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Introduction

There are two trends in the development of modern object oriented systems: they are
getting more complex and they have to cope with an increasing number of exceptional
situations. The most general way of dealing with these problems is by employing
exception handling techniques. Many object oriented mechanisms for handling
exceptions have been proposed but there still are serious problems in applying them in
practice. These are caused by
o complexity of exception code design and analysis
0 not addressing exception handling at the appropriate phases of system
development
o lack of methodologies supporting the proper use of exception handling
o not developing specific mechanisms suitable for particular application
domains and design paradigms.

Following the success of ECOOP 2000 workshop, this workshop aims at achieving
better understanding of how exceptions should be handled in object oriented systems,
including all aspects of software design and use: novel linguistic mechanisms, design
and programming practices, advanced formal methods, etc.

The workshop will provide a forum for discussing the unique requirements for
exception handling in the existing and emerging applications, including pervasive
computing, ambient intelligence, the Internet, e-science, self-repairing systems,
collaboration environments. We invited submissions on research in all areas of
exception handling related to object oriented systems, in particular: formalisation,
distributed and concurrent systems, practical experience, mobile object systems, new
paradigms (e.g. object oriented workflows, transactions, multithreaded programs),
design patterns and frameworks, practical languages (Java, Ada 95, Smalltalk, Beta),
open software architectures, aspect oriented programming, fault tolerance,
component-based technologies.

We encourage participants to report their experiences of both benefits and obstacles in
using exception handling, reporting, practical results in using advanced exception
handling models and the best practice in applying exception handling for developing
modern applications in the existing practical settings.

Our intention is to discuss the problem of perceived complexity in using and
understanding exception handling: why do programmers and practitioners often
believe that it complicates system design and analysis? What should be done to
improve the situation? Why is exception handling the last mechanism to learn and to
use? What is wrong with the current practice and teaching?

Alexander Romanovsky Christophe Dony
Jorgen Lindskov Knudsen Anand Tripathi
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Invited talk

William Bail (Mitre): Getting Control of Exception

Abstract

Being able to define and use exceptions has provided a significant advantage in being
able to write more reliable software. While not explicitly helping us avoid errors, they
enable us to detect their presence and control their effects. Yet they act in opposition to
much of what we have learned is good software design - simple structures with well-
defined control flows. In addition, they complicate the process of performing formal
analyses on our systems. This talk explores this issue and projects some potential ideas to
help reconcile these challenges, especially with the use of OO concepts.
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Errors and Exceptions — Rights and Responsibilities

Johannes Siedersleben
sd&m Research, Munich!

Abstract

There is no generally accepted agreement on how exceptions are to be used. Many projects
suffer from a mess of exceptions thrown across the system with no defined responsibility for
catching them. This paper presents a simple component-based strategy addressing the
following points:

* How many and which exception classes are useful?

*  When should an exception be thrown? In Java: should it be a checked or an unchecked
exception?

* Who is responsible for catching exceptions?

* How far may exceptions be thrown?

Preconditions are considered in detail. The paper is based on the experience of many real
large software projects.

l. Introduction

Exceptions are considered to be an important added value of modern programming languages,
but they have turned out to be hard to use. We list some of the typical problems encountered
in many projects in the range from 1 to more than 100 man-years:

0 There is a mess of exceptions flying around. It is neither clear when exceptions should
be thrown nor how they are caught.

0 The code gets messy because of nested try-catch blocks.

o Many (sometimes all) catch blocks are either empty, contain nonsense code (output to
the console, useless mappings of one exception class into another) or — at best — some
logging, but no true exception handling.

0 A huge number of exception classes create undesired dependencies between the caller
and the callee.

0 Exceptions are misused to return ordinary values.

This paper presents a guideline for dealing with errors and exceptions in large systems. Code
examples are in Java, but most results apply to other object oriented languages as well. The
paper is based on material published as early as 1991 [Denert1991] and further developed in
[Siedersleben2002].

The rest of the paper is structured as follows: Chapter Il and 111 discuss exceptions and the
problems they cause in programming languages; Chapter 1V introduces the idea of
component-based emergencies; Chapter V and VI present strategies for exception handling.

! software design & management,
Thomas-Dehler-Str. 27
D 81737 Miinchen
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Pre- and postconditions are addressed in Chapter VI, and Chapter VIII summarizes ten rules
to follow.

1. Exceptions and Normal Business

Software may fail as any other result of human engineering. Thus, software is expected to
cope with failure: damage should be minimized; recovery and restart should be part of the
system design. [Parnas1976] calls undesired event whatever is not considered to be part of the
normal business and suggests to handling these events in separated traps. This is just another
application of separation of concerns, which is a truism in other branches of engineering. Let
us look at a fighter: as long as things go well, the fighter is fully functional without the ejector
seat; the whole system is unaware of this feature. The ejector seat becomes functional only in
the highly undesirable event of a hit or some other disaster; the seat may well be aware of the
context it runs in: on the ground it is disabled. While Parnas' paper is certainly one of the
main roots of current exception mechanisms, we find the term undesired event not appropriate
when the roof is on fire. Instead, we suggest the term emergency which is introduced in
Chapter IV.

I11.  Exceptions and Programming Languages

Programmers have always felt the need for a supplementary information channel from the
callee back to the caller: doubtful constructs like global state variables, message areas and the
like have been in use to this day. Just returning one or more values is not enough. This is even
more so in object oriented languages: Constructors return nothing; overloaded operators
return exactly one value. So, there is no room to inform the caller about failures. This is the
syntactic reason for object oriented languages to provide an exception mechanism: you return
either nothing, a value, xor an exception.

Exceptions are a supplementary way for passing information to the caller, which can be used
for any purpose. [Goodenough1975] mentions three: signaling failure, classifying a result
(e.g. overflow, end of file) and monitoring (e.g. "that many records have been processed").
So, exceptions are not necessarily exceptional, but may well be part of the normal business. In
Java, only runtime exceptions such as ClassCastException or NullPointerException indicate
severe problems; checked exceptions are used for many different purposes (e.g.
InterruptedException, NumberFormatException), which are not exceptional at all, but happen
all the time. So, the term exception is not restricted to failures, undesired events or
emergencies.

Designing sound exception mechanisms turned out to be extremely difficult. [Howell1991]
complains how poorly Ada exceptions match with object orientation, Ada scoping rules, and
concurrency. C++- and Java exceptions match with object orientation and the less harsh
scoping rules of these languages, but C++-exceptions are completely unaware of concurrency;
in Java, exceptions never leave the thread of their origin. The InterruptedException plays a
very special role: it is thrown behind the scenes and serves for synchronizing threads.

Java distinguishes checked and unchecked exceptions. Checked exceptions must either be
handled within the method itself or they are part of its signature as in:

void foo() throws RemoteException { .. }
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While it is a good idea to be honest about possible failures, experience shows that checked
exceptions tend to spread all over the system. To see this, look at the foo-example: The
programmer calling foo has probably no idea how to handle a RemoteException and will
therefore propagate it to the next level. So, RemoteExceptions will show up everywhere,
creating an undesired dependency and making changes hard if not impossible. What should be
done is to pass RemoteExceptions to the next safety facade as discussed in Chapter VI.

Exceptions don't need to be handled immediately. They fly to the next matching catch block,
which can be at any distance; in the worst case, exceptions are caught by the outermost catch
block, i.e. the one of the runtime system. So, exceptions have a lot in common with the
notorious goto-statement; in fact, they offer similar opportunities for misuse.

Exceptions tend to reveal implementation details not intended for the caller. An example
would be a stack implementation throwing an IndexOutOfBoundsException [Howell1991].
This information is welcome for debugging; at runtime it is useless.

Exceptions are for free if they don't happen, but very costly if they do. In the following
example the first method is 750 times slower than the second one (under Windows XP and
Java 1.4) if called with non-Integers; if called with Integers, there is almost no penalty:

public static boolean testForInteger1(Object x) {
try {
Integer i = (Integer) x;
return true;
¥
catch (Exception e) {
return false;
¥
¥

public static boolean testForInteger2(Object x) {
return x instanceof Integer;

}

As a consequence, [Cunningham2002] goes back to the roots and suggests that exceptions are
exceptional: they should only be used for rare events, not for the normal control flow — a good
idea, but not in agreement with the actual use of exceptions in Java.

IV.  Components, Emergencies and Assertions

We use the term component in the usual meaning (cf. [Szyperskil998]): There is at least one
interface and one implementation. The caller calls operations defined by the interface; he is
unaware of the implementation. In Java, a component is implemented by means of packages;
the top level package contains everything the caller needs to use the component. This top
level package typically contains one or more Java interfaces and the classes (including
exception classes) you need to use these interfaces. A component can call any number of
other components.

A component is either in its normal state (that is, it is able to process calls), or it is not. In the
latter case an emergency has occurred: an emergency is a situation where the programmer of
the component doesn't know what to do — there is no local help available: the component
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where the emergency happened is unable to solve the problem; the calling component
however may or may not recover.

Emergencies range from programming errors to unreachable databases and crashed neighbor
systems. They could be stated as violated assertions, but assertions (and in particular assert in
Java 1.4) are often used for debugging purposes only; many programmers switch them off
once the system has been tested. Emergency handling, however, cannot be switched off.

All Java runtime exceptions are emergencies from the JVM's point of view: the JVM has no
way to solve the problem. At the programming level, we encounter a lot of emergencies as
well: the database is not available, an SQL-statement is incorrect, or a neighbor system
returns a meaningless value. The number of potential emergencies is as huge as the number of
possible reasons for a car to break down: a complete enumeration is impossible.

Inexperienced programmers tend to invent and implement ad-hoc repair measures. If this
happens at a large scale, the system is doomed to failure. It is the job of the system architect to
precisely define for each component what an emergency is and what is not. Let us look at the
case of an incorrectly working neighbor system: if this situation is considered to be an
emergency the calling component has the right to give up — and that is cheap to implement. If
it isn't, then you have to design a possibly complicated and expensive fallback procedure! The
emergency-decision is always binary (there is no warning level) and local for the component:
A find-operation may find zero, one or many matching objects — that's normal business, but
the caller may consider a zero-result as an emergency. The find-operation would consider
itself to be in an emergency if the database connection is down, but the caller may try to
reconnect the database and call find again.

We suggest using a simple class Emergency throwing an EmergencyException:

public class EmergencyException extends RuntimeException {
public EmergencyException(String message) {
super(message);

}

public class Emergency {
public static void ifTrue(boolean condition, String message) {
if (condition)
throw new EmergencyException(message);

}

// ifFalse, ifNull, now, ...

So you would code

public void foo() {

String result = .. // must never be null
Emergency.ifNull(result, ...);
¥
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Emergencies should be detected as early as possible. Detected emergencies are not desirable,
but can be handled (cf. Chapter VI). The later you detect an emergency the more damage it
might have caused and the less debug information you will get. Emergencies not detected by
the program finally lead to a crash with no or little information about the reasons — the best
you can get is a dump (cf. [Denert1991]).

detected undetected
normal state ok never happens
emergency emergency handling crash

So there shouldn't be any undetected emergencies left, but this is not easy to achieve.

V. Application Errors

Methods can also fail for application reasons: you cannot withdraw money from an overdrawn
account. These are application errors as opposed to emergencies; they are part of the normal
business. In general, there are only a few possible application errors: often it is sufficient to
just return ok or nok; many methods (e.g. getter-methods or rollback) cannot fail at all from
the application point of view. Application errors can and should be fully enumerated. They
are completely different from emergencies.

There are two ways to inform the caller about application errors: return values and exceptions.
Our advice is: use return values whenever possible, use exceptions (in Java: checked
exceptions) otherwise. Example: find-methods should return null or an empty list if there are
no matching objects. Using an exception to report the found-nothing result makes the code
more complicated and is much slower if found-nothing is frequent. Another example: A
withdraw-method that normally returns the balance after withdrawal should throw a checked
exception if the account is overdrawn (and for performance reasons, we hope that this rarely
happens).

There is a hard rule: Exceptions representing application errors must be handled immediately
by the caller and not by some hidden exception handler. They don't fly. If they did you would
invariably end up with a scattered, goto-like control flow. This rule implies that checked
exceptions are far from being ideal for handling application errors: They are slow if the error
occurs and we only use a tiny part of the exception machinery.

When designing return codes or exception classes, one should carefully separate control flow
on the one hand and messages for the user on the other hand. It is quite common to have a
large number of different messages, which inform the user about success or failure, but only
two possible outcomes affecting the control flow: ok and nok. Our advice is to use self
implemented exception classes only if they do affect the control flow.

VI.  Emergency Handling and Safety Facades
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Emergencies are not handled by the immediate caller. Let us first discuss how emergencies
can be handled at all and then ask who takes care. There are four ways to handle emergencies:
ignore, retry, call an alternative, or resign. Resigning means: minimize damage, write log
information, and signal definite and safe failure. Definite means: it makes no sense to try any
harder, and safe says that all damage reducing measures have been taken.

The first option is used rarely and only mentioned for completeness: You just don't care about
success or failure. Retry can be useful but should be handled carefully because cascaded
retries multiply. In some cases there is an alternative you can call: if the main database is
down, there might be a local fall back database. The most frequent option is to resign:
minimize damage by undoing or neutralizing side effects?, freeing resources and protocol the
sad event. Once the emergency has been handled, there are only two possible outcomes:
success or definite and safe failure.

All this is obvious, but who takes care of all this? Here's the answer: you can call a
component safely or unsafely. An unsafe call calls the callee directly with no emergency
handling in between. That is, caller and callee form a risk community: they succeed together
or they perish together. Risk communities grow by transitivity: if component a calls
component b unsafely then a and b belong to the same risk community.

Safe access to risk communities is provided by safety facades. The safety facade — a special
case of the well-known facade pattern [Gammal995] — is in charge of emergency handling.
All emergencies detected within the risk community fly over all involved components and are
finally caught by the safety facade. This includes all runtime exceptions as well. Risk
communities must be designed carefully; all components belonging to the same community
share the same emergency handling mechanism. The safety facade provides the context the
risk community runs within. This architecture is quite opposed to the idea of plugged-in
emergency handlers.

Safety facades can and will usually be cascaded: emergencies are handled by the nearest
safety facade; the outcome (success or definite failure) would be reported to the calling
component which is free to consider the definite failure as an emergency or not: a batch
processing one million records would just protocol and skip unreadable records. So, at each
stage the emergency can either be masked or propagated to the next safety facade, job
abortion being the last resort at the outermost level (probably the main program).

What we are presenting can be considered as just a modern version of the trap mechanism
suggested in [Parnas1976].

VII. Pre- and Postconditions

Pre- and postconditions are part of the contract between caller and callee (cf. [Meyer1995,
p.16]). This is an old idea: [Goodenough1975] discusses domain failures (some input
assertion is tested and not satisfied) and range failures (the operation fails to meet its output
assertion). In an ideal world, pre- and postconditions just hold — they must be valid, but in
practice one has to decide how to use them, how and where they are checked and what to do if
they don't hold.

2 In practice, this is often done by a database rollback.
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Preconditions are meant to protect the called component from illegal calls. They are stated in
terms of the input parameters and/or the component's state. It is a good idea to assume all
input parameters to be non-null as an implicit precondition and to allow null explicitly.

It is the caller's responsibility to make sure that all preconditions hold true. Thus, violated
preconditions are the caller's problem, not the callee's. The callee would just reject a call if at
least one precondition is violated. This is an emergency from the caller's point of view, but the
callee doesn't care.

We suggest using a simple class Reject, which throws a ViolatedPreconditionException:
public class ViolatedPreconditionException extends RuntimeException {
public ViolatedPreconditionException(String message) {
super(message);

}

public class Reject {

public static void ifTrue(boolean condition, String message) {
if (condition)
throw new ViolatedPreconditionException(message);

}

// ifFalse, ifNull, now, ...

So you would code

public void foo(String s) {

Reject.ifNull(s, ...);  // s must not be null
)

Preconditions must be designed carefully: weak preconditions mean more work for the called
method; strong preconditions more work for the caller. So, a square root function would
reject negative input values, but a matrix inversion would accept all non-null square matrices
regardless of their rank — if the caller had to compute the rank, it could invert the matrix as
well. The safety facade (cf. Chapter VI) — if present — catches all exceptions but the
ViolatedPreconditionException, which is passed unhandled to the calling component.

Postconditions are completely different from preconditions: postconditions protect the caller
against erroneous implementations. So, it is mainly the caller's interest to check
postconditions: the less confidence you have in a given implementation (e.g. when writing a
test driver) the keener you are on checking postconditions. The implementation itself is a bad
place for checking postconditions and leads to silly code like the following:

int add(int a, int b) {

int result = a + b;
assert result == a + b;
return result;

}
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VIII. Ten Rules

Have a clear distinction between emergencies and application errors.

Detect emergencies as early as possible.

Reject calls if there is a violated precondition.

Assume all input parameters to be non null by default.

Design risk communities accessed by safety facades.

Concentrate emergency handling in safety facades.

Let safety facades catch all exceptions but the ViolatedPreconditionException.
Report application errors using special return values (e.g. null) if possible. Use
checked exceptions otherwise.

9. Handle application errors immediately.

10. Don't use self implemented exception classes unless they are necessary for the control
flow.

CONo GO~ wWNE
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Analyzing Exception Usage in Large Java Applications

Darrell Reimer and Harini Srinivasan

IBM Research, 19 Skyline Drive, Hawthorne, NY, USA 10532
{dreimer, harini}@s.ibmcom

Abstract. The Java programming language provides a way of identifying when
semantic constraints of the program are violated using its exception mechanism.
Whenever a semantic congtraint in the program is violated, control flow is
transferred from the point where the exception happened (throw site) to the
point specified by the programmer (catch site). While this is indeed a robust
and portable mechanism of handling semantic errors and exceptional program
behavior, the mechanism is often misused and/or abused. In our experience
working with large J2EE applications, we have encountered severa inappropri-
ate exceptions usage patterns that have made maintainability of these applica-
tions extremely difficult. Proper exception usage is necessary to minimize time
from problem appearance to problem isolation and diagnosis. This article dis-
cusses some common trends in the use of exceptions in large Java applications
that make servicing and maintaining these long running applications extremely
tedious. The paper also proposes some solutions to avoid or correct these mis-
uses of exceptions.

1 Introduction

The Java Virtual Machine [12] uses exceptions to signal semantic errors in a pro-
gram. In particular, whenever a semantic error occurs, the JVM raises an exception. It
is the responsibility of the application programmer to both (@) identify when such
exceptions can happen, i.e., when semantic errors can happen and (b) catch these
exceptions in a manner that helps identify them during program execution. Exceptions
can aso be used to remedy an incorrect execution behavior of the application.

Proper handling of exceptionsis extremely important to be able to manage and service
large J2EE applications. For example, consider a J2EE application that handles
online banking transactions. Typically, the financial institution would like the applica-
tion to runin a 24x7 mode to be able to service their customers continuously. The cost
of stopping and starting these applications is usually very high for these institutions.
Given this scenario, if afailure happens during application program execution, it is
extremely important to be able to quickly locate the point of failure. In particular, if an
exception is not logged, once afailure occurs, additional logging must be added, the
application restarted, and the problem must be reproduced. Restarting such 24x7 ap-
plicationsis highly undesirable. Most of the J2EE API methods whose execution can

10
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result in failures are designed to throw exceptions. Examples of such methods are
those that result in interactions with other components of the application architecture,
for example, database, network, LDAP etc. The most desirable programming practice
that can help in tracing failure pointsis to catch the specific exceptions thrown by
these methods and output some kind of log information indicating the failure. Logging
the failure thisway helps in understanding what happened during program execution
later on. However, in the large J2EE applications we have worked with, we noticed
that this exception handling practice is not common.

Before proceeding to talk about exception usage patterns in these applications, we
give a brief overview of the exception mechanism in Java (Section 2). This section is
not intended to be atutorial of Java exceptions. The reader is advised to consult the
Java language specification and the Java Virtual Machine specification for details on
language and implementation semantics of Java exceptions. Section 3 discusses ex-
ceptions usage patterns in a handful of large J2EE applications we have worked with.
This section is the primary contribution of this paper. In Section 4, we discuss ap-
proaches to solve this problem of improper exception handling. Section 5 discusses
related work in the area of understanding exceptions usage in Java applications.

