. Moreover, with
the inheritance system, it is possible to define new kinds
of meta-descriptors, i.e. to achieve meta-programming and
meta-modeling.

Ports. Ports are connection and communication points. A
service invocation is made via a required port and transmit-
ted to the provided port, the required port is connected to.
fE.islistening() is an example of a service invocation ex-
pression in the code of the status() service defined in the
HTTPServer descriptor, made through the fE required port.
A port has a role (provided or required), a visibility (ex-
ternal or internal), a name and an interface, optionally the
kindOf statement can be use to specify the descriptor of the
port, we explain this later. Ports are instances of Port de-
scriptor4 and they are true components. This is important
for model checking and transformations and also to allow for
defining new kind of ports introducing new communications
protocols, e.g. revocable or read-only ports as hinted in List-
ing 3. It however induces two potential infinite regressions.
The former is related to the definition: “a port is a com-
ponent having ports”. To solve the recursive nature of that
definition we restrict the language capabilities by altering
the definition in the following way: “a port is a component
having primitive ports”. A primitive port is a rock-bottom
entity that cannot be created by users and cannot be used
as a first-class entity. All ports of any normal port are auto-
matically created as primitive ports. The latter is related to
the fact that if ports are components, a component and one
of its ports, should be connected via ports. To solve this,
the attachment of a port to its owning component has to be
also primitive.

Descriptor ReadOnlyPort extends Port {
service invoke(service) {

...
if(owner.isConstantService(service))
{ return super.invoke(service) };
...

}
...

}

Listing 3: The ReadOnlyPort descriptor

Connections. Connections are either regular or delegation
connections. A connection establishes a dual referencing be-
tween two ports, making it possible to determine whether a
port is connected or not and, if true, to which other port it is
connected. It is a 1:1 relationship. An example of an expres-
sion establishing a regular connection is: connect backEnd@fE

to default@bE;5, (see. Listing 1) . As a support for 1:N re-
lationships we introduce collection ports. A required (resp.
provided) port can be declared as a collection port (syntax

4Its Compo implementation is omitted due to space reasons
5The expression backEnd@fE should be read: “the port back-
End of the component that will be connected to fE port after
an instance of HTTPServer descriptor will be created”, i.e.
the @ operator makes it possible to reference ports of a com-
ponent which is not yet created.

is <portName>[]) meaning that the port can be connected
to one or more provided (resp. required) ports accessible
through an index. Collection ports boots modeling power
of the language making it possible to model dynamic ar-
chitectures, for example a component with variable number
of internal components. In opposite to ports or descriptors,
connections do not have first-class status in Compo. Having
a solution where components are connected via theirs ports,
we can consider connections between ports as primitive enti-
ties (references), and do not need to reify connections. This
entails no limitation regarding the capability to experiment
with various kind of connections [13] because, using inheri-
tance and kindOf statement, our model makes it possible to
define and use new kind of ports; and because of the capa-
bility it offers to put an adapter component in between any
components.

Services. Services implement the behavior of components
and semantically they conform to methods in OOP. Each
service has a signature, temporary variables names and val-
ues, a program text, actual parameters and an execution
context. They are defined in descriptors using the ser-
vice statement, for example the status service in Listing 2.
Refactoring operations (add, remove, move), run-time be-
havior modification, JIT compilation and other features are
possible when services do have first-class status. Services
are instances of Service descriptor which describes their
structure, i.e. it reifies formal parts of services like name,
parameters, etc. Compo does not provide behavior reflec-
tion, which focus on reification of concepts from which be-
havior description is composed, i.e. assigments, invocations,
because it may led to inefficient programs, as shown in [11].

3. ADVANCED EXAMPLE
In this example we model and perform a transformation
which migrates the HTTP server component-based applica-
tion (presented in Section 2) from classic front-end/back-end
architecture into a bus-oriented architecture. The transfor-
mation (sketched in Fig. 3) was motivated by a use-case
when a customer (already running the server) needs to turn
the server into a server with multiple fronts-ends and back-
ends.

Figure 3: Simplified diagram illustrating the trans-

formation from classic front-end back-end architec-

ture into bus-oriented architecture.

The bus-oriented architecture reduces the number of point-
to-point connections between communicating components,
which makes impact analysis for major software changes
simpler and more straightforward. For example, it is eas-
ier to monitor for failure and misbehavior in highly complex
systems and allows easier changing of components.