2 Overview of Java Exceptions

An exception can occur under one the following circumstances [11]:

* Anabnormal execution condition was synchronously detected by the VM.
For example, integer divide by zero, array out of bounds, out of memory er-
ror, loading or linking errors.

e A throw statement was executed.

*  Anasynchronous exception occurred because the stop method of class
Thread was invoked or an internal JVM error occurred.

The Java programming language defines class Throwable and alows the applica-
tion programmer to extend this class. The Throwable class and its subclasses are col-
lectively referred to as exception classes and instances of these classes are used to
represent exceptions. Among these exceptions, all exceptions that are instances of
class RunTimeException and its subclasses and exceptions that are instances of class
Error and its subclasses need not be checked, i.e., these exceptions need not be explic-
itly handled by the application. All other exceptions are checked exceptions and need
to be explicitly handled in the program. The language providesthetry and cat ch
clauses to define exception handlers. During the process of throwing an exception, the
Java virtua machine abruptly completes, one by one, any expressions, statements,
method and constructor invocations, initializers, and field initialization expressions
that have begun but not completed execution in the current thread. This process con-
tinues until a handler is found that indicates that it handles that particular exception by
naming the class of the exception or a superclass of the class of the exception. If no
such handler is found, then the method uncaughtException is invoked for the
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ThreadGroup that is the parent of the current thread-thus every effort is made to avoid
letting an exception go unhandled. [11]. The following is a simple try — catch combi-
nation:

// in the main nethod:

try() {
foo();

} catch (MyException nme) {
Systemerr.println(ne);

} finally {
cl ear Resources(); // code to close resources.
}

The method f oo() or one of its callees can potentially throw an exception of type
My/Excepti on (or asubclass of MyException). MyExcepti on, in this case, is a
checked Java exception. When such an exception is thrown, control is transferred
from the cdll site of f oo() to the beginning of the catch block and execution proceeds
from that point on. When a method such as f oo() throws an exception, the signature
of the method must advertise the specific exception(s) thrown. What happens inside
the catch clause is still up to the application programmer. It is possible that the
exception is rethrown using a t hr ow statement, or the exception is logged or some
code is executed or nothing at al happens. Thereisaso thefinal |y clausetoatry
statement. The semantics of the fi nal |'y block isthat it is aways executed. Whether
a catch clause executes or not, the code within afi nal | y is always executed. In the
above code snippet, the method clearResources() executes both when the program
exhibits normal and exceptional control flow. The Java API itself defines a number of
checked and unchecked exceptions.

3. Exception usagein Large Java Applications

From our experience working with large J2EE applications, we have observed the
following exception usage patterns that have hindered the maintainability and service-
ability of these applications. All these applications are “rea-life” i.e., customer appli-
cations that have been deployed and in production.

3.1 Swallowed Exceptions

Exceptions should not be ignored through empty catch blocks. In general, every path
out of acat ch{} block should result in the exception being logged or the exception
being re-thrown or have some kind of remedial code that remedies the exceptional
execution behavior. If ahandler block has neither 1ogging code nor arethrow, we refer
to the corresponding exception as swallowed. The following is an example of a swal-
lowed exception:

/1 exanpl e swal | owed exception

12
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try{
foo();

} catch (MyException me) {
}

where, there is no rethrow of an exception or some kind of logging code to record that
the exception happened within the catch block. In one very large e-business customer
application, the application code had ignored many exceptions, i.e., contained empty
catch blocks without any logging information. Consequently, when such a system
failed in production, it was extremely hard to track the cause of failures. Ignored ex-
ceptions severely impaired the effectiveness of monitoring systemsin this application
environment. For example, the application had atry block that had an SQL update in
it. The corresponding catch was empty. [An SQL update (execut eUpdat e())
method call is part of the J2EE API to access the database component of the applica-
tion. The method call is usually implemented in adriver that interfaces with C code
that exchanges information with the Database system, typically via sockets. ] In this
case, if the update failed, there will be no record of it for the application server.

However, under certain circumstances, a catch block without any logging code or re-
throw is perfectly fine. These are usually cases where exception constructs are used to
manage normal program control flow, or certain exceptions caught need not be
logged, e.g., | nterrupt edExcept i on, or the cat ch block contains remedial code.
Listed below are afew examples:

1. // exanple OK swal | oned exception case
key = null;
try {
key = foo();
} catch (MyException nme) { return key; }
return key;

In the above example, the value of variable key is set to null beforethet ry state-
ment. When f oo() throws an exception, the catch block executes but does not have to
set the value of key to be nul | again. The exception thrown appears to be swallowed
because of the absence of logging code or a throw statement within the catch block.
Interestingly, in this example, if the programmer did not intend to use the try-catch for
normal control flow, the calling method will likely see a Nul | Poi nt er Excepti on
that is not caught causing debugging nightmares.

2. /] exanple OK swal | owed exception

try {

key = foo();
} catch(M/Exception nme) {key = Val MaybeNull; }
return key;

In this example, a semantically valid assignment to the variable key occurs within the
catch block which can potentially execute as normal program control flow. A variation
of this example is when key is initialized to nul I prior to the try block and the han-
dler hasno codeinit.

13
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3. I/l exanple OK swal | owed exception — renedi al code
sent Flag = fal se;
whi | e(! sent Fl ag) {
for(int i=0; i<connectRetry && !sentFlag; i++){
try {
send_sonet hi ng();
if (success) sentFlag = true;
} catch (Exception ex){
Thread. current Thread() . sl eep( SLEEP_TI ME) ;
retryCount=i; // used to track #failures

}
}
In the above example, taken from a real J2EE application, whenever a failure oc-

curs during the send, i.e., in method send_sonet hi ng(), an exception is thrown.
The whi | e loop iterates until the method execution succeeds. This is an example
where the exception causes remedial code to be executed.

3.2 Single catch block for multiple exceptions

If exceptions are caught in the same block, it should be possible to identify which
exception was handled by the exception handler by the logging. However, several
times, we have encountered the following (undesirable) code in these applications:

/| exceptions are not handl ed individually

try {

foo();

bar () ;
} catch (Exception e) {

System out. println(“catching exception” + e);
}

The above example aso points out the case where exceptions are subsumed. The
following is preferred for debugging, where f oo() can throw the specific exception
MyExcept i on and bar () canthrow the exception MyExcept i onl.

try {
foo();
bar () ;
} catch (MyException nme) {
Systemout. printl n(“MException raised “ + ne);
} catch (MyExceptionl nel) {
Systemout. println(“MExceptionl raised “ + nel);
}

Within a try block, exceptions of the same type should not be raised at multiple pro-
gram points. If not, it will be difficult to identify within the catch block which pro-
gram point (call site) raised the exception resulting in debugging difficulties. For ex-
ample,
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/1 multiple program points raising sanme exception

try{
foo();
bar () ;
bj ect obj = baz();
} catch (MyException nel) {
Systemout. println(“nel rai sed by bar”);
} catch (MyException me) {
Systemout.println(“ne raised by baz or foo”);
}

where both methods f oo() and baz() can throw an exception of type MyExcep-
tion.
Likewise, if an exception is being re-thrown, the application should avoid mapping
multiple exceptions to the same exception since this hides problem sources from de-
buggers.

3.3 Exceptions not handled at appropriate level

Another coding pattern that makes debugging difficult is when exceptions are not
handled close to the source of the exception. If exceptions are propagated a long way
up the call chain, the error message and handling will become less meaningful and
debugging much more difficult.

3.4 Log verbosity in catch blocks

A common coding style in a handler that can do as much harm as good is:

| og(“sone exception happened”);

e.printStackTrace();
For example, consider a system under a load surge — some resource in the system
becomes overloaded, and temporarily fails, resulting in several exceptions getting
thrown. Normally, this would just affect the requesting users, but if the exception
handling is overly heavy (e.g. lots of 1/0O, and getting the stack trace), it just adds more
load to the system, causing a cascading failure that feeds on itself.

3.5 Application Statistics

The table below shows some statistics on a handful of J2EE applications that we ana-
lyzed. The results show the number of swallowed exceptions as defined in this section,
after filtering out cases that have r et ur n statements in the catch blocks and catch
blocks that do not have to log exception information. The applications A1-A5 listed in
this table are al J2EE customer applications and hence the names are hidden. The
application PetStore is a J2EE sample application published by Sun Microsystems.
The #classes, #methods and #handlers columns report the numbers in just the applica-
tion code, not including the J2EE and J2SE libraries. The last row shows the results
on JDK1.3.1 rt.jar J2SE library classes.
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Applica- # classes #methods | #handlers #owallowed | #after  fil-
tion tering

Al 1724 19387 9951 182 162

A2 781 8509 492 74 35

A3 666 9355 16770 80 47

A4 1151 10458 3373 97 27

A5 2202 30964 16215 444 350
PetStore 353 2001 428 22 11

rt.jar 5484 46723 3670 974 723

The following table gives additional results on false positives for some of the applica-
tions, i.e., what goes on inside the handlers for some of the applications:

Applica #handlers #handlers | #handlerswith | #handlerswith
tion with calls re-throws |loads/stores
Al 9951 9363 0 27

A4 3373 3119 0 18

A5 16215 15487 0 54

PetStore 428 372 0 1

rt.jar 3670 2242 0 77

Note that a majority of the handlers had calls in them and in the applications we ana-
lyzed, we did not come across exception re-throws. When we examined application
Al in more detail and looked at the calls made inside the handlers, we noticed that a
majority of these calls were not to logging code, but calls to application code doing
business logic of some kind.

4. Approachesto handlethe problem

How can exception handling be made more effective? Most of the J2EE API methods
require the programmer writing these applications to enclose the methods in try —
catch blocks. It appears the kinds of improper exception handling that we discussed in
the previous section happens due to lack of rigor in writing these applications. For
example, consider an application method that (1) gets a database connection using the
j avax. sql . Dat aSour ce. get Connecti on() call, (2) creates one or more data-
base SQL statements using j ava. sql . Connecti on. createStatement () (3)
executes the SQL statements created (that may be updates or queries to the database)
using the j ava. sqgl . St at ement . execut eUpdat e() or
java. sqgl . Stat ement . execut eQuery() methods and, (4) finaly processes the
results from the database using thej ava. sql . Resul t Set interface methods. Almost
all of these methods throw SQLExcept i on. It istempting for the application devel-
oper (who does not practice rigor) to either (a) enclose al these methods within a
singletry — cat ch block that catches an SQLExcept i on or, (b) enclose each of the
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above method callsinatry — cat ch block that catches an SQLExcept i on, but the
handlers do not log any information. We have encountered both these coding patterns
in the applications we have worked with. As mentioned in the previous section, both
these exception coding patterns make debugging an exceptiona condition during
program execution extremely tedious. A log of which of the database operations
caused the exception to occur will be extremely helpful in debugging not only the
application on the Java side, but also any database errors.

Several approaches are possible to handle this “bad coding practice” problem:
The programming environment (an integrated development environment, |DE)
automatically inserts try — catch blocks for method calls whose signature has the
t hrows clause in it. In addition, such an IDE could also insert a default print
method call that logs some (minimal) information about the exception being
caught by the handler. This approach saves a lot of trouble on the programmer’s
side and also reminds the programmer to log exceptions. However, a drawback of
this approach is that, in cases where the try — catch block is used to capture nor-
mal control flow (see examples in Section 2), the programmer has to explicitly
undo some of the operations of the IDE. While one could argue that try — catch —
finally is used for normal control flow only rarely, when actually used, undoing
the work of the IDE can be annoying to the developer.
Another approach is to statically analyze the application program and point out
program points in the application where exception handling has not been imple-
mented properly. For example, check the application for swallowed exceptions,
multiple exceptions handled by a single catch block, catch block not catching the
exact exception thrown but it’s supertype etc. Such an analyzer can be integrated
as part of an IDE that checks for bad coding patterns. This is the approach that we
have used in our tool called SABER. SABER does static program analysis (con-
trol and data flow) to check for many bad coding patterns, including swallowed
exceptions and handlers catching supertype exceptions. The tool is integrated into
the WebSphere Studio development environment and reports messages to the
programmer in a manner within this IDE that links the error message to the pro-
gram point where the bad coding pattern appears.
Finally, is it possible for the VM to provide more information? Typically, when
an exception is thrown, the VM dumps a stack trace. However, if the exception
is rethrown within the catch block, the stack trace will include method calls only
from the point where the exception was actually caught. Another factor prohibit-
ing debugging of exceptions is when the JIT is on. Most VMs do not provide
line number information in the stack trace when the method has been JIT-
compiled. The optimizing compiler should keep track of this information and
convey the line number of the method invoked that caused the exception to occur.
This approach will still not be able to provide any other logging information other
than the stack trace, which is not always sufficient in debugging the problem.
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5. Related Work

Several research papers have looked into proper handling of exceptions and have
studied the control flow aspects of exceptions. Robillard and Murphy [5][6] describe
their tool called Jex that can be used to illustrate to the programmer the structure of
exceptions in application code. Based on the exception control flow, the programmer
will be able to identify program points where exceptions are caught accidentally, error
handling procedures are not being followed or finer-grained recovery code can be
added in the program. Jex analyzes exception control flow and identifies exception
subsumption, i.e., wherever a precise exception is not raised, and unhandled excep-
tions. By presenting the resulting information to the application programmer, the tool
alows the developer to encode handlers for exception types that are missing, there by
increasing the robustness of the code. Our work is along the same lines as Robillard
and Murphy’s and, we look at a wider range of exception usage issues including sub-
sumed and unhandled exceptions within method bodies. We also present results of
exception usage on large real-life applications that are typically developed by multiple
development organizations and hence exhibit varying coding styles and conventions.
Ryder et al [10] describe another static analysis tool, JESP, for examining the usage of
exceptions. The paper provides empirical results of exception usage on Java bench-
marks and discusses the implications of the results on compiler optimizations. We
have observed that not all the empirical results (#exception constructs (try, catch,
finally), distance between the throw and the corresponding catch, prevalence of user-
defined and Java-defined exceptions, #exception classes and the shape of the excep-
tion hierarchy) apply to larger Java applications that we have analyzed.

A number of other papers talk about control flow representations of programs written
in languages that support exceptions: the Marmot compiler [9], and Choi et al [4] for
Java, the Vortex compiler [3] that supports Modula-3, Java and the Cecil languages,
Chatterjee et al [8] that talks about modeling exceptions in an interprocedural control
flow graph. Another paper that raises issues related to flow analysis of Java programs
in presence of exceptions talks about instruction scheduling in presence of these con-
structs [7].

Stevens [1,2] studies exception control flow in Java programs and the negative impact
of this type of control flow on compiler driven optimizations. He aso discusses ap-
proaches to reducing this effect using static, whole program analysis on the byte code
representation of Java programs.

Romanovsky and Sander [13] talk about misusing exception handling in Ada pro-
gramsthat have alot in common with how exceptions are misused in Java.

Miller and Tripathi [14] discuss how object-oriented techniques interact with excep-
tion handling and which OO features conflict with current exception handling mecha-
nisms.
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1 Introduction

In this discussion, exception handling is treated purely as a control-flow mech-
anism versus a class-specific or a software-engineering mechanism [7]. From the
perspective of control-flow, routine and exceptional transfers can be character-
ized by two properties: 1) static/dynamic call, where the routine/exception
name at the call/raise is either looked up statically or dynamically, and 2)
static/dynamic return, where completion of a routine/handler returns to its
static or dynamic context; resulting in the following language capabilities:

call/raise
return/handled static | dynamic
static sequel termination
dynamic|/routine/member| resumption

While several main-stream object-oriented programming languages (OOPL)
provide exception handling mechanisms (EHM), e.g. Ada, C++, Modula-3, Java,
C#, to deal with ancillary control flow, the EHM is disjoint from the object
paradigm. This position paper reexamines previous ideas for binding exceptions
to objects, as well as suggesting some extensions to these ideas.

2 Bound Exceptions

Most EHMs usually rely on only the exception type to find a matching handler.
For example, the exception FileErr raised during a file operation is caught by any
handler for FileErr. The problem is the lack of connection between the exception
and the object raising the exception. This lack of specificity makes it difficult to
distinguish among multiple files in a catch clause when one file raises an excep-
tion, which may be crucial to correct handling. Hence, matching only by type is
insufficient in complex situations, and especially in object-oriented systems. For
example, in the left example of Figure 1, FileErr exceptions can be raised by the
doWrite method of logFile, dataFile and tmpFile. For the matching-by-type strat-
egy, all exceptions are handled by a single unbound handler, regardless of which
object actually causes the error (note, SpecialFileErr is derived from FileErr). In
many circumstances, it is unlikely that errors from three different file objects
can be uniformly handled by a single handler. When appropriate, it should be
possible to use a separate handler for each file object raising an exception.
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class FileErr { ... }; procedure BoundExceptions is
class SpecialFileErr : FileErr { ... };| generic package File is
class File { FileErr : exception;
void doWrite() { procedure doWrite;
... throw FileErr(); ... end File;
} package body File is
h procedure doWrite is
class SpecialFile : public File { begin ... raise FileErr; ...
virtual void doWrite() { end doWrite;
... throw SpecialFileErr(); ... end File;
} package dataFile is new File;
h package logFile is new File;
File logFile; begin
File dataFile; ... dataFile.doWrite; ...
SpecialFile tmpFile; ... logFile.doWrite; ...
try { ... logFile.doWrite(); ... exception
... dataFile.doWrite(); ... when dataFile.FileErr => ...
... tmpFile.doWrite(); ... when logFile.FileErr => ...
} catch ( FileErr ) { ...} end BoundExceptions;

Fig. 1. Unbound (C++) versus Bound (Ada) Exception Matching

From an object-oriented standpoint, the conventional matching-by-type han-
dling of exceptions is inconsistent. Objects are the main components in an object-
oriented software design, and their actions determine program behaviour. Hence,
an exceptional situation is (usually) the result of an object’s action, suggest-
ing the object responsible may need to be associated with the catching. While
prior discussion exists on associating objects with exceptions for Ada [3], C[2],
Lisp [8], Smalltalk [4] and Beta [5], none of this work has had an effect on
main-stream OOPLs. Therefore, it is important to strongly reiterate this cru-
cial object-oriented exception-handling design objective. This discussion focuses
almost exclusively on this specific point.

For example, Ada has a partial solution by binding an exception to a pack-
age instance, so the same exception originating from different instances can be
handled separately. In the right example of Figure 1, the FileErr exception is
declared inside the generic package File. Pseudo-objects are created for both
instances of File, i.e., dataFile and logFile. Then it is possible in the handler
to bind the FileErr exception with dataFile and logFile using the dot-notation.
Matching during propagation now uses both the exception type and the object
raising the exception. However, Ada disallows an unbound version of FileErr in a
generic package, precluding the ability to handle some cases as instance specific
and others by a general handler. While Lisp/Smalltalk /Beta can mimic bound
exceptions, it is done through mechanisms that do not or cannot exist in main-
stream statically-typed OOPLs, e.g., continuations, dynamic typing, reflection,
runtime compilation, virtual-machine. But most importantly, mimicking is a pro-
gramming convention versus a language construct; we strongly believe this is a
situation in which it is necessary to cast a convention into a specific construct,
to ensure correct usage and for efficiency.
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The following example construct for binding objects and exceptions is in-
spired by the Ada example:
try { ... logFile.doWrite(); ...
... dataFile.doWrite(); ...
... tmpFile.doWrite(); ...

} catch ( logFile.FileErr ) {...} // bound
catch ( dataFile.FileErr ) {...} // bound
catch ( FileErr ) {...} // unbound

The dot-notation is an extension to the catch argument, where catch ( object .
exception-type ) only matches if the raised exception is of type exception-type
and bound to object. This syntax is backwards-compatible but unusual as the
second operand of the dot-operator is a type rather than a field of an object.
Notice that exceptions from logFile and dataFile are handled by bound handlers,
while exceptions from tmpFile are still handled by an unbound handler. Finally,
the exception raise has to be extended to transfer an object/exception pair in
the event. Initially, it is assumed the object used at the raise is fixed during
propagation, called static binding (see Section 5 for dynamic binding).

3 Static Bound Exceptions

Attempts are often made to simulate static-bound exceptions; however, we claim
these simulations are either unsatisfactory or incomplete. A simple simulation
is to embed each operation in its own try-block so each error condition can
be handled individually. However, because the try-block is so tight around the
method call, nonlocal error-handling is impossible, i.e., error handling at outer
scope levels. Additionally, since block positioning determines automatic storage
allocation and execution control, it is often impossible to achieve an equiva-
lent simulation. An intermediate approach is to only support bound exceptions
among classes rather than the more general case of objects, while retaining the
ability to have unbound handling by deriving class-specific exceptions from an
unbound exception type. That is, matching is based on the type of object that
raised the exception and the exception type. This approach provides discrim-
ination among classes in bound matching, and may be accomplished with no
language extensions. However, besides the restriction to only class-bound excep-
tions, there are several major disadvantages, such as the large number of required
exception types and a restriction to languages supporting exception inheritance.

The most advanced approach to mimic bound exceptions is through the
“catch and reraise” approach [1, §6.4]. The parameter mechanism is used to
pass the “bound value” from the raise to the catch site, such as the object’s id
(most likely its address), and this association can be interpreted as a binding
relationship. In CH+, the latter can be done by introducing an attribute into
the exception class (left example in Figure 2). After catching the exception, the
passed value can be compared to the desired binding; if equal, the exception can
be handled, otherwise it is reraised. This solution is now able to differentiate be-
tween exceptions raised by logFile and those raised by dataFile, which is a major
advance over class-specific exception types. On the other hand, this approach
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class BoundException {
public :
void =* origin; // object’s ID/address
BoundException(void * p) : origin(p) {}
2
class FileErr : BoundException { ... }; |try { ... logFile.doWrite(); ...
class SpecialFileErr : FileErr { ... }; ... dataFile.doWrite(); ...
... tmpFile.doWrite(); ...
try { ... logFile.doWrite(); ... } catch ( SpecialFileErr e ) {
... dataFile.doWrite(); ... if ( e.origin == &tmpFile ) { ...
... tmpFile.doWrite(); ... } else throw ; // reraise
} catch ( FileErr e ) { } catch ( FileErr e ) {
if (e.origin == &logFile) { ... if (e.origin == &logFile) { ...
} else if (e.origin == &dataFile) { ... } else if (e.origin == &dataFile) { ...
} else if (e.origin == &tmpFile) { ... } else if (e.origin == &tmpkFile) { ...
} else throw ; // reraise else throw ; // reraise
} }

Fig. 2. Catch and Reraise / Reraise Anomaly

increases the program’s complexity by adding additional data and code to the
exception handling process. In particular, a programmer must follow the strict
convention of inheriting from BoundException, and manually checking the binding
information after catching the exception and reraising it if there is no handler for
that binding. Following such a convention is always unreliable and error-prone.
As well, there are situations in which the “catch and reraise” approach does not
work. In the right example of Figure 2, a SpecialFileErr bound to tmpFile is to
be handled, or a FileErr bound to logFile, dataFile, or tmpFile (note SpecialFileErr
inherits from FileErr). If tmpFile raises a SpecialFileErr exception, the first catch
matches and the handler is executed correctly. If one of logFile or dataFile raises
a SpecialFileErr exception, the first catch also matches but the binding fails, and
therefore, the exception is reraised. However, because a catch clause has already
been matched for the guarded block, the reraise cannot perform further match-
ing on the lexically following catch clauses of the same try-block. Thus, the
“catch and reraise” strategy cannot reach the second catch clause, which would
otherwise match and handle the exception. This behaviour does not match the
usual semantics of exception handling and that necessary for bound exceptions,
is counter-intuitive, and results in control flow that is difficult to predict.

By using a complex programming transformation, it is possible to eliminate
the reraise anomaly [6]. The approach splits related catch-clauses into differ-
ent (nested) try-blocks, but since the order of catch clauses is important, the
catch clauses lexically following a related one must also go into the containing
try-block. While try-block splitting can mimic bound exceptions with conven-
tional exception handling, the conversion is complicated and can produce large
amounts of additional code. As for the other simulations, it is unreasonable to
rely on programmers to follow complex conventions to achieve a sophisticated
programming concept. Therefore, if bound exceptions are a desirable feature, it
is necessary to implement them as part of the language.
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4 Bound Exception Design

There are multiple issues in designing bound exceptions: where and how bound
exceptions are defined, and the object binding during exception propagation.

With respect to bound exception definition, there are multiple approaches
in languages like C+. Probably the best mechanism is specifying the binding
as part of the handler or the raise, giving four possible combinations of un-
bound/bound catching /raising:

||unb0und raise|b0und raise|

unbound catch||1) unbound 2) unbound
bound catch||3) not handled [4) bound

Case 1) is the catch and raise are unbound, which is conventional exception
handling with unbound handler matching. Case 2) is an unbound catch and
a bound raise, so the handler is not object-specific. The unbound catch-clause
can handle all exceptions of that type, both unbound and bound. Hence, the
bound exception is handled by an unbound handler. Case 3) is a bound catch
and an unbound raise, but the bound catch-clause cannot handle this exception
because it is unbound. Case 4) is a bound catch and a bound raise (to the same
object), so the catch clause is able to provide an object-specific handler and the
exception is handled as a bound exception. It is possible to simplify the table
(eliminate column 1), with only minor loss in functionality, by defining all raises
to be bound, i.e., always include the object raising the exception as part of the
exception event. In this design, no functionality is lost between Case 1) and Case
2), as both perform an unbound catch. However, the functionality of Case 3) is
eliminated as there is always a binding at the raise, which may be a null binding
value (see below). Now the binding decision is made solely in the catch clause.
The positive consequence of this design decision is that legacy code, which does
not know about bound exceptions, continues to work after replacing all raises by
bound ones (possibly by recompiling). A negative consequence is that all raises
now require additional memory for the binding information and time to store
the binding information, regardless of whether the binding information is used.
However, the space/time overhead is not an issue because the space is small and
exceptions normally occur infrequently.

The selection of the binding object seems obvious, i.e., the object responsible
for the raise, which precludes raising an exception bound to a different object
(e.g., throw logFile.FileErr); such a possibility would weaken an object’s control.
For special cases, such as non-member routines and static class-members, the
binding value can be set to null. Hence, if a programmer does not want an
exception to have a direct binding, the exception can be raised indirectly in a
static-member routine.

Interestingly, extending the concept of bound exceptions to resumption prop-
agation is straight-forward since there are no differences during propagation with
respect to matching between termination and resumption exceptions. Nonlocal
propagation among coroutines/tasks (i.e., propagation across execution-stacks)

24



ECOOP'2003 - EHOOS workshop

6 Peter A. Buhr and Roy Krischer

is possible by extending the object binding. The previous binding rule is inappro-
priate for nonlocal exceptions because the object raising the nonlocal exception
in a coroutine/task may not be meaningful or even known in the target corou-
tine/task, and a nonlocal exception can essentially happen anytime, anywhere.
A better solution for nonlocal exceptions is to bind to the raising coroutine/task,
so it appears the exception emanates from it. For the case where a coroutine or
task does not care about the specific tasks sending it nonlocal exceptions, e.g.,
clients communicating with a server, it is possible to process the exceptions using
unbound handlers.

5 Dynamic Bound Exceptions

The problem with static binding is that the object raising the exception may be
a local variable or argument of a block. Therefore, once the exception propagates
outside of the declaring block, the binding object may disappear or be invisible.
This issue can be solved in many cases if the exception changes its binding during
propagation at each object it traverses through, called dynamic binding. These
cases are illustrated in the left example of Figure 3. Assume the declaration of
db either passes a file for initializing variable DB::f or DB::f is created as a local
variable. In either case, routine DB_ Manager::flush does not know about this file
object (especially when separately compiled). Now the catch clause inside commit
is within the scope of f, so it can catch any exceptions raised by f. However, the
attempted catches in flush are syntactically or semantically incorrect. The first
catch is syntactically incorrect since f is invisible inside the scope of flush (unless
coincidentally there is an f variable in the current scope, which would result in
a difficult to locate error). The second catch is semantically incorrect since db
does not raise the bound exception FileErr, so this catch is never matched. While
these catch clauses are wrong, logically the user is trying to do the correct thing.
That is, catch the specific FileErr exception associated with its operation (flush),
but not catch FileErr exceptions associated with other operations, which might be
handled at a higher level of abstraction. In fact, the catch clause catch (db.FileErr)
is probably what a user really wants to write, as db exists in the current scope
and (from a logical point of view) is responsible for raising the exception. This
catch clause works for dynamic binding because the binding object changes from
f to db when exception propagation terminates the call to commit. The right side
of Figure 3 visualizes the binding change during stack unwinding when dynamic
binding is used during propagation. In fact, we have identified cases where a user
may need both static and dynmaic binding to correctly handle an exception, and
with extra syntax it is possible to support both.

6 Conclusion

Bound exceptions truly incorporate exception handling into the object-oriented
design process. The ability to associate exceptions with objects strengthens the
relationship between an exception and the object responsible for its raise. This
feature creates more powerful exception handling capabilities, contributing to
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class DB { )
File [&]f; // parameter or local Stack bound object
public : void commit() { f f
try { f.doWrite(); // raises FileErr| = = & o
} catch ( f.FileErr ) {...} // OK Jb do_uwrite()
} }
S A commit) -~ -~
void DB_Manager::flush( DB &db ) {|  dbman db
try { db.commit(); o f o flush) ~ - -
} catch ( f.FileErr ) {.. .} Driver::run() dbman
catch ( db.FileErr ) {...} ?
5 A N run) -
class Driver {
public : static void run() {
DB_ Manager dbman;
dbman.flush( db );
}
h

Fig. 3. Dynamic Binding

building more robust software. We believe this capability cannot be simulated in
most OOPLs, and hence, requires a language construct. This work discusses two
kinds of bound exceptions: static and dynamic. While some form of static binding
has been discussed previously, this discussion extends static binding and presents
dynamic binding as an interesting addition. As well, identifying that both kinds

O
a.

f bound exceptions can coexist and that each provides distinct capabilities to
llow a user precise control in matching exceptions is an important idea.
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1 Introduction

The designers of future languages will need to decide whether to include exceptions in their new languages.
If they decide exceptions are warranted, they must then consider what exceptions represent: a structure for
control flow, a structure for handling abnormal, unpredictable situations, or something in-between. Finally,
the syntax and meaning of exceptions must be considered.

The syntax of exception mechanisms is important: syntax impacts how program code looks and is
comprehended, it influences the design and realization of algorithms, and it affects the manner in which
programmers handle unusual cases and unexpected conditions (what we’ll call “errors”), thus indirectly
impacts software reliability. While the syntax of exception mechanisms is the face most programmers see,
their semantics is what tool developers and language theoreticians must wrestle with. In general, a small,
elegant semantics is desired by all parties.

An excellent way to consider how to design a feature like exceptions in future languages is to analyze
their design in today’s languages. The analysis of exceptions in niche, historical, or research languages like
Ada, PL/I, and CLU can reveal a gem or two, but perhaps more can be gained by examining the contrary
viewpoints that exist in two modern languages.

The programming languages Java and Eiffel offer two opposing viewpoints in the design and use of
exceptions. A detailed analysis of exceptions in these two languages: their language design, formal spec-
ification and validation, core library use, and non-technical “social” pressures, can help future language
creators design their own exception mechanisms.

2 Language Design

Language design only partially influences the use of exceptions, and consequently, the manner in which one
handles partial and total failures during system execution. The other major influence are examples of use,
typically in core libraries and code examples in technical books, magazine articles, and online discussion
forums.

This latter “social” effect is clearly seen in the use of exceptions in Java and Eiffel, as we will discuss
in Section 5.

Exceptions in Java are designed to be used as control structures. This is also true of exceptions in most
other modern programming languages including Ada, C++, Modula-3, ML and OCaml, Python, and Ruby.

Eiffel's exceptions, on the other hand, are designed to represent and handle abnormal, unpredictable,
erroneous situations. The languages C#, Common Lisp, and Moluise2this general meaning for ex-
ceptions as well.

1 Note that Modula-2 did not originally have exceptions; their addition caused a great deal of controvery through the
early 1990s (i.e.,, compare [12] to [13]). See http://cs.ru.ac.za’lhomes/cspt/sc22wg13.htm for a historical discussion
of such.
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2.1 Java

Exceptions in Java are used to model erroneous circumstances. They always indicate situations that should
not be witnessed during a typical execution of a program. Most Java exceptions are meant to be dealt with
at runtime—just because an exception is thrown dugsnean that the program must exit.

Java’s exceptions are represented by classes which inherit from the abstraghdassg.-
Throwable . They are generically calletirowablesbecause raising an exception is Java is accomplished
with thethrow keyword.

Java’s throwables are one of two disjoint typ@schecked exceptionschecked exception§he former
inherit from either the clagava.lang.RuntimeException or the clasgava.lang.Error , the
latter inherit fromjava.lang.Exception [4, Section 11.2].

Java’s Checked Exceptionslf a method can raise a checked exception, the checked exceptiomtigie
be specified as part of the signature of a method.tiitmvs keyword is used to designate such. A client
of a method whose signature includes an excepfidfie., the method stateshirows E ") must either
handleF with acatch expression, or the client also must declare that it can thtow

Checked exceptions are mainly used to characterize failure conditions for method invocations, like a
file not being readable or a buffer overflowing. Not all erroneous conditions in Java are represented by
exceptions though. Many method return special values, encoded as constant field of related classes, which
indicate failure. This brings us to the first key point of this paper:

Exceptions should have a uniform, consistent informal semantics for the developer.

The state of Java with regard to point one is poor. While some attempt has obviously been made to use
exceptions only for truly unexpected incidences, there are numerous examples of inconsistent use (e.g.,
ArrayStoreException , FileNotFoundException , andNotSerializableException ).

Examples of common checked exceptions that are part of many method signaturesli&xdep-
tion andinterruptedException

Java’s Unchecked ExceptionsUnchecked exceptions are either runtime exceptions or errors.

Runtime exceptions are conditions that can rarely (but potentially) be fixed at runtime, and thus are not
errors. Examples includérraylndexOutOfBoundsException , ClassCastException , andNull-
PointerException

Errors indicate serious problems with which most applications should not try to deal. Most errors in-
dicate abnormal conditions with either the operating environment or the program structure. Examples of
errors areAssertionError , NoSuchMethodError , StackOverflowError , andOutOfMem-
oryError

2.2 Exceptions in Eiffel

The fundamental principle in Eiffel is thatroutine must either succeed or fadlither it fulfills its contract
or it does not. It the latter case an exceptioalisaysraised [9, 8]. Thus, exceptions are, by design, to be
used in Eiffel exclusively to signal when a contract is broken.

Exceptions are not specified as part of the type signature of a routine, nor are they mentioned in routine
contracts. In fact, there is no way to determine if a routine can raise an exception other than through an
inspection of the routine’s code, and all the code on which it depends.

Eiffel exceptions are represented BYTEGER and STRING values; there are no exception clagses
Exceptions that are part of the language definition are represent®dlBGER values, developer-defined
exceptions bySTRING values. This limited and non-uniform representation of exceptions brings us to
the second key point;

2 Eiffel class names are always capitalized.
3 Earlier versions of the Eiffel language standard permitted developer-defined integer exception values, but this seems
to no longer be the case. It is unclear when and why this change was made.
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Exceptions should have a uniform representation,
and that representation should be amendable to refinement.

Eiffel's exceptions have two representations, causing some design impedance when dealing with them.
Additionally, because they are basic values and not objects, they have no internal semantics beyond that
which can be expressed in a helper routine, which necessarily cannot be foolproof because of the represen-
tation overloading in effect.

Contract Failure Contracts can be violated in several ways, all of which are considet#id, but only
some of which are under programmer control.

Operating environment problems, such as running out of memory, are one situation in which exceptions
are signaled. In these cases a contract can fail, but not necessarily because the caller or the callee did
something wrong.

Certainly, intentionally allocating too much memory, or otherwise using an extraordinary amount of
system resources, is the fault of the program. But such situations are more malicious than typical.

Software infrastructure failures can cause exceptions. Some operating system signals raise an excep-
tion. Failures in non-Eiffel libraries that are used by an Eiffel application can cause exceptions as well. For
example, Eiffel programs that link with Microsoft Windows COM components can witness an exception
specific to COM routine failure. Eiffel programs that use UNIX libraries can see an exception which indi-
cates that an external library failed but did not setelrmo  system variable. A floating point exception
is raised on some architectures when a division by zero is attempted.

But most exceptions used in Eiffel are not due to external factors, but insteadsagion violations
or developer exceptionboth of which are used to indicate program errors.

If assertion checking is enabled during compilation, assertion violations cause an exception to be raised.
These exceptions are classified according to the type of assertion that has been violated.

The check instruction, which is equivalent to C’s or Javassert construct, cause &heck _-
instruction exception to be raised. Roop _variant  exception is another assertion violation; it is
raised when a loop variant does not monotonically decrease during loop execution.

Violating a contract, either by failing to fulfill a class invariant, a method precondition or postcondition,
or a loop invariant, is the final kind of exception. Contract violations fall into two categories: those that are
the fault of the client of a class, and those that are the fault of the supplier of a class. The classification of
an exception is determined by the context of the failure during program execution.

If a contract is broken at the time a method is called, regardless of whether the caller is another object
or the current object (in the case of a callback, or the use akting  keyword, see below), then the fault
lies with the caller.

Exactly one kind of exception, callédoid _call _target , can be the fault of either the caller or the
callee. If a method is invoked on an object reference with vellid , aVoid _call _target israised. If
the caller set the value ¥oid , or did not check the reference prior to making the invocation attempt, then
the fault lies with the caller. In situations where the reference was obtained via a routine call, either via a
formal parameter or a return value, and the vallédil , the fault lies with the callee, as the specification
of the routine is not strong enough to eliminate the possibility oftbiel value.

The uniform design for assertion violation signaling with exception in Eiffel is contrary to that which
exists in Java. Several tools exist to permit the formal specification of contract for Java code. We use the
excellent JML tool suite [7]. Unfortunately, because assertion violation semantics is so primitive in Java,
there is no uniformity of exceptions across different assertion tools and specification languages. This brings
us to point three:

If exceptions are used to represent assertion failure, their design and semantics
should be incorporated into the core language specification.

The users of these tools have suffered tremendously because the creators of Java ignored this key point
in language design.
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2.3 Comparing Eiffel's Exceptions to Java’s Unchecked Exceptions

Eiffel's exceptions and Java’s unchecked exceptions are exclusively focused on unexpected, erroneous
behavior that an application should not try to handle. Thus, one would expect every Eiffel exception to map
to a single Java unchecked exception. This is not the case.

Some of Eiffel's built-in exception types are equivalent to standduetkedexceptions in Java. For
example, Eiffel'do _exception , Runtime _io _exception ,andRetrieve _exception are semi-
equivalent tdOException and some of its children.

A number ofuncheckeaxceptions are equivalent to standard Eiffel exceptions. For exawpilke, -

call _target is equivalent taNullPointerException , andFloating _point _exception is
equivalent toArithmeticException

Finally, some children gfiva.lang.Error are equivalent to the remaining Eiffel exceptioAs:
sertionError is equivalent to the set of specification-centric Eiffel excepti@iseck _instruction ,
Class _invariant ,Loop _invariant ,Loop _variant ,Postcondition ,andPrecondition ),

andNo_more _memory is equivalent tdOutOfMemoryError  andStackOverflowError

Missing Mappings Several exceptions that exist in each language have no peer in the other language.

Rescue _exception has no mapping, as Java does not perform any special handling of exceptions
thrown in afinally clause.

An equivalent forSignal _exception is not part of the core Java language as Java’s definition
focuses on multiplatform development and not all platforms have sityifdis Eiffel language specification
states that such system-specific exceptions should be contained in system-specific classes, but no compilers
implement this suggestion.

An error likeVoid _assigned _to _expanded is not possible in Java as Java has no expanded types
and the type system prohibits assignmentaifl to built-in types likeint andboolean .