The results of the transformation are checked using ar-
chitecture constraints also implemented as Compo compo-

Descriptor ToBusTransformer {
requires { context : IDescriptor }
service stepOne -AddBus () {
|pd cd|
pd := PortDescription.new(’bus ’,’required ’

,’internal ’,IBus);
context.addPortDescription(pd);
cd := ConnectionDescription

.new(’bus ’,’default@(Bus.new ())’);
context.addConnectionDescription(cd);

}
service stepTwo -ConnectAllToBus () {...}
service stepThree -RemOldConns () {...}

}

Listing 4: The ToBusTransformer descriptor.

nents [20].

The transformation is modeled as a descriptor named
ToBusTransformer. An instance was connected to the
HTTPServer descriptor and it performs the following trans-
formation steps: (i) introduce a new internal required port
named bus to which an instance of a Bus descriptor (not
specified here) will be connected; (ii) extends the original
architecture with new connections from front-end and back-
end to bus; (iii) removes the original connection from front-
end to back-end. Finally, a constraint component, an in-
stance of the VerifyBusArch descriptor will be connected to
the server to perform post-transformation verification. The
constraint component executes a service verify which does
the following steps: (i) verifies the presence of the bus com-
ponent; (ii) verifies that the bus component has one input
and one output port; (iii) verifies that all the other compo-
nents are connected to the bus only and the original delega-
tion connection is preserved.

Listing 4 gives a hint of Compo code of the ToBusTrans-
former descriptor. Due to space reasons we omit the code of
the VerifyBusArch descriptor. The following code snippet
shows the use of the transformation and verification compo-
nents:

transformer := ToBusTransformer.new();
constraint := VerifyBusArch.new();

connect context@transformer to default@HTTPServer;
connect context@constraint to default@HTTPServer;

transformer.transform();
constraint.verify();

4. PROTOTYPE IMPLEMENTATION
A prototype of our language is implemented in Pharo
Smalltalk6. We have chosen this model, because it is ex-
tensible enough to support another meta-class system as
shown in [8]. Our meta-model is based on the two core con-
cepts: Component and Descriptor. Both are implemented
as sub-classes of Smalltalk-classes: Object and Class, re-
spectively. This integration makes Compo components and
descriptors manageable inside Pharo Smalltalk environment.
For example, one can use basic inspecting tool, the Inspec-

tor. Descriptor being defined as a sub-class of Smalltalk-

6www.pharo-project.org

class Class enables us to benefit from class management and
maintenance capabilities provided by the environment. For
example, all descriptors are “browsable” with the standard
SystemBrowser tool. Compo also comes with its own tool
to support descriptors’ modeling process, see Figure 4.

Figure 4: Screenshot of the Compo’s HTTPServer

implementation in the descriptor’s development

tool.

5. RELATED WORK
The big advantage of Component-based Programming Lan-
guages (CBPLs) is that they do not separate architectures
from implementation and so they have potential to manip-
ulate reified concepts. In opposite to Compo, component-
level concepts are often reified as objects, instead of compo-
nents. This leads to a mixed use of component and object
concepts. For example reflection package of ArchJava [1]
specifies class (not component class) Port which represents
a port instance. Very often the representations are not
causally connected to concepts they represent. In case of
ArchJava, which relies on Java reflection, the reason is that
reflection in Java is mostly read-only, i.e. introspection sup-
port only.

Reification and reflection are not explicitly advocated in
ComponentJ [16]. However, it appears that a running sys-
tem certainly has a partial representation of itself to allow
for dynamic reconfiguration of components internal archi-
tectures as described in [16] but it seems to be a localized
and ad.hoc capability, the reification process being neither
explicited nor generalized as in our proposal. This makes
architecture reasoning, constraints and transformations dif-
ficult to implement. ComponentJ favor composition over
inheritance as a reuse mechanism. This has advantage of
not introducing additional language-level mechanism, but
makes it difficult to reuse formal structure definitions and
achieve hierarchies modeling.

SCL [9], the predecessor of Compo, is a uniform CBPL im-
plemented in Smalltalk. Compo shares with SCL many fea-
tures like unique communication protocol, unplanned con-
nections support or services’ arguments passing. With re-
spect to SCL, Compo goes further in modeling aspect, its
explicit architectures support, meta-model and inheritance

system boots modeling power of the language and provide
basis for Model Driven Development.

CLIC [4], an extension of Smalltalk to support full-fledged
components, which provides component features such as
ports, attributes, or architecture. In opposite to Compo,
the model is not implementation independent, it focus on
symbiosis between CLIC and Smalltalk plus it enables to
benefit from modularity and reusability of components with-
out sacrifice performance. CLIC fully relies on Smalltalk
reflective capabilities, its components are objects and their
descriptors are extended Smalltalk classes. Compared to
Compo, modeling powers of CLIC are limited, the model
allows components to have only one provided port. The au-
thors argue that it is hard to split component functionality
over multiple ports, because developers do not know before-
hand, which services will be specified by each required port
of client component.