The Eiffel literature claims that Eiffel has no casting (cf., [10, page 194], thus there is no equivalent
to Java'sClassCastException . This claim is a bit disingenuous because Eiffel's assignment attempt
operator ?="is simply a built-in conditional downcast in the form of an operator

Routine _failure  is a generic exception that indicates a routine has failed for some reason. The
reason is sometimes recorded (&TRING) in themeaning associated with the exception, but this is not
mandatory. This is also true of Java exceptions, each of which has an optional message associated with it
obtainable viarhrowable 's getMessage method. Unfortunately, there is absolutely no uniformity to
the use of these representations in either language.

When defining a new type of exception, human and machine comprehensible representations (e.g., a string
value and a predicate) should either be mandatory, or not exist at all.

None of the various Java exceptions dealing with out-of-bounds access to arrays and strings exist in
Eiffel because the contracts of accessor routines for these types prohibit such. Cloning-related exceptions
do not exist because all objects can be cloned in Eiffel.

Integrated contracts significantly decrease the number and complexity of exceptions.

This point is emphasized by the quantative analysis of Section 4.
Standard Eiffel also does not have several features of Java: reflection, introspection, concurrency, and
sandboxing. These features contribute significantly to the complexity of Java’s exception class hierarchy.

“One can catch and handle signals in Java, but internal classes slikemisc.Signal and
sun.misc.SignalHandler , or a package like [6], are needed.
® This is not the only pragmatic circumvention in Eiffel. Other examples include the dual semantics of routine calls
(with and without an explicitCurrent ") and the semantics of thequal andclone routines of ANY.
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Controlling Exceptions in Eiffel Exceptions are primarily controlled in Eiffel usimgscue clauseand
theretry instruction. Exceptions are also indirectly controlled by the choice madempilation mode
during application development.
A routine may end with a rescue clauserescue clausef a routine is a block of code that will execute
if any exception is raised during the execution of the routine.
The rescue clause does not discriminate between different types of exceptions. In this respect, it is
functionally equivalent to the surrounding every Java method body with dcatch block where the
catch expression igatch (java.lang.Throwable) ". The rescue clause itequivalent to Java’s
finally construct. The code enclosed in a finally bloclaisaysexecuted when a method completes,
whether it completes normally or abnormally, while a rescue clause only executes when a routine fails.
Theretry instruction causes a routine to restart its execution, attempting again to fulfill its contract.
This instruction can only be used within a rescue clause. If a rescue clause does not contain a retry instruc-
tion, then the routine fails and the current exception is raised in the immediate caller.
We will return to the details dinally andrescue in the sequel.
Exceptions are manipulated in Eiffel using the EXCEPTIONS class. Using this class one can find out
information about the latest raised exception (much éikmo in C), handle certain kinds of exceptions
in a special way, raise special developer-defined exceptions, and prescribe that certain exceptions must be
ignored at run-time.
The EXCEPTIONS class is part of the Eiffel Kernel Library, thus is available in all Eiffel compilers.

3 Exceptional Specifications and Validation

The key difference between the use of exceptions in the two languages in that exceptipag afea
method contract in Java and aret part of a routine contract in Eiffel. Thus, a fundamental notion of “De-
sign by Contract”, that of exceptions exclusively indicating contract failure, has a different interpretation
in Java.

3.1 Contracts with Exceptions in Java

We use the Java Modeling Language to write formal specifications of Java components [1]. We have patrtic-
ipated in the development of a coalgebraic semantics for Java and JML [5]. The discussion in this section
are based upon that experience.

The semantics of Java, and thus JML, are significantly complicated by the possibility of abrupt method
termination (i.e., an exception being thrown). Validation proofs must deal with three cases in Java: normal
termination, abrupt termination, and divergent behavior, sometimes tripling proof size.

The default specification for a failure is simply “true”, which means that the routine guarantees nothing
in particular when a failure takes place. Rarely can nothing stronger be said, and in fact exceptional cases
are often the first part of a formal specification we write.

This information helps the caller deal with the exceptional cases in a more reasonable manner than just
halting. We have also found that the specification of a postcondition for abrupt terminatr@andatory
for reasoning about systems during abrupt termination. Without such assertions, class invariants would
become significantly more complex because ghost variables would be needed to represent failure states for
all of the routines of a class.

3.2 Specifications of Eiffel Exceptions

In Eiffel, the semantics aéxceptional-correctoutines is rolled into the definition alass correctnesgd 0,
Chapter 15 and Section 9.16].

The definition [10, Section 15.10] eception-correcis:

A routiner of a clasC' is exception-correct if and only if, for every branklof its rescue block:

1. If b ends with eRetry : {true} b {INV_C and pre_r}
2. If bdoes notend in Retry : {true} b {INV_C}
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wherelNV _Cis the class invariant af’; pre _r is the precondition of routine.

This existing semantics is a problem in practice because it means that Eiffel code must always have
a rescue block that “puts everything right” (fulfills the normal postcondition), which usually means either
a significant weakening of the postcondition (one can barely state anything is true if things can either fail
or succeed) or an extremely complex postcondition with a large set of disjuncts with error-flag guarded
expressions.

For example,

method_call_failed implies (F || G || H)
|| not method_call_failed implies (1 || J || K)

This kind of specification is evident in the very few places where exceptions are handled in Eiffel code, and
we speculate this is true because of the inherent complexity in such specifications.

Specifications in JML that use keywords likgsures andexceptional _behavior which are
simply shorthand for these more complex expressions. We believe that Eiffel could benefit from such
expressions as well.

This semantics significantly complicates contracts and weakens their application. Neither case is sur-
prising: either (in case 1) a rescue clause must fulfill the invariant and the precondition of the retried routine
or, (in case 2) a retry does not happen so the routine has to leave the object in a legitimate state by fulfilling
its invariant. What is surprising is thabthingis know about when or why the exception happened in the
first place, since both preconditions are as weak as possible, and no#virggn be specified about the
state of the objects when a failure takes place, since the postcondition is exactly the invariant.

JML is exactly contrary here—it provides the ability to state a stronger postcondition in these excep-
tional cases, and this information is essential to validating programs with exceptions.

This brings us to our next key point:

The specification of object state when an assertion is raised, either via an exceptional postcondition or an
exception predicate, is very desirable if programs are to be formally verified.

The Java Modeling Language fulfills this key point admirably, while Eiffel fails in this regard.

4 Qualitative and Quantitative Comparisons

In the end, it is unclear how important exceptions are in the Eiffel world. This might be due to exception’s
perceived second-class nature in the Eiffel universe of “correct” software, as evidenced by their rare use
(see below).

If exceptions in Eiffel are equivalent to unchecked exceptions in Java, and if library programmers for
the two languages equally careful and capable of handling unexpected circumstances, then an analysis of
exception usage in the two core code bases should yield comparable results.

The data in Table 1 is the result of such an analysis. In the case of the Gobo and SmartEiffel systems, all
code, library and applications, was analyzed for this data. The number of declared exceptions is determined
by counting and classifying all calls ®XCEPTIONS.raise and EXCEPTIONS.die, in the case of Eiffel,
and counting all descendants jaf/a.lang.Throwable , in the case of Java. The number of raised
exceptions is determined by a count of the number of callBX6EPTIONS.raise and EXCEPTIONS.die,
in the case of Eiffel, and the numberthirow expressions, in the case of Java. The data on stack traces
is determined by counting and analyzing all calls to routeseption _name, tag _-name, meaning ,
and developer _exception _name of classEXCEPTIONS All numbers are approximate and only
measured using thec command.

Consider that in Java an unchecked exception is thrown for approximately every 140 lines of code,
where in Eiffel one is used for every 4,600 lines of code; that is a difference of over thirty times in
frequency. The above statistics clearly show that either or both (a) exceptions in Eiffel, either through
technical issues or social pressure, have a second-class (or perhaps even ignored) status, or (b) the built-in
existence of adequate specification technologies inherently leads to fewer assertions being thrown. Given
the preponderance of quality Eiffel software available, the latter point holds much more weight. This is
especially highlighted in the complete lack of exception usage in the GNU SmartEiffel system.
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Library Gobo 3.1ePosix 1.0.0SE Eiffel 5.3 SmartEiffel 1.0JDK 1.4.1 (java.
Number of direct/indirect
mentions of EXCEPTIONS,

or unchecked exceptions 18 3 17 0 525/ 15,000
Number of unchecked/checked

exceptions declared 3/- 6/- 5/- 0/- 50/ 150
Number of raised unchecked/

checked exceptions 66/- 87!- 13/- 0/- 3,000/ 2,650
Number ofrescue or

finally clauses 6 10 29 0 50
Number ofretry commands 81 3 15 0 N/A

Number of times a stack trace

is (a) checked or manipulated,

or (b) printed or ignored 0/0 0/0 0/0 0/0 8/79

Total lines of code and documentatjdb50,000, 25,000 372,000 115,000 421,000
Table 1. Use of Exceptions in Eiffel and Java

This data should be carefully considered by the committee performing ECMA language standardization
of Eiffel. It also provides evidence for potential avenues for language refinement, particularly with regards
to the specification of exceptional conditions.

5 Exception Equivalency

Both languages have exceptions mechanisms that can be treated as equivalent. A hierarchy encoding can be
represented by integer or string values, so we could build an artificial type hierarchy for Eiffel exceptions
if we felt it necessary.

Likewise, the minimal exception interface of Eiffel, embodied in HECEPTIONS class, could be
modeled in Java. In fact, some Java developers advocate avoiding checked exceptions entirely, instead
inheriting exclusively fronRuntimeException [3].

We can find no evidence of the converse, that of Eiffel programmers using exceptions as flow control
mechanisms.

As any Java programmer knows, the volumdrgf /catch code in a typical Java application is far
larger than the comparable code necessary for explicit formal parameter and return value checking in other
languages that do not have checked exceptions.

In fact, the general consensus among in-the-trenches Java programmers is that dealing with checked ex-
ceptions is nearly as unpleasant a task as writing documentation. Thus, many programmers report that they
“resent” checked exceptions. This leads to an abundance of checked-but-ignored exceptions, as evidenced
by the next to the last line of the table of the previous section.

Additionally, the presence of checked exceptions percolates through the system. As discussed by the
designers of C# [2],

Examination of small programs leads to the conclusion that requiring exception specifications
could both enhance developer productivity and enhance code quality, but experience with large
software projects suggests a different result — decreased productivity and little or no increase in
code quality.

This attitude guides the design of error handling in the .NET framework as well [11, see Section “Error
Raising and Handling Guidelines™].
These issues lead us to our last, and perhaps crucial point:

Checked exceptions generally increase system fragility (because of signature refactoring), increase code
size (due to explicit, localized, mandatory handling), and cause programmer angst (as evidenced by the
number of empty or spitefahtch blocks in public Java code), so their inclusion in a language should
be carefully considered.
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Inthe end, so long as an exception mechanism has a simple semantics, is consistently used, and provides

a tool which programmers can understand, depend upon, and not resent, then they should be included in
future languages.
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(NWO). Thanks to the anonymous reviewers and Alexander Kogtenkov for their comments.

References

1.

N

13.

Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino, and
Erik Poll. An overview of JML tools and applications. Technical Report NI11-R0309, Dept. of Computer Science,
University of Nijmegen, 2003.

. Posted by Eric Gunnerson. Original author unknown. Why doesn’t C# require exception specifications?
. Bruce Eckel. Does Java need checked exceptions? See http://www.mindview.net/Etc/Discussions/CheckedExceptions,

particularly the ensuing feedback on this issue.

. James Gosling, Bill Joy, and Guy Steelée Java Language Specificatickddison-Wesley Publishing Company,

first edition, August 1996.

. Bart Jacobs and Erik Poll. A logic for the Java modeling language JML. Technical Report CSI-R0018, Computing

Science Institute, University of Nijmegen, November 2000.

. What is JavaSignals?, 1999. See http://www.geeksville.com/ kevinh/projects/javasignals/.
. Gary T. Leavens, Albert L. Baker, and Clyde RulBehavioral Specifications of Business and Systemepter

JML: A Notation for Detailed Design, pages 175-188. Kluwer Academic Publishing, 1999.

. Bertrand Meyer. Disciplined exceptions. Technical Report TR-EI-13/EX, Interactive Software Engineering, 1988.
. Bertrand MeyerObject-Oriented Software ConstructioRrentice-Hall, Inc., second edition, 1988.

10.
11.
12.

Bertrand Meyerkiffel: The LanguagePrentice-Hall, Inc., 1992.

.NET framework general reference, 2003. Documentation version 1.1.0.

Richard J. Sutcliffe, editoModula-2 (Base LanguageNumber 10514-1:1996 in ISO/IEC Modula-2 Standard-
ization. ISO/IEC, 1999.

Niklaus Wirth.Programming in Modula-2Springer—Verlag, 1982.

34



ECOOP'2003 - EHOOS workshop

Non-Functional Exceptions for
Distributed and Mobile Objects

Denis Caromel and Alexandre Genoud

INRIA Sophia Antipolis, CNRS - I3S - UNSA
BP 93, 06902 Sophia Antipolis Cedex - France
First.Last@Qinria.fr

Abstract. While there is quite a lot of techniques to separate non func-
tional properties from functional code, the handling of induced excep-
tions remains often blurred within application. This paper identifies Non-
Functional Exceptions as exceptions related to various failures of non-
functional properties (distribution, transaction or security). We propose
a hierarchical framework where reified exception handlers are attached
to various entities (proxies, remote objects, futures). Such handlers allow
middleware and application oriented handling strategies for distributed
and mobile computation. The mechanism tries to handle exceptions at
non-functional level as much as possible.

1 Introduction

Distributed environments provide synchronous and asynchronous calls, remote
references, migration of activities. Complex communications are subject to var-
ious failures such as the remote communication failure. It is always unclear
whether the failure occurred in the communications medium or in the remote
process, and the state of the system is in general uncertain. Unfortunately, the
try/catch construction is heavy to use, and only convenient for simple commu-
nication errors.

In this article, we define non-functional exceptions as exceptions related to
distribution. We present a hierarchical model based upon handlers of exception.
Sets of handlers are dynamically attached to various entities (JVMs, remote
and mobile objects, proxies, ...) in order to provide a generic and flexible re-
covery mechanism at a non functional level. This model has been implemented
and bench marked in a framework for parallel, distributed and mobile comput-
ing known as ProActive'. As implementation remains simple, the port to other
middlewares is possible.

The first section presents previous works related to exception handling in
distributed architectures. Then, non-functional exceptions are defined and those
related to distribution are classified. The next chapter describe a flexible model
used to handle simple communication failures but also to create advanced fault-
tolerance strategies. Finally, pragmatic examples are presented. Performances
are discussed in the appendix.

! http://www.inria.fr/oasis/ProActive
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2 Related Work

Exceptions have been created in ADA in the 1970s and are now a standard mech-
anism to report errors and failures. In distributed environments, they are raised
from host to host and thus are difficult to handle. Through the development of
our distributed library, we realized that standard handling mechanisms are not
appropriate to distribution, as developers must define handling code for every
distributed exception.

Authors of [4] highlight a critical problem that appears when several failures oc-
cur simultaneously. While communications between distant processes are broken,
an unstable state is probably reached. This article suggests to gather communi-
cating processes into a conversation before starting any kind of communication.
Participants first save their own state ; then a set of handlers is associated to
the conversation. All action participants are involved in co-operative handling of
any exception raised by any action participant : the conversation is paused until
the handling process is terminated. When handlers are not sufficient to recover
from failure, the conversation is canceled. Every process checks possible side ef-
fects and rollbacks to its initial state. This collaborative strategy seems really
promising but fails with asynchronism. As the return time of an asynchronous
call is unknown, the lifespan of the conversation is also unknown. The recovery
process could be maintained as long as no result is delivered.

Agents are active objects having autonomous behavior according to their en-
vironment. As mobility is one possible behavior, an agent can decide to migrate
on a different virtual machine. In this context, authors define guardians in [5]
as centralized mechanisms helping agents to handle exceptions related to distri-
bution. Only one guardian is needed for every agents-based application. When
an agent cannot handle an error, the exception is raised to the guardian which
send back instructions. Of course, the handling behavior depends not only of
the nature of the exception but also of the agent environment. When distant
objects become unreachable, the guardian can advise to delay communication.
When critical failures occur, the guardian can terminate agents. An interesting
strategy to handle failures related to the migration of agents could be to find
an equivalent destination using the replication strategy. This centralized model
offers simplicity as it provides only one single guardian even for large distributed
systems. However, many problems would occur if the guardian becomes unreach-
able or crashes.

3 Non-Functional Exceptions

During the conception process, we identified three majors features required for
distributed handling mechanisms : flexibility, genericity and dynamicity. Con-
sidering that previous models did not meet all of these requirements, we decided
to create an original model from scratch based upon a new classification of ex-
ceptions.
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3.1 Functional versus Non-Functional

In recent literature, classifications of exceptions are proposed. According to [7],
exceptions can be divided into internal exceptions, raised from and handled
within a method, and external exceptions propagated toward other methods.
This classification is not useful for distributed environments which require com-
plete description of internal failures. In our framework, we consider the mecha-
nism of distribution as a non-functional property [8]. We use this specificity to
define non-functional exceptions as exceptions raised from any non-functional

property.
Definition 1 Non-functional FEzceptions announce failures occurring in non

functional properties. They are raised in non-functional code and handled, as
much as possible, within it.

We make a clear difference between functional exceptions, related to abnormal
behavior of applications, and non-functional exceptions, related to failures of
non-functional properties. Exceptions related to distribution should be consid-
ered as non-functional exceptions coming from the middleware. We agree with
the recommendation of [9] which claims that exceptions have to be handled
at meta level. It is much more simple indeed to handle exceptions directly in
internal mechanisms of distribution.

3.2 Location of Non-Functional Exceptions

Distributed environments provide synchronous and asynchronous communica-
tions as describe in [1]. Failures in such communications result in non-functional
exceptions as shown in 1. While in synchronous calls, those exceptions are simply
handled at results delivery, asynchronous calls lead to two solutions. Exceptions
are eventually handled when requests containing reified calls are synchronously
queued. But non-functional exceptions have to be handled in future objects when
pending requests are served or when results are stored within them.

[ Functional Code ] [ Non—Functional Code ]

VM A

// v is an active object
// foo returns an int

Exceptions related to
s svnchronous synchronous calls
int result = v.foo();

In asynchronous calls,
exceptions occur when

// bar returns a reifiable object N
; . calls are stored in queues

pnchronous

e ca
Bb=vbar(); = F----------

Exceptions also occur
at result delivery or

// Result is stored in B,
vhen available

and used w,
b.useResult();  F-----------

in future objects

Fig. 1. Exceptions Raised from Synchronous and Asynchronous Calls

37



4 Denis Caror@%@ﬂém& GQS'.QOS WOI’kShOp

3.3 A Hierarchy of Distributed Exceptions

We first identified and classified potential failures (figure 2) of distributed envi-
ronments. Then, we built a hierarchy of potential failures, opened to developers
who can add new failures and topics. We kept this structure customizable as
flexibility is the most important feature of recovery mechanism. Finally, we asso-
ciated non-functional exception to every failure. This hierarchy is used to define
handling strategies for specific exceptions as well as for groups of exceptions.

Distributed Exceptionsl

[Communication] [Migratima [Security] [ Creation] [ Group] [ Services]

| | |

Serialization ActiveObject ServiceFailed
OnDeparture Future :

OnArrival ReifyObject
Send  Receive Send  Receive Send  Receive

SendCom ReceiveCom SendCom ReceiveCom SendCom ReceiveCom

SendRequest ReceiveRequest ques q

SendReply ReceiveReply p P p iveRep!

Fig. 2. Hierarchy of Failures Encountered in Distributed Environments

4 A Hierarchical and Dynamic Handling Mechanism

The hierarchy of failures described above is used in the construction of hierar-
chical handlers, working indifferently at functional or non-functional levels.

Definition 2 Handler of exceptions handle non-functional exceptions as well as
groups of such exceptions, thanks to object inheritance.

For instance, a handler can be associated to SendRequestGroupException or to
every member of GroupException (see [10] for detail about group communica-
tions). Handlers provide basic strategies in non-functional code, but application-
specific strategies are also possible. They reify the try/catch construction to
support both genericity and flexibility required by any handling mechanism.
Handlers implement a common interface and provide functional as well as non-
functional treatments of non-functional exceptions.

4.1 Prioritized Levels of Handling

Our mechanism is based upon a default and static level, created during the
middleware initialization, and some dynamic levels set during execution. Each
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structure can provide a specific fault tolerance strategy created from an ap-
propriate set of handlers. Every non-functional exception is associated to one
handler in the default level. The default strategy is basic but always present
while complexes strategies appear occasionally in higher levels. We defined six
different levels, associated to constants within the implementation and presented
below from lower to higher priority.

1. Default level is static and initialized in core of applications. This level provide
a basic handling strategy for every non-functional exception.

2. Virtual Machine level is the first level that can be created dynamically. It
offers the possibility to define a general handling behavior for every VM.

3. Remote and Mobile Object level is used to bind handlers to remote objects.
Handlers associated to mobile entities migrate along with them.

4. Proxy level is used to define strategies for references to active objects. When

reference are passed to other VMs, handlers are passed also.

Future level is attached to the results of asynchronous calls.

6. Code level allows temporary handlers to be set in the code.

ot

As describe above, the default level provides a basic handling strategy, defined
during the initialization of middleware. Virtual machine level and higher ones
are set dynamically to improve this strategy. Dynamic handlers are created at
runtime and added to an appropriate level (VM, remote object, proxy, future or
code levels).

4.2 Presentation of the API

The API is both used for middleware adaptation (e.g. wireless oriented) and
for distributed application. It consists in two major static functions which offer
settings and configurations of handlers into appropriate levels. The five dynamic
levels are defined with constants.

// Binds one handler to a class of exception at the specified level.
void setExceptionHandler(level, Handler, Exception, Target);

// Removes handler associated to a class of exception at specified
// level. Target is different from null when level is object-related.
Handler unsetExceptionHandler(Level, Exception, Target);

The following example show how to protect an application from commu-
nication failures. We add a handler with the setExzceptionHandler primitive.
Communication failures are thus handled for that object.

// Creation of a remote and mobile object with handlers
RO ro = (RO) ProActive.newActive("RO", "//io.inria.fr/VM1");

// A communication handler is dynamically associated
// to the remote object trough its proxy.
setExceptionHandler (ProxyLevel,
"CommunicationHandler",
"CommunicationException",
ro);
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4.3 Dealing with Mobility

Most of the distributed environments offer remote and mobile objects. Such ob-
jects can migrate from host to host. This additional constraint can break the
continuation of the handling mechanism. The migration process must be modi-
fied to take into account the migration of mobile object handlers. As explained
later, mobile objects and their associated levels remain always gathered. Han-
dling mechanism can be associated to proxy also in order to attach a specific
strategy to remote references.

4.4 Implementation

As explained before, the handling strategy is built upon one static level improved
occasionally with dynamic levels. Handlers are searched with the following ded-
icated function.

// Searches through prioritized levels the handler associated
// to the given class of exception
Handler searchExceptionHandler(Exception, Target);

The following code is part of the middleware and describe how to activate the
handling mechanism. Instead of providing a treatment directly in the ¢ry/catch
block, we use the searchFExceptionHandler primitive.

try {
// Send the reified method call
sendRequest (methodCall, null);

} catch (NonFunctionalException e) {

// Looks for an appropriate handler and
// use the handler if possible
Handler handler = searchExceptionHandler(e);
if (handler) handler.handle(e);

We tried to keep implementation as simple as possible but performance is-
sues were also considered. Levels are implemented with hashmap to provide fast
access to handlers. Considering the memory available in modern computer, we
support time complexity instead of space complexity even if migration increase
memory requirements because of levels associated to mobile objects. The cost is
proportional to the number of handlers contained in the object level.

Reflexion is used to search handlers for a specific class of exception or for the
mother class of a group of exceptions. The algorithm supports generic handlers of
higher levels instead of specific handlers from lower level ; Levels have precedence
over the type of exceptions. For instance, on figure 3, the most suitable handler
for exceptions related to class 02 is found in the highest level. When no handler
is available at remote object level, the search continue in VM an lower level.
This choice, which seems more natural, can be invert.
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REMOTE OBJECT LEVEL
1. The search starts in higher level
Handler Ol is preferred to an eventual

Handler O2 from lower levels @

VM LEVEL
- Handler O1
— Handler 02

An exception

occurs
in class 02

2. Search continues in VM Level

3. Default level is usually used
‘ when no strategy is defined DEFAULT LEVEL
— Handler for every exception

Fig. 3. Levels have Precedence over Exception Type when Searching Handlers

5 Canonical Examples

We present in this section two applications which use our handling mechanism.

5.1 Handling Exceptions in Unconnected Mode (e.g. wireless PDA)

Distributed applications for Personal Digital Assistants should provide an un-
connected mode to handle at least communication exceptions due to broken
connections. We defined a strategy where handlers store requests sent to un-
reachable PDAs in a queue. Time by time, a thread checks if the connection is
restored in order to deliver requests. The point is not to define a sophisticated
strategy, but to show how easily it can be activated. Here is the scheme of such
a PDA-Handler.

Class PDACommunicationHandler implements Handler {
public boolean isHandling(Exception e) {
return (e instanceOf CommunicationException);
}
public void handle(Exception e) {

// A thread testing connectivity is created
if (firstUse) {
connectivityThread = new ConnectivityThread();

// Then reified method calls are stored in the
// queue and exceptions are not propagated anymore
queue.store(e.getReifiedMethodCall());
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Imagine now that an entity is about to create a mobile object that migrate
on some wireless PDA.

// Creation of a remote and mobile object with handlers
RO ro = (RO) ProActive.newActive("RO", "//io.inria.fr/VMi1");

// A communication handler is dynamically associated
setExceptionHandler (ProxyLevel,
"PDACommunicationHandler",
"CommunicationException",
ro);

// The mobile object can now migrate safely
ro.migrateTo("//pagode.inria.fr/VM2");

5.2 Simulating a Centralized Error Manager

The handling mechanism can easily be configured into a centralized error man-
ager similar to the one presented in [5]. We create first a remote object containing
a complete set of prioritized handlers. This object is located on one virtual ma-
chine but is known from every active object of the application. Non-functional
exceptions reporting failure are not handled directly in the active object but are
raised to the centralized error manager instead. A handler corresponding to the
failure is sent back to handle the exception. This strategy does not avoid the
typical problems common to every centralized error manager but offers at least
an efficient centralized handling mechanism, easy to configure.

Remote objects notify exceptions VM A

related to distribution. Information

about the level is also provided. Renote
Object

Centralized GUARDIAN @
Contains Set of Handlers =
””””””””””””””””””””” =\ Object
Omnn
o
VM B
Remote
=\ Object

‘ Hl"‘ HZ"‘ H3"‘ H4”‘ & SR At
Remote
Object

Legend Guardian searches for a reliable
~—— Signal exception handler according to the context
... Sendbacka of exception. Then handlers is sent Object
reliable handler back to the remote object

Fig. 4. Centralized Error Managers are Easy to Implement
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Conclusion and Perspectives

We defined a dynamic, flexible and generic model to handle non-functional ex-
ceptions. We proposed a classification for non-functional exceptions along with
a hierarchy of prioritized levels. As implementation use the classical try/catch
language construct, the model is reliable for a large panel of modern, object-
oriented, programming languages.
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Appendix: Time and Space Performances

Space Complexity : Each system contains at least default and virtual machine
levels : some handlers contained by two hashtables.

Strategy Description Number of Handlers|Size in Byte
No Handler No handler is provided. We 0 82
just pay the cost of an empty
level based upon Hashtable

Minimal One global and generic 1 209
handler achieve application
soundness
Per Group One handler is provided for 7 1561

each group of non-functional
exception (see 2)

Per Communication|Every communication ex- 2*%6=12 2833
ception has 2 handlers : re-
mote object level and VM
level

Table 1. Space Requirements Depends of the Number of Handlers

Time Complexity : Adding and removing handlers do not break overall
performance of the system. Research of handlers is complexity-less, thanks to
hashtable properties. We raised a huge number of exceptions and measured time
to find handlers. The ratio is 1:4.

700

try/catch Handling Mechanism ——
Dynamic Handler Mechanism ---x---

600 | A
500 |- B
400 - 1

300 4

Handling Time (in millisecond)

200 | i

100 | i

L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
Number of Raised Exceptions

Fig. 5. Time Complexity

44



ECOOP'2003 - EHOOS workshop

Using Exception Handling for Fault-Tolerance in
Mobile Coordination-Based Environments

Giovanna Di Marzo Serugendo! and Alexander Romanovsky?

! Centre Universitaire d’Informatique, University of Geneva,
CH-1211 Geneva 4, Switzerland
Giovanna.Dimarzo@cui.unige.ch

2 School of Computing Science, University of Newcastle,
NE1 7RU Newcastle upon Tyne, UK

Alexander.Romanovsky@newcastle.ac.uk

1 Introduction

Mobility of users and code, coupled with todays powerful handheld devices,
allows us to anticipate that a class of applications, which will take more and
more importance in the next years, is that of mobile agent-based applications.
Indeed, handheld devices need light code that can be freely moved from one
device to another, according to the user’s mobility or needs. Mobile agent-based
applications typically run on a mobile coordination-based environment, where
programs communicate asynchronously through a shared memory space. There is
a number of outstanding issues in providing fault tolerance of such applications.
The aim of this paper is to propose an exception handling model suitable for
mobile coordination-based environments.

1.1 Exception Handling

One of the chief trends in providing dependability of modern systems is the de-
creasing role played by tolerance to hardware-related faults. This is due to several
factors: improvements in hardware quality, a dramatic growth of the complexity
of software, the increasing involvement of the unexperienced users in managing
such systems, a growing variety of abnormal situations in the system environ-
ment. As a result of this, modern applications have to be designed in such a way
that they are capable of dealing with a growing number of various abnormal
situations in a disciplined fashion. The only general solution to these problems
is to systematically incorporate software fault tolerance into the applications.
One approach is to use backward error recovery techniques (such as rollback)
which can be made almost transparent for the application. Unfortunately it is
not general, usually quite expensive, and often not-applicable at all. This is why
employing application-specific exception handling is nowadays playing a major
role in building complex dependable applications.

Exception handling relies on features for declaring exceptions in different
scopes (exception contexts) and associating handlers with them, as well as on
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ability to raise exceptions and propagate them outside the (nested) scopes. Most
practical languages (including Java and Ada) as well as a number of component
technologies (such as EJB) provide features for handling exceptions. Exception
handling features should match the characteristics of the application to be de-
veloped and the environment, the design paradigm, the computational model
and the language/technology used [8]. Developing specialized exception han-
dling mechanisms is an area of a very active research. For example, a number
of object-oriented mechanisms were proposed around 1990, atomic action based
mechanisms for providing fault tolerance (exception handling) in concurrent co-
operative systems were developed in mid 80s.

1.2 Coordination-Based Mobile Environments

Mobile coordination-based environments usually follow a data-driven coordina-
tion model [3], using a shared data space & la Linda. Agents coordinate in a
Linda space by inserting, reading or removing tuples of data from a blackboard.
Tuples are retrieved according to an associative search. Mobile coordination-
based environments provides several tuple spaces and ways for agents to denote
and access the different spaces.

Among mobile coordination-based environment, we can cite Lime [7], MARS [2],
and Lana [1]. Lime (Linda in a mobile environment) is well suited for both logical
mobility of agents and physical mobility of devices. Lime mobile agents coordi-
nate through Linda tuple spaces using a fixed set of interaction primitives. Lime
tuple spaces at different sites are merged together and agents access them trans-
parently as if they were local. MARS (Mobile Agent Reactive Spaces) is an
object-oriented Java-based environment, where Java agents coordinate through
an object-oriented tuple space & la Linda, using a programmable set of prim-
itives. A MARS agent can only access the tuple space associated to the host
where it is currently executing. Lana is an object-oriented Java-based environ-
ment, which combines provision of coordination and security and is designed to
run on both standard user PCs connected to the Internet and handheld devices.
Lana agents coordinate through an object-oriented tuple space a la Linda, using
a default fixed set of primitives, which can nevertheless be extended by the pro-
grammer. An agent can access both remote and local tuple spaces. Lana defines
protection domains for information access, and prevents application crashes by
considering network failures as normal events.

1.3 Fault-Tolerance in Mobile Coordination-Based Environments

Early work on fault-tolerance in coordination-based environments focused on
using transactions in Linda-like environment. Two additional primitives allow
all produced tuples to be retained until the transaction commits, the tuples are
then actually added to the tuple space. Retaining tuples ensures the transaction
semantics, but raises problems among dependent agents. A relaxed version [9]
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provides the all or nothing transaction semantics, avoiding problems among de-
pendent agents, by relaxing the atomicity property. Tuples are available imme-
diately in the tuple space, even if later the transaction does not commit.

Mobile coordination-based environments, like WCL and JavaSpace, define
notification mechanisms. Agents ask to be notified whenever a matching entry
is written to the space. The notification mechanism, coupled with the notion
of transactions, provides a fault-tolerant mechanism, where an event catcher
is notified of matching entries for the duration of the transaction. In the case
of Lana, fault-tolerance is achieved in an asynchronous fashion, through the
notion of events. Events are deposited into the tuple space and retrieved by the
corresponding agent: immediately, if the agent was waiting for the event; later
on, if it searches for it later in the tuple space; or never, if the agent does not
care about the event.

However, all the above mentioned mechanisms for dealing with fault-tolerance
at the application level, suffer from the fact that exception handling, in its tra-
ditional sense, cannot be realized. Indeed, an exception, signaling an abnor-
mal event, is not necessarily caught or handled, neither synchronously or asyn-
chronously, by an agent.

1.4 Contribution

The focus of this paper is on discussing a new model of exception handling suit-
able for mobile applications developed in coordination-based environments. Qur
general view here is that exceptions are special (abnormal) events that cannot
be treated as usual (normal) events. Exceptions have to be always caught and
handled, they are abnormal events always needing reaction. Generally speaking,
the agent putting tuple in the space and continuing its work acts under wrong
assumption that its processing would go smoothly. The problems here are: due
to decoupling event producers from consumers this agent continues its execution
as if no exception has been raised, so it is not ready to be involved in han-
dling. Moreover, it can leave the location. There is clearly a need to have (to
dynamically create or link) a local handler that would synchronously deal with
exceptions, while the processes raising exceptions keep communicating asyn-
chronously. In addition to this, it is important to make exception handling as
flexible as possible. For example, to offer features to change dynamically the
direction of exception propagation.

2 Running Example

We introduce a small banking system that operates with mobile agents and
requires fault tolerance, and which is implemented in the Lana environment. This
example will be used to illustrate the discussion on the fault-tolerant techniques
intended for mobile coordination-based environments.
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2.1 The Lana Environment

Since Lana will serve as a basis for our discussion on fault tolerance, we will first
explain some Lana features. Communication inside a program occur through
synchronous method calls. However, Lana programs communicate using asyn-
chronous method calls. These calls are secure in that the calling program is given
a fresh Key object when the call is issued, and only this key can be used to in-
terpret the method reply. This mechanism prevents malicious programs from
intercepting or tampering with messages destined for others.

FEvents are used for signaling returned values of asynchronous method calls.
They are also used for signaling errors or exceptions, such as: security violation
(no permission for a method call), or the fact that the required program has
moved. Pre-defined event types include those: that indicate that a method has
returned (MethodReturn); that the method call has failed due to the invoked
program having moved (MigrationEvent); no access right having been granted
(SecurityViolation); the execution of the method code has generated an ex-
ception; the remote platform generated an (system) exception. Keys are used
to lock objects and events. Unique keys are automatically generated for each
asynchronous method call. Fized keys can be generated by several programs,
they allow transfer of well-known object copies through the use of a common
key.

The asynchronous notification of events is at the heart of the current fault-
tolerance mechanism provided by Lana. The typical scenario is the following:
an agent performs first an asynchronous method call, it then continues its exe-
cution (without waiting for the method return), once it is interested in having
the method return, it performs an observe (), which blocks the agent until the
method has returned. The return can either be the expected result, or an “ex-
ception” explaining the problem. Lana allows such exceptions to be generated
from a remote platform, however the observe() command must be local, i.e.,
an agent that moves must delegate the observe() to an agent that stays in the
platform from where the call has been issued.

2.2 Market Place Example: Lana Design

Figure 1 shows a user, wishing to acquire some product. He launches a buyer
agent that will roam the Internet searching for a seller agent offering the re-
quested object. The buyer and seller agents will meet in an electronic market
place, where they will exchange information regarding products that their respec-
tive users desire to buy or sell. Each agent is equipped with an e-purse holding
some amount of electronic money. If the two agents have matching requests, they
reach an agreement (the product is booked, and a contract is concluded), and
the payment is then realized by transferring some money from the e-purse of the
buyer agent directly to the e-purse of the seller agent. In this case the e-purse
acts as cash money, there is no need to ask for a bank certification. If the pay-
ment fails, then the agreement has to be cancelled, and the seller agent releases
the product. An e-purse is implemented by an additional agent that handles
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the amount of money of the e-purse, access privileges, deposit and withdrawal
operations.

In this scenario, the buyer agent can be either alone or composed of several
agents roaming the Internet simultaneously. It may be difficult or even impossible
for the user to contact the buyer agent or for the buyer agent to contact the
agents distributed world-wide. Indeed, a mobile IP scheme enabling to contact
mobile agents irrespectively of their position is difficult to consider when agents
neither know each other nor participate in the same application.

Electronic Market Place

Fig. 1. Market Place Example

This examples consists of two main Lana agents: the buyer and the seller
agent that work on behalf of the buyer, and seller respectively. Once both the
buyer and seller agents have reached the market place, a sequence of data ex-
change occurs through the message board (in the case where there is no error):
the buyer (seller) agent inserts a buying (selling) request respectively in the tu-
ple space. The buyer agent retrieves the selling request and proposes a contract,
which is accepted by the seller. The interaction ends with the payment, i.e., by
transferring money from the buyer e-purse to seller e-purse.

We will now consider three types of errors: system error, application errors,
network failures; and see how they can be handled within the current Lana
model:

— System error. The local or remote platform generates an error, e.g., the code
cannot be executed, the called agent has moved, etc.
— Local Application Errors. For instance, we can mention:
e there is no offer matching the request;
e there is a bug in the seller agent code: it is impossible to reach an agree-
ment or to access to e-purse;
e the buyer e-purse does not contain sufficient money;
e the buyer e-purse does not present sufficient privileges, e.g., a configura-
tion error does not authorize money to be withdrawn from the e-purse.
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— Distributed Application Errors. Several agents work cooperatively, e.g., to
buy several items of the same series. In the case of an error, there is a need
for a collective recovery of the error.

— Network Failures. There are communication failures between the buyer and
seller agent platforms, or between the agent platform and its user.

In the case of system errors, the local or remote Lana platform generates
an event, i.e., it inserts the corresponding tuple in the shared memory space.
Thanks to the key, the tuple is then retrieved by the agent that was waiting for
the corresponding operation.

In the case of application errors, e.g., there is an error during the payment
due to insufficient money, the buyer agent inserts a payment fail event, retrieved
by the seller agent that was waiting for the payment. The latter cancels the
transaction, and reinserts the selling request. Finally, the buyer agent informs
the buyer in the original platform that an error occurred during the payment, it
inserts the corresponding event in the original platform.

The case of distributed applications errors is the most interesting one. Indeed,
the problem here is to reach, even asynchronously, but necessarily, agents whose
location is not known. A possible approach to realizing this in Lana is for the
agents to agree upon a common platform where events, related to abnormal
situations, are stored. After that both the Buyer and the Seller agents leave an
additional assistant agent in this platform, whose role is to observe those events,
and to inform their respective agents.

Finally, the Lana model allows network disconnections to be handled in a
very similar way. Agents are informed of the failure through events, and either
wait for the availability of the connection, or continue their execution until the
connection is up, or definitely give up.