6. CONCLUSION
We have described an original operational reflective
component-based programming language allowing for stan-
dard component-based application development by support-
ing modeling and programming development phases. Such
a language offers a continuum to achieve the various stages
of component-based software development in the same con-
ceptual continuum. The continuum makes debugging or
reverse-engineering simpler. It opens the essential possi-
bility that architectures, implementations and transforma-
tions can all be written at the component level and using
a unique language. For example a programmer can design
a component-oriented architecture, then verify the architec-
ture’s properties and then seamlessly fill it in with code, all
using Compo. Or, in the spirit of MDE, several transforma-
tions can be modeled and implemented to enhance primary
models into final products. Moreover, Compo’s reflexive ar-
chitecture allows to experience the impact of adding new
mechanisms at both the architectural and implementation
levels.

7. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava:

connecting software architecture to implementation. In
Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, pages 187–197, New
York, NY, USA, 2002. ACM.

[2] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet,
A. Bergel, and M. Suen. Read-only execution for
dynamic languages. In Proceedings of the 48th

international conference on Objects, models,

components, patterns, TOOLS’10, pages 117–136,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] G. Blair, N. Bencomo, and R. France. Models@
run.time. Computer, 42(10):22–27, 2009.

[4] N. Bouraqadi and L. Fabresse. Clic: a component
model symbiotic with smalltalk. In procs. of IWST,
New York, NY, USA, 2009. ACM.

[5] P. Cointe. Metaclasses are first class: The objvlisp
model. SIGPLAN Not., 22(12):156–162, Dec. 1987.

[6] I. Crnkovic, S. Sentilles, A. Vulgarakis, and
M. Chaudron. A classification framework for software
component models. Software Engineering, IEEE

Transactions on, 37(5):593 –615, sept.-oct. 2011.
[7] K. Czarnecki and S. Helsen. Feature-based survey of

model transformation approaches. IBM Syst. J.,
45(3):621–645, July 2006.

[8] S. Ducasse and T. Gı̂rba. Using smalltalk as a
reflective executable meta-language. In Proceedings of

the 9th international conference on Model Driven

Engineering Languages and Systems, MoDELS’06,
pages 604–618, Berlin, Heidelberg, 2006.
Springer-Verlag.

[9] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard.
A language to bridge the gap between
component-based design and implementation.
COMLAN : Journal on Computer Languages, Systems

and Structures, 38(1):29–43, Apr. 2012.
[10] O. L. Madsen and B. Møller-Pedersen. A unified

approach to modeling and programming. In
Proceedings of the 13th international conference on

Model driven engineering languages and systems: Part

I, MODELS’10, pages 1–15, Berlin, Heidelberg, 2010.
Springer-Verlag.

[11] J. Malenfant, C. Dony, and P. Cointe. Behavioral
reflection in a prototype-based language. In
Proceedings of International Workshop on Reflection

and Meta-Level Architectures, pages 143–153. ACM,
1992.

[12] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. Softw. Eng.,
26(1):70–93, Jan. 2000.

[13] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In Proceedings of

the 22nd international conference on Software

engineering, ICSE ’00, pages 178–187, New York, NY,
USA, 2000. ACM.

[14] OMG. Meta Object Facility (MOF) Core Specification

Version 2.4.1, 2011.
[15] OMG. Unified Modeling Language (UML), V2.4.1.

OMG, August 2011.
[16] J. C. Seco, R. Silva, and M. Piriquito. Componentj: A

component-based programming language with
dynamic reconfiguration. Computer Science and

Information Systems, 05(02):65–86, 12 2008.
[17] L. Seinturier, P. Merle, R. Rouvoy, D. Romero,

V. Schiavoni, and J.-B. Stefani. A component-based
middleware platform for reconfigurable
service-oriented architectures. Softw. Pract. Exper.,
42(5):559–583, May 2012.

[18] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse.
An inheritance system for structural & behavioral
reuse in component-based software programming. In
Proceedings of the 11th GPCE, pages 60–69. ACM,
2012.

[19] C. Tibermacine, R. Fleurquin, and S. Sadou. A family
of languages for architecture constraint specification.
In the Journal of Systems and Software (JSS),

Elsevier, 2010.
[20] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse.

Component-based specification of software
architecture constraints. In Proceedings of the 14th

CBSE, pages 31–40, New York, NY, USA, 2011. ACM.