2.3 Analysis

Lana treats exceptions as the conventional tuples and offers basic primitives for
implementing exception handling. But we have found that there is clearly a space
for expanding these features to help application programmers in developing fault
tolerant applications in a safer and less error-prone way. First of all, Lana allows
exceptions to be left unhandled - which is clearly error-prone and can have serious
effects on system reliability. Secondly, this model mixes normal and abnormal
flows of control and code, and does not separate sufficiently the normal system
behaviour from the abnormal one - which is the main idea behind exception
handling [6] (as a matter of fact in their early work the authors of Lana stated
clearly [1] that exceptions should not be introduced as normal events). Thirdly,
the Lana model does not include any specific support for exception handling and
leaves all complicated issues with the application designers. These has several
serious consequences which may complicate system design and make it more
error-prone. One of the example is that to guarantee that the information is
delivered the producer should wait for the notification to be implemented at the
application level, in the code of both the producer and the consumer. Another
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example is that Lana does not provides any systematic ways for transferring
responsibility for handling exceptions from the producer of an event to some
other process/code. Moreover, this model does not introduce the concept of
exception context, which is crucial for any exception handling methodology -
which makes it impossible to understand who handles exceptions, when and if
they are handled at all. Too many responsibilities (and room for mistakes) are
left with application programmers. In addition to this Lana exception handling
does not support nesting, nor it supports cooperative handling that involves
several processes.

3 Exception Handling Model

In this section we discuss our approach to introducing coordination-based ex-
ception handling which specifically focuses on code mobility.

3.1 Requirements

Novel fault tolerance techniques to be applying in developing complex mobile
systems have to correspond to their specific characteristics. As our analysis in [4]
shows the main way of ensuring fault tolerance in such systems is by employ-
ing application-specific exception handling mechanisms. Among other important
properties these mechanisms should be light and flexible, they should allow for
dynamic adjustments and for autonomous (localized) handling of abnormal sit-
uations. These mechanisms should be suitable for open systems in which mobile
agents are to operate in unknown environments and be capable of dealing with
abnormal situations that are not known in advance.

3.2 Model

The first problem here is to stay within decoupled (asynchronous) communica-
tion model and at the same time to guarantee delivery of exceptions to handlers.
Only in this case we can guarantee that all exceptions are caught and after that
handled. Our idea is to keep using usual standard asynchronous ways of com-
munication (i.e. keys or events) but to make sure that, should an exception be
raised, the handler always exists in the location.

As depicted in Figure 2, the underlying idea here is that we assume that,
if an event is consumed by a program EventConsumer, and an exception E
is raised during processing of this event, then this event is the cause of the
exception, and such exception should be treated outside EventConsumer. One
possible solution is to allow only synchronous communication, in which case the
producer of the event, EventProducer would be the best handler. But if we want
to allow asynchronous communication and agent mobility we cannot bind the
producer. So the only possible solution is to create a new process H(E) to handle
the exception.
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Fig. 2. Exception Model

The specialized process H(E) is created when an exception E is signaled by
EventConsumer. In our approach any exception is a tuple of a special type:
there is always a process waiting to handle (i.e. to consume) it. Such handler
H(E), representing the exception context, is usually designed by the developer
of EventProducer but it can be designed by the designer of EventConsumer
as well. In the latter case either the handler provided by EventProducer is
ignored in runtime and only the handler supplied by EventConsumer is used, or
both handlers receive exception E (in which case they can decide to handle it
cooperatively). The handler process usually completes handling and dies. But
they do not have to. Generally speaking, they can be involved in further system
execution for as long as necessary.

In our approach each tuple T produced by EventProducer has a number of
exceptions declared in its signature: E1, .., En in addition to a set of parameters.
When T is put into a tuple space the system should have references to declarations
of n handlers: one for each exception. The handler process is created locally, when
an exception is signaled but it does not have to be always local: it can move to
better handle the exception. But it is important to always create it when an
exception is signaled. We believe that it would be wrong to make any existing
process to be a handler because there is no guarantee that it will handle the
exception without delays: it can move to another location before an exception
is signaled or it can be busy doing other job and because of the asynchronous
nature of communication may decide to handle it when it is too late.

Our scheme allows defining a process handling several (or, even, all excep-
tions) from the signature of T, or, even, from the signatures of different tuples.

One problem we are planning to address is: what happens if EventConsumer
moves to another location and signals exception E while continuing processing
the consumed tuple T in this location. We should be able to create handler H(E)
in the new location because this is where the exception tuple is put in the local
tuple space.
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To make our scheme even more flexible we plan to allow: an exception to be
propagated to several handler processes and the handler and the exception to
be dynamically associated (e.g. while inserting T into a local tuple space).

Another feature which would add flexibility to our scheme is to allow any
existing process, which is local to EventConsumer and to exception E, to handle
it together with standard handler processes. In particular, it seems to be useful
to allow EventProducer to join in the handling.

3.3 Market Place Example Revisited

We demonstrate our approach using the market place example introduced earlier.

Shared Tuple Space

Buyer Agent Buyer E-Purse Agent Seller Agent
verng StartPayment W g 9

_ = _ =
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= -1---% -—
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;

| ,epositMoney =
S\ —=" StatPayment ————=

_
MoneyTransfer

PaymentRecei ved_|

ContractConcluded /
| _

V|

Fig. 3. Example Revisited: Successful Recovery

In this particular scenario the Buyer Agent asks its E-Purse Agent to release
the money and provides the E-Purse Agent with a name of its proxy agent
(Handler1) that can be locally created when necessary to deal with exceptions.
The Buyer E-purse Agent raises an exception due to the fact that there is not
enough money in the e-purse for realizing the payment. The system then created
Handler1, which catches the exception. Handlerl accesses the bank, in order to
transfer money from the bank account to the e-purse (see Figure 3). It deposits
then the money on the e-purse, and starts again the payment procedure. The
money transfer from the Buyer e-purse to the Seller e-purse occurs now correctly.
The Seller e-purse agent then informs the Seller agent that the payment has been
realized, and the Seller agent finally informs the Buyer agent that the transaction
was successful.

Figure 4 shows a different case. Handlerl does not succeed in retrieving ad-
ditional money from the bank (the bank account is not sufficiently furnished, or
there are no privileges). Handlerl informs the Buyer Agent through a regular
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Fig. 4. Example Revisited: Failed Recovery

event about the insufficient money present in the e-purse. The Buyer Agent is
not able to cope with this situation, and raises an exception, caught by Handler2,
provided by the Seller Agent. Handler2 is in charge of cancelling the on-going
contract, it then informs the Seller Agent, that subsequently starts a new selling
request. As an alternative, we could also envisage that Handler2 creates an ad-
ditional Seller Agent that will start the same selling request, leaving the original
Seller Agent free to continue its work (e.g., buying a series of items). This is
particularly useful, when the original Seller Agent needs to move.
This simple example allows us to draw several conclusions:

— in Lana the interacting agents have to always wait until the end and until all
notifications have been received, but in our approach they do not because the
handler agents can handle problems (our solution allows us to build really
asynchronous systems);

— moreover, our approach allows agents to freely move to other locations and
start other work without waiting for all notifications - if an exception is
signaled in the original locality there always is a handler to deal with it
locally;

— in Lana all handling is a part of the Seller, the Buyer and the E-Purse Agents
but in our approach handling is implemented in separate handler agents -
our design is cleaner and we separate the normal code from the abnormal
one. Because of this, our approach is more flexible. We can, for example,
use different handler processes for different locations which the Buyer Agent
visits, while in Lana handling is hardwired into the Buyer Agent.

With respect to dealing with distributed application errors we will be extend-
ing our approach with the concept of the context (see the Discussion Section)

10
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but in Lana everything again should be developed explicitly by the application
programmers with no additional support from the system.

It is clear that any particular feature which our approach provides can be
implemented in Lana or any other coordinated models. The real question is how
expensive and error-prone these solutions are and what sort of support the pro-
grammers have to systematically employ exception handling. This is where our
solution provides a number of benefits ensuring, for example, that any excep-
tion is always treated. In addition to that our approach respects asynchronous
communication mechanism and does not restrict unnecessarily process mobility.

4 Related Works

To the best of our knowledge there are no general exception handling features
developed for mobile coordination-based environments meeting the requirements
above. There are only few relevant papers on exception handling in coordination-
based systems. Diaz et al [5] put forward a basic exception handling framework
for the logic channel-based coordination model. In this model when a process
is created a special logical channel is associated with it, so when the process
raises an exception it is propagated through this dedicated channel. The idea
here is that when a process is created a special process used for handling all
its exceptions is created and sent as well. This scheme is not oriented towards
mobile environments, it relies on asynchronous exception handling making no
difference between normal and abnormal events (we will discuss this issue in
detail later on) and, besides, associating handlers with the process processing
information appears to be very static. Two more issues with this approach are:
there is one handler for all possible exceptions raised by a process and there is
no support for raising exceptions in several processes.

Another relevant work, by Rowstron [9], considers fault-tolerance for dis-
tributed tuple space, in the framework of stationary agents. It introduces the
notion of ”mobile coordination”, where mobile is related to the movement of co-
ordination primitives, forming together a coordination operation, to the server
storing the tuple space. The operation is executed according to an all or noth-
ing semantics, which nevertheless allows intermediate tuples to be available in
the tuple space. Fault-tolerance for small segments of programs is then real-
ized by transferring the corresponding primitives, and associated state, to the
server. This approach does not enable the propagation of exceptions, in their
traditional sense, outside the coordination operation. However, the additional
notion of ”agent will” allows to perform some exception handling outside coor-
dinations. Wills are mainly used to cleanup the tuple space if an agent fails, and
are associated with a tuple space, and the same will is applied to all operations.

5 Discussion

In our future work we plan to apply the ideas discussed in the paper for develop-
ing a novel exception handling mechanism for Lana. One topic of our following

11
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work will be introducing rules for scoping to involve all processes from the same
scope in cooperative handling of any exception signaled by any of them. All
processes belonging to the same locality is the most likely candidate for intro-
ducing scoping rules but we are considering other ways of scoping as well. This
would resolve the following problem with the solution proposed in Section 3: we
implicitly assume here that the consumer always detects an error and signals an
exception before it produces any tuple or before it starts consuming the next
tuple - which is in effect a very strong assumption for many practical situations.
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Abstract. We believe the fundamental problem with distributed exception han-
dling is invoking the semantically correct exception handlers in al the distrib-
uted processes that are required to participate in the recovery. Existing distrib-
uted exception handling techniques emphasize raising the same exception in all
the required processes with a transaction-like program structure. As useful as
that is, there are many applications that do fit easily into that paradigm. A single
raised exception must be able to represent adequately all concurrently signaled
exceptions, and a transaction-like structure may be too rigid for an application.
We present the primitives and mechanisms for an abstraction called guardian
for exception handling in distributed systems that can overcome those limita-
tions. Using an example, we show how the guardian can be used to augment
and enhance an existing distributed exception model.

1 Introduction

This paper discusses the primitives and mechanisms of the guardian exception han-
dling model for distributed systems. The conceptual foundations of the guardian
model were presented in [6], and in [7] the initial set of guardian primitives was intro-
duced. In this paper, the full set of guardian primitives and mechanisms are described,
and an example using the guardian that shows how it can augment or enhance an ex-
isting distributed exception handling model is shown.

Exception handling in distributed systems differs significantly from sequential ex-
ception handling. In [9] two reasons are given: distributed systems need exception
handler communication and coordination, and multiple exceptions may be concur-
rently signaled. Concurrent exception models have the capability of handling concur-
rently signaled exceptions, and are based on exception resolution and a program
structure based on transaction-like semantics [1]. Exception resolution trandates or
maps concurrent exceptions into one exception (a resolved or concerted exception).
An exception that is to be signaled to the processes (the participants) of a distributed
application is called an external exception. An exception that is handled locally in the
process is an internal exception. Examples of concurrent exception models are CA
actions[9], Arche[3], OMTT [4], and conversations [1].
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Concurrent exception models assume that a semantically correct handler isinvoked
in each participant. To alow this, the exception israised in al participants, including
the signaling participant. Since a distributed system is asynchronous, it is possible for
one participant to have a different exception handler enabled than another participant.
Relying on handler communication to ensure the correct handlers are invoked may be
a highly complex task. To simplify this, concurrent exception models assume a pro-
gram is structured in such a way as to ensure that the correct handlers are invoked so
handler communication is not required. Typically, the structure is transaction-like that
has synchronized entry and exit points. Any external exceptions raised in a participant
are within that boundary. Because all participants are executing within the same
boundaries, it can be assured that the correct handler isinvoked in all participants.

The next section describes the limitations of the existing concurrent exception han-
dling models. Section 3 describes the programming primitives and mechanisms for the
guardian model. Section 4 presents an example using this model, and finally Section 5
concludes this paper.

2 TheProblem

Concurrent exception models have a defined behavior for concurrently signaled ex-
ceptions, and exception handlers coordinate not by direct communication, but by
having handlers for the same exception invoked in al the participants. However, there
are still three limitations with these models.

First, concurrently signaled exceptions are assumed to be related in some way so
that a meaningful resolved exception may be obtained. This is not always easy to do
[8]. Secondly, external exceptions are signaled explicitly from a participant, so excep-
tion conditions outside the participants may not be detected. Finaly, there is the re-
gtriction of a transaction-like program structure. Transaction-like structure is useful in
many applications, but there are also other applications that have an asynchronous
aspect to them, such as management or monitoring applications, where such a struc-
ture may be difficult to apply.

We believe the problem with distributed exception handling is invoking the se-
mantically correct handler in each participant. Determining the correct handler is the
main issue, and not the raising of exceptions. In the guardian model, determination of
the correct handler is by using the guardian to direct each process to a correct excep-
tion handler by raising in each process a possibly different exception and specifying
the context in which it should be handled by the process. This is different from the
approach of concurrent exception models, in which the same exception israised in all
processes that need to participate in the recovery.

The purpose of alowing different exceptions to be raised in each participant is to
allow the guardian to orchestrate the recovery action. A raised exception implies a
specific recovery action a participant is to do. For example, say there is a pipeline of
three processes A, B, and C. Should B fail, the guardian would signal to A an excep-
tion that its downstream neighbor has failed, and to C an exception that its upstream
neighbor has failed. With a guardian, participants are freed from the burden of main-
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taining any configuration information and relating it to a process failure to determine
the semantically correct recovery action. No transaction-like structure is needed for
the correct exception handlers to be invoked (though that structure may be useful for
other reasons).

3 The Guardian Model

The guardian exception handling model [6] [7] is based on the timed asynchronous
computation model [2], global exception handlers, separation of global exception
handling from the exception handling local to a process, and an extended fault model.
The guardian is a distributed global entity that orchestrates the exception handling
action by directing each involved process. The directing is by raising in a process an
appropriate exception, which may differ from the exception raised in another process.
Application defined recovery rules determine the exception the guardian raises in each
participant, which in turn causes the correct exception handler to be invoked. The
guardian model has three elements: the concept of an exception context, a global en-
tity called a guardian, and a set of guardian primitives that the participants use.

3.1 Exception Context

An exception context is an execution phase or region of a program. Contexts may be
nested by a process entering a new context reflecting the static structure of the pro-
gram (as nested blocks), or the dynamic function call sequence. Contexts are applica-
tion specified as a symbolic hame, and so they may have different meanings based on
the application. A context may be used to represent a number of different abstractions
such as an invocation stack frame, checkpoint, recovery block, transaction or conver-
sation context, a barrier synchronization point, or an assert point.

The raising context is the context a process is in when an exception israised in it.
A target context is the context that an exception is to be handled in. There is a re-
served context called Init, which is used as top-level context. Its purposeisto allow a
process to have a context before it defines one, and to have a target context to prevent
a process from handling an exception, such as a terminate exception.

The purpose of contexts is to provide a mechanism to invoke correct exception
handlers. Thisis done in two ways. First, when an exception is raised in a process, a
target context is specified in the exception object, since the raising context and the
target context may not be the same. Second, contexts provide a means to give a dy-
namic meaning to an exception based on the current program flow, similar to a dy-
namic call chain.

3.2 TheGlaobal Exception Handling M odel

The basic elements of the guardian model are shown in Figure 1. Each process, such
as P;, in the application is a participant. The guardian is logically replicated at all
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participant environments E; with a guardian member GM; as a co-process. The

guardian members form a process group implementing the global abstraction for its

guardian.

The members in this group communicate with each other using reliable group
communication primitives. Group messages are delivered and processed within time
bounds; if the bound is not met then the message is considered lost [2]. Groups allow
for reliable and totally ordered message delivery within the bounds and support virtual
synchrony (i.e., membership change messages are ordered with all other messages).
The guardian defines member ship exceptions, which indicate a change in the member-
ship of the guardian group. The guardian raises an exception when a participant joins
or leaves the activity.

The guardian supports global exception handling in the following manner:

1. Using the guardian method enableContext, a participant defines a context and the
exceptions that the context can handle. The guardian member for the participant
maintains a stack of these contexts and the related set of exceptions. When a
context is returned from, the participant invokes removeContext which pops the
last context from the stack. A program typically has a small number of contexts,
where each context represents a recoverable block, such as a try-catch. Each par-
ticipant may have a different context stack.

2. When a participant signals a global exception, it invokes a guardian method
called gthrow. The participant blocks in gthrow until an exception is raised. The
associated guardian member sends a message that represents the exception to the
other guardian members through the guardian group. If exceptions are signaled
simultaneously by multiple participants, then group communication orders the re-
spective messages for al guardian members

3. When a guardian member receives the exception message from its group, it
checks if its associated participant is suspended. If the participant is not, then the
guardian member suspends the participant. This ensures that al concurrently sig-
naled exceptions are known to the guardian.

4. To suspend a participant that supports interrupts, the guardian member interrupts
the participant, and the interrupt handler invokes a guardian method called
checkExceptionStatus. The method checks if there are any exceptions that have to
be delivered to the participant. If not, the method returns, otherwise the method
blocks until an exception is raised from it. No group communication is used for
the check. To suspend a participant that does not support interrupts, the partici-
pant periodically invokes checkExceptionStatus.

5. As each participant is suspended, the guardian assembles all the participant con-
text lists together. Once all participants are suspended, the guardian invokes ap-
plication-defined recovery rules, for example exception handling patterns [5].

6. The guardian provides to the recovery rules the exceptions signaled, and all con-
text lists. A matching rule defines, for each participant, the target context and ex-
ception to raise in that participant. The guardian members collectively raise in
their respective participants the exceptions defined by the rules.

7. After the exception is raised in a participant, exception handlers are searched in
the participant. Each handler is expected to invoke the guardian method propa-
gate, which returns to the handler whether it should handle the exception or
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if signaled exception is E then {
for each specified identifier expression P.do {
let P_ bethelist of participants satisfying P,
for each specified selection predicate Sdo {
let Psbethe subset of P, satisfying S;
for each participant pin Psdo {
someComputation();
/linsert exception object in Output Exception List
OEL .insert(p, Ex(Cp));
}
}
}
}

Fig. 1. Single exception rule structure

propagate it. The method simply compares the exception target context with the
handler’ s context.

The recovery rules may map a single signaled exception into a different exception
or target context on each participant. Typical exception resolution is possible by trans-
forming all the concurrently signaled exceptions into the same exception and target
context in al participants.

The guardian also supports the notion of an interrupt with the methods enableln-
terrupts and disablelnterrupts. It is assumed a guardian member may interrupt its
associated participant, and the participant invokes an interrupt handler that can query
the guardian to determine if the interrupt is from the guardian. If the interrupt is due to
the guardian, then the interrupt handler can signal an exception to the participant pro-
gram. Thisis similar to the Java model of interrupt using the interrupt method.

If a participant has interrupts enabled, then checkExceptionSatus does not block.
When a participant receives an interrupt, the interrupt handler invokes checkExcep-
tionSatus. If the interrupt is due to the guardian, then an exception message has al-
ready been sent, and checkExceptionSatus will throw the exception received. Should
a participant execute gthrow with interrupts enabled, then gthrow returns after sending
its exception message to the guardian. When an interrupt from the guardian occurs in
the participant, checkExceptionStatus is invoked as explained above that signals the
received exception.

3.3 Recovery Rules

A program extends the guardian with application-specific rules. The rules are logically
replicated with each guardian member. The rules mechanism has as its input all con-
currently signaled exception objects, and the context stack for each participant. The
rules mechanism outputs a list of exception objects: one object to be raised in each
participant that matches the rule. Each exception object contains the target context in
which the participant should handle the exception.

Participants are identified using their contexts rather than fixed symbolic names. A
participant identifier is a context list expressed as slash-separated context names. An
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if (Eisasubset of the signaled exceptions)
OSL .insert(exceptionResol ution(E));

Fig. 2. Concurrent exception rule structure

identifier represents a subset of participants whose current context matches the speci-
fied identifier.

A fully qualified identifier includes the entire context as the identifier, while a par-
tially qualified identifier is expressed as a regular expression of context names. For
example, a context stack C1 —C2 - C3 has a fully qualified identifier as C1/C2/C3.
Using apartialy qualified identifier allows greater flexibility in identifying a subset of
participants, e.g., */C2 matches all participants whose current context is C2.

There are two kinds of rules, one for single exceptions, and the other for multiple
concurrent exceptions. Rules are searched in lexical order, with concurrent exception
rules first. A rule for a single exception constructs a list of exceptions, one exception
object that the guardian will raise for each member of a set of participants.

The general structure of a single exception ruleisin Figure 1. For a given signaled
exception, one or more identifier expressions P, are evaluated serially. The list P_ of
participants is constructed for each P, by matching the context lists of the current set
of participants with P, For each selection predicate S, a subset Ps of P_ is computed
using S. Furthermore, for each participant in Ps, the guardian may perform some ap-
plication-specific computation to determine the exception to be raised in that partici-
pant. The guardian then adds that exception to the Output Exception List (OEL). In
Figure 1, for participant p an exception object of type E, with target context Cp is
added to thelist.

After the guardian has completed building the OEL by executing all applicable
rules, it raises each of the exception objectsin thislist in the correspondingly specified
participant. Each exception object specifies the target context in which the participant
should handle the exception.

For concurrent exceptions, the guardian provides flexible exception resolution that
can be used with existing exception resolution methods or new ones, such as the high-
est priority exception or to serially apply the concurrent exceptions to the sequential
rules. The application defines N levels of priority, with level 0 the highest priority.
Each exception that may be signaled is assigned a priority, with a default priority
being the lowest level (N-1). The conversation and Arche models would use only one
level.

When exceptions are signaled concurrently, the exceptions are first sorted by pri-
ority level. After the sort there is a vector of priority levels, with each level having a
set of signaled exceptions for that level. Each level, in priority order with level O first,
has the concurrent rules applied to the signaled exceptions at that level. Figure 2
shows the general concurrent exception rule structure. Note that E in Figure 2 is a set
of one or more exceptions, and all exceptions specified by E must be in the currently
signaled set of exceptions. A concurrent rule for resolved or concerted exceptions uses
avaue of E or null, since null isamember of al signaled exceptions sets.

The concurrent rule uses an application-defined resolution function that outputs
zero or more exception objects that are put on the Output Sequential List (OSL). As
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each priority level has the concurrent rules applied to it, the sequential exception ob-
jects from that level are appended to the OSL. When all levels have been processed,
there is one OSL that has all the exception objects in priority order that the sequential
rules are applied to serialy. To the sequential rules, each exception object on the OSL
appears as though an exception had been signaled by a participant.

The guardian defines a default rule of exception resolution by finding the root of
the smallest sub-tree that contains all the concurrently signaled exceptions. Thisisthe
same rule as conversations and CA actions use.

3.4 Guardian Model Comparison

As has been discussed above, the two main differences between the guardian model
and other modelsis that the guardian may raise different exceptionsin each participant
and a context is used to determine at what execution point a program is at. This has
several implications.

First, the guardian model is not meant to replace a program's structure. The
guardian model can be used to implement an exception model in a rules-based way.
For example, a context is not meant to replace a conversation, but rather can be used
to implement a conversation. Second, there is no known exception model that is suit-
able for all known exceptional conditions. A guardian allows the exception model to
be changed during a program to better match the program’s exception handling to the
current execution phase of the program. Third, a model implemented using the guard-
ian may be enhanced, such as with increased error detection capability (e.g., partici-
pant death or other system-types of exceptions). Fourth, a guardian is rule-based,
meaning the exception handling intelligence could be partially removed from a pro-
gram and placed in a system repository, particularly for conditions that require so-
phisticated actions. Programs that were not designed to have coordinated recovery
could through if the programs are using the same guardian. If some contexts and re-
covery actions can be standardized or predefined, then a program gets these behaviors
through the system, and so different systems can tailor the behavior. Fifth, exceptions
could be used to indicate non-error situations, such as warnings of abnormal behavior
that is not an error (such as an input being at alimit of the input’s range).

The guardian also has disadvantages. For contexts to be meaningful, a program
structure is needed that a context can be associated with. In order for different pro-
grams to use the same guardian concurrently or for system-defined guardian rules that
can augment a program'’s rules, the context names need to be well-defined so that the
guardian rules do not become confused.

4 An Example of Guardian Programming

The guardian model is not meant to replace existing exception handling models, but
rather to enhance them. An example of this is with the conversation model. The nor-
mal conversation model can only detect failures that are explicitly signaled by a par-
ticipant. For example, unexpected participant termination is not detected. Using the
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Guardian myG;
GuardianBarrier b;
Context c1 = new Context("Conv", Global Exception);
myG.enableContext(cl);
try {
myG.enablelnterrupts();
b.barrier(myG);
myG.disablel nterrupts();
dowork();
if (error)
myG.gthrow(new Global Exception(‘ Error’);
myG.enablelnterrupts();
b.barrier(myG);
return;
} catch(Global Exception ge) {
if (myG.propagate()) throw;
doCleanup();
}

Fig. 3. Conversation using a guardian

guardian to implement conversations, failures detected by the guardian fault model
(such as unexpected participant termination) are signaled as global exceptions auto-
matically. The guardian model can also sustain K of N failures at a synchronized entry
or exit point, while the conversation model can not. Lastly, implementing a related
model, such as CA actions or OMTT, is mostly accomplished by changing the guard-
ian rules.

Figure 3 shows how a guardian can implement a conversation. The conversation
entry and exit points are implemented using a barrier that has been guardian-enabled.
The enablelnterrupts method allows the barrier to be interrupted with a global excep-
tion. The barrier is modified to check for a global exception if it is interrupted. After
the barrier, disablelnterrupts is invoked to preserve the conversation semantics of
raising an external exception at exit points.

Each conversation is represented by an exception context. In Figure 3, the conver-
sation has the context Conv. If a nested conversation is used, then the nested context
simply has a different name, such as Conv2. The full context name is Conv/Conv2.

To see how contexts are used, say there are three processes P1, P2, and P3. All
three processes are in the outer conversation Conv, and P1 and P2 are in a nested
conversation Conv2. Should P1 signal a global exception, it should only be raised in
P1 and P2. When P1 signals the exception, it has a target context of Conv/Conv2.
Only P1 and P2 are in that context (P1 isin Conv), so the exception is raised only in
P1 and P2. The target context could also be specified as */Conv2 to indicate al proc-
esses that are in the conversation Conv2.

If the exception is unhandled in Conv2, then the guardian re-raises the exception
with target context Conv (the next enclosing context). It can be seen that now al three
processes will have the exception raised in them.

The guardian recovery rules for conversations use the default rules. Multiple concur-
rently signaled exceptions are resolved into one resolved exception, and each partici-
pant has the same exception raised in it as all other participants.

5 Summary and Conclusions

The conceptual foundations of the guardian model were presented in [6], and in this
paper we have presented the details of its programming primitives and its runtime
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execution model. To understand the limitations of the existing distributed exception
handling models, we have analyzed distributed exception handling requirements with
respect to sequential exception handling models. Three basic differences between
distributed and sequential exception handling are identified. This leads to what we
consider is the fundamental problem with distributed exception handling: each af-
fected process must invoke the correct exception handler.

We have shown how the guardian model for distributed exception handling ad-
dresses this fundamental problem using the concept of exception contexts and a set of
programming primitives supported by a global exception handler called the guardian.
We currently have a test implementation using multiple, distributed Java virtua ma-
chines. Future work includes incorporating the guardian in a Java-based agent pro-
gramming system, and formalizing the guardian model.
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Abstract. The development of modern software systems usually needs to inte-
grate autonomous component-systems which are developed independently from
each other. Examples of such component-systems include COTS components,
legacy software systems and Web Services. For developing this new kind of
software system, we need innovative software engineering approaches that rely
on the system's software architecture to achieve the desired quality properties of
the resulting system, such as fault tolerance. In this paper, we propose an archi-
tectural approach to the dependable composition of component-systems based
on composition contracts and an exception handling scheme which considers
the concurrent execution of architectural components.

1 Introduction

Modern software systems, such as e-commerce and e-banking, usually are developed
integrating component-systems, which are autonomous systems developed, main-
tained and concurrently operated by independent organizations. In a rapid changing
world, these new software systems should be easily adaptable to changes in the busi-
ness rules [6]. Moreover, many of these new software systems are becoming saf ety-
critical because financial loss and even life loss can result from their failure [1].

In general, no assumptions can be made about the internal design and implementa-
tion of a component-system. For instance, when integrating a web service [2] whose
actual implementation is dynamically bound at run-time, the only information avail-
able to the system integrator is the specification of the public interface. So, there are
no guarantees about the quality attributes of the actual implementation, such as its
correctness, availability and reliability. This implies that: in order to achieve quality
properties, such as adaptability and dependability, we should focus on solutions
mainly at the software architecture.

The proposed approach employs the C2 architectural style [4], which is a compo-
nent-based style directed at supporting large grain reuse and flexible component com-
position, emphasizing weak bindings between them. By architectura style we mean a
set of design rules that identify the kinds of components and connectors that may be
used to compose a system or subsystem, together with local or global constraints on
the way the composition is done [5].
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In this paper, we propose an architectural approach to the fault-tolerant composi-
tion of concurrent component-systems, based on composition contracts. A composi-
tion contract extends the concept of coordination contracts [6] to include an excep-
tion handling scheme based on Coordinated Atomic Action (CA Action) [3]. A
coordination contract is a connection that can be established between a group of ob-
jects through which rules and constraints are imposed on their collaboration, thus en-
forcing specific forms of interaction or adaptation to new requirements [6]. In es-
sence, a coordination contract consists of a prescription of coordination effects that
will be imposed on a collection of partners when the occurrence of one of the contract
triggers is detected in the system. Coordinated Atomic Actions (CA Actions) [3] isa
mechanism for structuring fault-tolerant concurrent systems that unifies the notions of
forward and backward error recovery into its exception handling schema.

The rest of this paper is organised as follows. Section 2 gives a brief overview of
how we have adapted the CA Action concept to obtain fault tolerance in component
integration. Section 3 provides an overview of the C2 Architectural Style. Section 4
presents a software architecture that uses composition contracts with exception han-
dling to build composite systems. Section 5 shows a case study illustrating the behav-
ior of a fault-tolerant system. Finally, section 6 summarizes the conclusions of this
work and discusses related work.

2 Exception Handling in CA Actions

A CA Action is designed as a multi-entry unit with roles which are bound to action
participants which cooperate within the CA Action. The action starts when all roles
have been activated and finishes when all of them reach the action end. If a partici-
pant raises an exception within a CA action, appropriate recovery measures should be
invoked cooperatively, by all the participants, in order to reach some mutually consis-
tent exception handling. A resolution scheme is used to combine multiple exceptions
into a single exception if they are raised at the same time. The participants may ini-
tially apply a forward error recovery strategy aiming to mask the exception and com-
plete the CA Action successfully, either with a normal result or a degraded (excep-
tional) one. If this initial strategy fails then the CA action should trigger backward
error recovery in their participants in order to undo the undesired effects. If the CA
Action cannot complete successfully but is able to restore its initial state, then the ac-
tion is aborted, otherwise it fails.

Composition contracts differ from CA Action in alowing the component-systems
to interact with external objects that are not transactional. This implies that a
composition contract will guarantee only atomicity and consistency of its services, not
embracing the full set of the ACID properties (atomicity, consistency, isolation,
durability) of a CA Action. Systems can be designed recursively using action nesting.
Fault tolerance features are always associated with such units confining all errors.
When an action is not able to mask an error an exception is propagated to the
containing action. This exception may be an abort exception, when the participants
are left in a state free of effects of the action, or a failure exception otherwise, when
the undo fails. In this last case the containing action is responsible for recovering the
system state.

67



ECOOP'2003 - EHOOS workshop

3 The C2 Architectural Style

In C2 architectural style, components of a system may be completely unaware of each
other. The components communicate only through asynchronous messages mediated
by connectors that are responsible for message routing, broadcasting and filtering.
Both components and connectors have a top interface and a bottom interface. Systems
are composed in a layered style. The top interface of a component may be connected
to the bottom interface of a single connector. The bottom interface of a component
may be connected to the top interface of another single connector. Each side of a con-
nector may be connected to any number of components or connectors.

There are two types of messages in C2: requests and notifications. By convention,
requests flow up through the system's layers and notifications flow down. In response
to a request, a component may emit a notification back to the components below,
through its bottom interface. Upon receiving a notification, a component may react, as
if aservice was reguested, with the implicit invocation of one of its operations.

4 The Proposed Architecture

The proposed software architecture is organized in three layers (Figure 1). The com-
putational layer encapsulates the service interfaces of component-systems, called par-
ticipant components. Examples of participant components include COTS components,
legacy systems and Web services. The coordination layer consists of a composition
connector that mediates the interactions between computational layer and the applica-
tion layer. The top interface of the composition connector, or basic service interface,
is the sum of al the participant service interfaces. The composition connector may
impose business rules to the basic service interface providing new composite services.
The bottom interface of the compasition connector, or composite service interface, is
the sum of the basic service interface and the new composite services provided by the
composition connector. The composite service interface also adds fault tolerance to its
new services. The application layer contains the components that implement the ap-
plication logic (client components) and that may use the composite service interface.

Computational Participant | Participant | Partici pantJ
Layer Component 1 | | Component 2| """ [ Component m
participant service interfaces
D R —I__bgs? service interface
Coordination —
Layer Composition Connector |

composite service interface

Application Client
Layer Components

Fig. 1. Software Architecture using C2 style

The composition connector is a C2 connector built from an interceptor component
and a set of composition contract components (Figure 2). A composition contract de-
fines a set of related composite services. In this context, a composite service specifies
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an action that may be required to add new business rules upon a service. The compos-
ite service can extends a single basic service or it can compose a more sophisticated
service, which defines a coordinated action of two or more participant components.
The composition contract components can be organized in various contract layers that
are connected by specialised C2 connectors. Figure 2 shows a composition connector
with two contract layers. The composition contract components are responsible for:
(i) to provide new composite services; (ii) to impose the business rules upon basic and
composite services; and (iii) to implement fault-tolerance for basic and composite
services. This is done by means of the fault-tolerant composition of one or more basic
services. The composition contract components of a contract layer can use composite
services provided by contract components located at upper contract layers, allowing
action nesting. The interceptor component is responsible for monitoring the events
flow at the basic service interface and activating the composition contract components
when needed.

[ Participant Connector

Interéeptor
Component

| basic servicesinterface
| | nterceptor Connector

Composition Composition Composition
Contract 2_1 Contract 2_2 Contract 2_3

| Contract Connector |
Composition Composition Composition
Contract 1_1 Contract 1_2 Contract 1_3
| Client Connector ]
composite services interface

Fig. 2. Basic Structure of the Composition Connector

4.1 The Composition Contract Component

A composition contract component implements a composition contract as a CA Ac-
tion relaxed in its transactional requirements over the participant components to guar-
antee the atomicity of the composite services. A composition contract is activated by
a notification of an event associated with a contract trigger. This notification is sent
by the interceptor component. The activation of a composition contract implies in the
implicit invocation of an associated composite service. The invocation of a composite
service normally results in one or more service requests accordingly with the coordi-
nation rules defined by the composition contract. The service requests can be concur-
rently executed. Moreover, they may activate composition contract components in-
cluded in upper contract layers, creating nested CA Actions.

When a composite service completes successfully it ends either with a normal noti-
fication or, if its result is degraded, an exceptional notification. If an exception is
raised by a requested service, the composition contract component collects the re-
sponses from the services and activates an exception handler component. The excep-
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tion handler component resolves the raised exceptions and coordinates the appropriate
recovery actions that should be taken by the participant components. If the excep-
tional condition cannot be masked, the composition contract component reacts with:
(i) an abort natification, if the participants are recovered successfully, or (ii) afailure
notification, if one or more participants are left in an inconsistent state.

The composition contract definition is shown in Figure 3a. The attributes clause
specifies the configuration parameters an instance of a composition contract. The co-
ordination clause specifies a list of interactions which defines how the participant com-
ponents cooperate to perform a particular composite service (Figure 3b). The condi-
tion after the when clause specifies the contract trigger for this interaction. The do
clause specifies a set of actions to be concurrently executed by the participant compo-
nents. The raises clause specifies the types of exceptions that may be raised during the
execution of the interaction.

contract <contract_name> { <interaction nane>:
attributes <list_of_attributes> when (<condition>)
coordination <list_of_interactions> do <set_of _actions>
end contract rai ses <list_of_exceptions>
(a) The contract definition (b) Theinteraction definition

Fig. 3. The composition contract definition

4.2 TheInterceptor Component

The interceptor component acts like a proxy object intercepting the messages sent to
the participant components. It is responsible for notifying the composition contract
components that a contract trigger was enabled. Currently, we consider that only ser-
vice requests enable contract triggers. These notification messages contain the service
request and the parameters of the composition contract being activated.

4.3 The Exception Handler Component

In our model, an architectural component can be a participant component, an intercep-
tor component or a composition contract component. It is composed of two subcom-
ponents: a NormalActivity component and an ExceptionHandler component (Figure 4).
The NormalActivity component implements the normal behaviour of an architectural
component, when no exceptions occur. The ExceptionHandler component is responsible
for: (i) handling exceptions raised by its associated NormalActivity component; and (ii)
providing handler services.

More specifically, the ExceptionHandler component of a participant component im-
plements handler services to undo operations that affect the participant's state. The
ExceptionHandler component of the interceptor component can handle system configu-
ration errors. The ExceptionHandler component of a composition contract component
coordinates the activation of handler services of the participant components. The Ex-
ceptionHandler component implements the exceptional contract defined for the compo-
sition contract (Figure 5). The ExceptionHandler component of a composition contract
tries to mask an exception and return the control flow to the NormalActivity component
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using a forward error recovery strategy. If this strategy fails the ExceptionHandler com-
ponent starts backward error recovery executing compensation action to undo unde-
sirable effects over the participant components, when possible

[ C2 Connector 3 |
Normal Activity
Component
[
| C2 Connector 2 |
[
Exception Handler exceptional contract <contract_name> {
Component attributes <list_of_attributes>
[ coordination <list_of_handl ers>
[ C2 Connector 1 | end contract
T
Fig. 4. Architectural Component Fig. 5. Exception Handler Component Definition
5 Case Study

This case study illustrates the behavior of a fault-tolerant banking account system ap-
plying the software architecture described in this paper.This case study integrates two
autonomous components. the Checking Account component and the Savings Account
component, which wrap existing (off-the-shelf) components providing operations to
withdraw and to get the current balance.

The system-specific business rules are enforced through a single composition con-
tract that is the FlexibleContract. The FlexibleContract tries to avoid overdrafts in the
CheckingAccoung using funds from an associated SavingsAccount, when needed.

Client Component|| FlexibleContract | Interceptor | Checking Savings
. Account Account
withdraw; ca, 100
withdraw, ca, 100 "
<
getBalance, ca getBalance, ca
- balance = 75 g
request « balance = 75 <
message withdraw, ca, 75
— > - >
withdraw, sa, 25 withdraw, ca, 75
notification . g withdraw, ca, Ok
withdraw, ca, Ok < —
message < withdraw, sa, 25
+— -
- AbortException, sa__ i« AbortException, sa
; resolveException
SawithdrawAbort, ca, 25 ¢ gayyithdrawAbort, ca, 25
SawithdrawAbort, sa, 25 s withdrawAbort, sa, 25 >
> .5 withdraw, ca, 25
A Overd AccountOverdrawn, ca,
AccpuntOverdrawn, ca, : g ccountOverdrawn, ca, ;4

Fig. 6. Sequence diagram for the scenario
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The sequence diagram in Figure 6 shows the processing of a request to withdraw
an amount of $100 from a checking account "ca" which is associated with a savings
account "sa"' by means of a flexible contract. Initially, the FlexibleContract component
checks the balance of "ca', which in this example is only $75. So, the FlexibleContract
tries to satisfy the original request by means of two concurrent withdrawals: $75 from
"ca' and $25 from "sa'. In this example the SavingsAccount component refuses this
second withdrawal and raises an AbortException. The FlexibleContract resolves the ex-
ceptions and sends a SaOverdrawAborted exception to both SavingsAccount and Checkin-
gAccount components. The SavingsAccount ignores this exception. The CheckingAccount
handles this exception with a self-invocation of a $25 withdrawal. This recovery ac-
tion leaves "ca' overdrawn. The Client component is notified of this degraded result
by means of an AccountOverdrawn exception that is propagated by the FlexibleContract
component.

6 Conclusions and Related Wor k

In this work, we propose an architectural solution for the development of dependable
software systems out of concurrent autonomous component-systems. This solution
favours the adaptability, extensibility and reliability attributes of the resulting system.
The concepts of coordination contracts and CA Actions were adapted to a service-
oriented approach applied to the system'’s software architecture.

The WSCA (Web Service Composition Action) concept also exploits the concept
of CA Actions to enable the dependable composition of Web Services [7]. The pri-
mary difference between our work and the WCSA concept is that our approach aso
includes concerns about coordination contract, which improves the adaptability, and
an architectural design to be applied to a more general class of service-based systems,
not only restricted to Web Services.

Similarly to our approach, Pires[8] proposes an architectural solution for providing
reliable Web services compositions using a layered architectural style. However, this
work only provides backward error recovery, not considering concurrent exception
handling.
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Error Recovery for a Boiler System with OTS PID Controller

Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky

School of Computing Science
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Newecastle upon Tyne, NE1 7RU, UK

Abstract. We have previously presented initial results of a case study which illustrated an
approach to engineering protective wrappers as a means of detecting errors or unwanted behaviour
in systems employing an OTS (Off-The-Shelf) item. The case study used a Simulink model of a
steam boiler system together with an OTS PID (Proportional, Integral and Derivative) controller.
The protective wrappers are developed for the model of the system in such a way that they allow
detection and tolerance of typical errors caused by unavailability of signals, violations of range
limitations, and oscillations. In this paper we extend the case study to demonstrate how forward
error recovery based on exception handling can be systematically incorporated at the level of the
protective wrappers.

1 Introduction

Although integration of Off-The-Shelf (OTS) components into systems with high dependability
requirements (including those that are safety-critical) is becoming a viable option for system
developers, care must be taken to avoid a deterioration in overall system dependability. OTS
components are often of a lower quality than bespoke components, may not have been specifically
intended for the environment in which they are to be employed, and may be poorly documented. These
factors all contribute to a higher risk of failure for complex systems employing OTS components.

It must be accepted both that OTS components will be employed in such systems, and that their use
will be a source of failure in spite of all efforts to improve the quality of OTS components and of the
system in which they are to be integrated. The solution we advocate is to employ specialised fault
tolerance techniques for integration of OTS components into complex systems.

1.1  Protective Wrappers

In previous work [1,7] we illustrated an approach to the development of protective wrappers, a bespoke
software module which intercepts all information going to and from an OTS item. This approach is
developed further in this paper using the same case study.

Fault tolerance techniques have three main phases: error detection, error diagnosis and error recovery
[5]. The first phase identifies an erroneous state; error diagnosis is then used to examine and assess the
damaged area, to enable it to be replaced by an error-free state during error recovery. We have
previously concentrated on detection and diagnosis, providing only limited recovery actions.

Component wrapping is an established technique used to intercept data and control flow between a
component and its environment [6]. A protective wrapper may detect errors or suspicious activities,
and initiate appropriate recovery when possible, and must be rigorously specified, developed and
executed as a means of protecting OTS items against faults in the Rest Of the System (ROS), and the
ROS against faults in OTS items. Sources of information for wrapper development include
specification of the OTS item behaviour, known “erroneous” behaviour of the OTS item, and
specification of the correct behaviour of the ROS with respect to the OTS item.

1.2 Case Study

The case study used in this paper concerns the development of a protective wrapper for an Off-The-
Shelf PID (Proportional, Integral and Derivative) controller. This case study is intended to illustrate
how the approach could be applied in practice, employing software models of the PID controller and
the steam boiler system rather than conducting a potentially risky experiment in a real-world

74



ECOOP'2003 - EHOOS workshop

environment. Use of such software models is an active area of research and development carried out by
many leading control product companies (including Honeywell [8]), and we use a third-party model of
a steam boiler in this case study. We believe that this decision adds credibility to our results. The model
simulates a real controller and steam boiler system, enabling us to investigate the effect of wrapping
with a representative model. In the course of our work we have extended the model by incorporating
protective wrappers.

1.3 Roadmap

The remainder of this paper is organised as follows. In the following section we describe the simulation
environment, the controller and the boiler models we are using, and our approach to monitoring the
model variables. Section 3 discusses the requirements for a protective wrapper to be developed and
outlines the causes of errors to be detected and tolerated at the level of the wrapper. The next three
sections discuss design and implementation of the wrapper to detect, diagnose and select an appropriate
recovery action for errors caused by unavailability of signals, violations of range limits, and signal
oscillations. Section 7 concludes the paper by discussing the generic error recovery strategy and the
possible effects of wrappers executing on the overall execution of the integrated system.

2 Simulation
2.1 Simulink

Simulink (Mathworks) [10] is one of the built-in tools in MATLAB, providing a platform for
modelling, simulating, and analysing dynamical systems. It supports linear and nonlinear systems
modelled in continuous time and sampled time, as well as a hybrid of the two. Systems can also be
multi-rate, i.e., have different parts that are sampled or updated at different rates. Simulink contains a
comprehensive block library of sinks, sources, linear and nonlinear components, and connectors to
allow modelling of very sophisticated systems. Models can also be developed through self-defined
blocks by means of the S-functions feature of Simulink or by invoking MATLAB functions. After a
model has been defined, it can be simulated and, using scopes and other display blocks, simulation
results can be displayed while the simulation is running.

Simulink provides a practical and safe platform for simulating the boiler system and its PID control
system, for detecting operational errors when boiler and control system interact, and for developing and
implementing a protective wrapper dealing with such errors.

Drum Level, Steam Flow, Steam O, set-point and bus
Pressure, Gas Concentrations and pressure set-point
Coal Feeder Rate

Control System

ROS

[ H———
Coal Quality

EEEm— ‘I Sensors I Inputs to OTS q PID controller
1 g P > .
Boiler (OTS item)
—_— System | Actuators | Outputs from OTS
Steam Load

A

Feed Water Flow, Coal Feeder
Rate and Air Flow

Fig. 1. Boiler System and Control System (including the PID Controller)
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2.2  The Structure of the Model

The abstract structure of the system we are modelling is shown in Fig. 1. The overall system has two
principal components: the boiler system and the control system. In turn, the control system comprises a
PID controller (the OTS item), and the ROS which is simply the remainder of the control system.

The ROS consists of :

o the boiler sensors. These are “smart” sensors which monitor variables providing input to the PID
controller: Drum Level, Steam Flow, Steam Pressure, Gas Concentrations and Coal Feeder Rate;

e actuators. These devices control a heating burner which can be ON/OFF, and adjust inlet/outlet
valves in response to outputs from the PID controller: Feed Water Flow, Coal Feeder Rate and Air
Flow;

o configuration settings. These are the “set-points” for the system: oxygen and bus pressure, which
must be set up in advance by the operators.

Smart sensors and actuators interact with the PID controller through a standard protocol. Simulink
output blocks can be introduced into the model in such a way that the variables of the MATLAB
working space can be controlled as necessary. Working with the Simulink model we were able to
perform repeatable experiments by manipulating any of the changeable variables and the connections
between system components so as to produce and analyse a range of possible errors that would be
reasonably typical for the simulated system.

2.3  The Simulink Model

The Simulink model (shown in Fig. 2) actually represents the OTS item as three separate PID
controllers that deal with the feed water flow, the coal feeder rate and the air flow. These controllers
output three eponymous variables: Feed Water Flow (F_wf), Coal Feeder Rate (C_fr) and Air Flow
(Air_f); these three variables, together with two external variables (Coal Quality and Steam Load)
constitute the parameters which determine the behaviour of the boiler system. There are also several
internal variables generated by the smart sensors; some of these, together with the configuration set-
points, provide the inputs to the PID controllers. Table 1 lists all of the variables used in the model.
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Fig. 2. Simulink Model of the Boiler System with PID Controllers
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2.4 Variable Monitoring

Simulink scopes and other display blocks enable us to develop modelling components that observe the
intermediate results while the simulation is running. In our experiments we can monitor and display a
total of 15 variables, comprising all of the variables listed in Table 1 (except for the two set-points),
plus three internal variables which represent two internal air flows and one internal steam flow. The
simulation time for all of our experiments is set to 12000 steps. Some monitoring results are presented
in Fig. 3. In particular, this chart demonstrates the behaviour of the three PID outputs and two external
inputs of the boiler system when at step 2000 the steam load is increased, and at step 5000 the coal
quality changes: in both these scenarios the boiler system returns to steady operation reasonably soon.

Table 1. Variables used in the model

Variable Representation Variable Representation
Coal Quality Coal quality, ton per hour D 1 Drum level
Steam Load Steam Load, fraction of pure S f Steam flow
combustibles

F wf Feed water flow P d Steam pressure / drum

C fr Coal feeder rate P b Steam pressure / bus

Air_f Air flow (controlled air) 02eco 02 concentration at
economizer

P_ref Bus pressure set-point COeco CO concentration at
economizer

02 ref 02 set-point NOxeco NOx concentration at
economizer

coal feFder rate

100 0.65
steam load \
g 90 - 0.64
E 80 - \
S coal quality r 0.63
8 70
"
S | r0.62 >
g % N X s
-3 50 4 air flow r061 &
o ©
3 40 L 060 8
o 30 -
[ 0.59
g 20— \
g 10 feed water flow L 058
0 T T T T T 0.57
0 2000 4000 6000 8000 10000 12000

Simulation Steps

Fig. 3. Normal Performance of the Boiler System with PID Controllers

2.5 Properties of the Boiler System and the PID Controllers

In this section we summarise the information which we collected to guide us in developing the
protective wrappers. The basic boiler specification provides information on steam flow, bus pressure,
output temperature and coal calorific value. As the OTS item (the PID controller(s)) is treated as a
black box, any information about its properties must be deduced from the interface or from relevant
sources where available. In an ideal world the system designer would have a complete and correct
specification of the boiler system, the PID controller and the ROS. Unfortunately, we only had access
to limited information about the boiler system and the ROS (which is typical for many practical
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situations). From an investigation of the boiler model and information acquired from all available
sources, we have formulated the following description.

Information from the documentation available to us is as follows:

Output temperature 540 deg C

Coal calorific value 16-18 Ml/kg

Steam load 50-125 ton/hour

Coal quality is measured as a fraction of pure combustibles (where pure = 1; actual value about
0.55-0.7)

e Three controlled outputs (F_wf, C_fr, Air f) are given as a percentage

Information obtained by analysing the interface and by investigating the simulated model:

e Set-point of bus pressure ranges from 0 to 20 (usual value about 9.4)
e Set-point of O2 concentration at economiser ranges from 0 to 0.1 (usual value about 0.03)
e Internal variables input to PID controllers:

e Drum level: output value between -1 and +1 (usual value close to 0)

e Steam Flow: 0 to 125

e Bus pressure: 0 to 20

¢ O2 concentration at economiser: 0 to 0.5

3 Requirements for a Protective Wrapper

In the previous section we presented an outline characterisation of the boiler system, as deduced from
the model and other sources. In the following sections we consider the errors which could arise from
integrating an OTS PID controller in the system, in order to derive requirements for a protective
wrapper. We make the following assumptions:

e The value of each variable can be checked instantaneously through microprocessors. In particular,
we assume that the values of input and output variables of the PID controller are available
instantaneously. This (highly) simplifying assumption enables us to illustrate the method for
protective wrapper development without regard to issues relating to response times.

e The wrapper program can be inserted into the control system, either by a partial hardware
implementation which intercepts the physical connections, or purely in software. There are, of
course, significant issues involved in deciding on the implementation of a protective wrapper, but
we do not address these in this paper.

In order to clarify the requirements for a protective wrapper, it is necessary to form a view of what the
PID controller and the ROS should, and should not, do at the interface between them. This view can be
formulated as a collection of Acceptable Behaviour Constraints (ABCs) [7] defined from the
perspective of the systems integrator. Once defined, these ABCs can be thought of as contracts [11]
which a system designer could use as the basis for defining a protective wrapper, which can then
employ conventional mechanisms for error detection, containment and recovery [2].

4 Safe Boiler Operation

Many aspects of the operation of the boiler and control system, such as the flow of gases, fuelling,
pressures and levels, could lead to a failure of some type. However, some features are much more
significant in terms of safety; in a steam boiler, the drum level is a key parameter. This parameter
represents the quantity of water in the boiler more accurately than a direct measurement of the water
level, due to changes in mass caused by differences in temperature. By monitoring and controlling the
drum level we can maximize steam quality and maintain the proper water quantity to prevent damage
to the boiler. Too low a level could expose the water tubes to heat stress and damage; too high a level
could allow water to go over the steam header, exposing the steam turbines to corrosion and damage
[12, 13]. Steam pressures on the drum and the bus are the two other key variables, since they indicate
the balance between the supply and demand for steam. The consequences of excessively high steam
pressures are obvious and explosive. Thus, any deviation from normal values of steam pressure and
drum level must be corrected immediately, whereas abnormal values of the other variables can be
tolerated for a time period (which must be defined by the system designer).
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We classify the detectable variables into two loops, the control loop and the safety loop, which operate
as follows:

e an alarm from the safety loop will shut the system down;
e alarms from the control loop are processed on-line and either resolved or, if this is
unsuccessful, the safety loop is triggered.

The wrapper envelopes the PID controllers as shown in Fig. 4: it monitors the values of variables
which go into and come out from the PID controllers. Three variables — the drum level and the steam
pressures on the drum and bus — are classed as belonging to the safety loop, and all other variables
(PID outputs to the boiler (via the ROS), set-points and other input variables) belong to the control
loop.

Variables from ROS Wrapper
(including drum level and
steam pressure)
PID controller(s) PID outputs to ROS

Set points

Fig. 4. Variable categories around the PID controller(s)

5 Error Recovery

Error recovery transforms a system state that contains errors into an error free state. The transformation
typically takes the form of either backward or forward error recovery [2]. Backward error recovery
returns the system to a previous (assumed to be correct) state; typically, the techniques used are
application-independent and often operate transparently for the application (e.g. atomic transactions
and checkpoints). Forward error recovery aims to move the system into a correct state using knowledge
about the current erroneous state; this recovery is application-specific by its nature. The most general
framework for achieving forward recovery is exception handling [3]. It is not difficult to see that
backward error recovery is not generally applicable in dealing with OTS items [4].

Protective wrappers offer a structured approach for incorporating fault tolerance measures in systems
with OTS items. In previous work [1] we demonstrated how error detection can be developed in a
wrapper by cyclically checking for each type of possible error identified during the analysis phase. We
characterise these errors into three distinguishable types: (a) signal not available, (b) signal violating
specifications, and (c) unacceptable signal oscillations. When the wrapper detects an erroneous
situation it immediately initiates recovery action by classifying the error and invoking a corresponding
exception handler. Three possible recovery actions are suggested here.

e Handlerl:
- Reset the signal to a standard normal value and send an alert to the operators.
e Handler2:
- Wait At, if error resolved, take no action;
- Otherwise, send an alarm to the operators and wait AT, if error resolved, take no action;
- Otherwise, invoke handler 3.
e Handler3:
- Shutdown the system and send an alarm to the operators.

In Handler2, the delay times At and AT would be determined by the wrapper designer after consulting
the system specification. In the Simulink model we took At as 500 steps and AT as 1500 steps,
representing reasonable values for a genuine industrial application.

Analysis of the error types for different signals then enabled us to define a recovery strategy, which is
discussed in the following subsection, and then illustrated in Fig. 5.
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5.1 Recovery Strategy

In the case of an erroneous situation detected for a set-point value, whether it is missing, out of
specification or oscillating is of secondary interest. The wrapper is aware of the appropriate range of
set-point values, and Handler!l provides appropriate recovery by forcing the input to a suitable value,
and alerting the operators (since the mistake could be theirs, or an internal corruption).

The situation is rather different when a PID output value is detected as being erroneous, but the same
response can be made; either by adopting standard operating output values, or by storing a recent
history and using a smoothed average, the wrapper can apply Handler1 to impose a valid output signal
which should result in stable, though suboptimal, performance from the boiler system. It would be
possible to differentiate between the three error types in terms of determining the signal value to be
imposed, but we have not exploited this in our simple demonstrator.

Now consider inputs to the PID controllers which are not set-points, and are not in the safety loop.
When one of these is detected as erroneous there is little point in feeding a fixed value to the PID, since
this will not reflect the actual conditions monitored by the ROS. However, given that there is no
immediate safety concern, the optimistic strategy of “wait and see” may be successful; indeed for a
short interval it may not be appropriate even to alert the operators, since the phenomenon may be
completely transient in nature (it would, of course, still be logged for an off-line report). If the problem
persists an alarm report to the operators may enable them to cure the problem, but if not an eventual
shut-down is inevitable. So the wrapper can deploy Handler2; again, although differentiation of the
response in line with error type is possible, we have not exploited this option.

Lastly, consider the variables in the safety loop: drum level, drum and bus steam pressures. Detecting
an erroneous condition on one (or more) of these variables implies a risk to safety, and the natural
response is to shut the boiler system down, despite the economic consequences. Handler3 provides this
response, but to illustrate error category differentiation in our model we invoke Handler2 in the
particular case of an oscillating value. The justification is that although a missing signal value or an out
of specification value indicates a clear and present risk of accident, an oscillating value within
specification does not necessarily pose the same immediate threat — the oscillations may die out or an
operator response could stabilise the situation. If the oscillations persist then Handler3 will still be
brought into play. Of course, in a real boiler system this strategy would only be acceptable if justified
by a safety case.

PID outputs and P! Handlerl
Control loop set points
Inputs to PID ”| Handler2

Drum level and /: Handler3

steam pressures

Safety loop

Fig. 5. Recovery action implemented by exception handlers

5.2 Exception Handling

When any of the errors above is detected an exception is raised. Error diagnosis is performed to select
the appropriate handler, depending on which variable caused the exception to be raised. The diagnosis
is straightforward for variables in the control loop: in the safety loop, we differentiate between error
categories.

Errors detected by the protective wrapper can be caused by malfunctioning of the OTS item, by faults
arising in the ROS, or by misinterpretation between the OTS item and the ROS (Fig. 1). In the PID
case study considered here, the exception handlers implemented in the protective wrapper always act at
the level of the integrated system, which constitutes the exception handling context [4]; they can send
an alert or alarm signal to the operator, replace an erroneous value with an alternative “normal” value,
await a natural rectification, or (when safety requires it)) shut the system down.
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Clear separation of the normal and abnormal system behaviour by employing exception handling in the
wrapper facilitates the integration of the OTS PID into the composite system [4].

6 Implementation of the Recovery Actions in MATLAB

This section illustrates the operation of recovery when an error occurs, with the wrapper implemented
in the MATLAB model. The example presented below applies error recovery by invoking Handlerl.
The error was introduced by artificially simulating an incorrectly valued pressure set-point. At step
5000 the operator “accidentally” recalibrates the pressure set-point to be 94 instead of the normal value
of9.4.

Fig. 6 shows the boiler system behaviour with no wrapper protection; note that the bus steam pressure
is superimposed over drum steam pressure, so only one pressure variable is actually displayed.

The first chart of Fig. 6 shows that the faulty pressure set-point results in a huge drop in the drum level
followed by a peak at too high a value before returning to a level close to normal. Similarly, the three
PID outputs shown in the second chart jump up beyond their specified levels after step 5000 but return
to normal performance by step 7000. Very much more serious is the steam pressure, which the first
chart shows rising and remaining at an excessive level.

Fig. 7 shows the behaviour of the boiler system with wrapper protection active. The wrapper detects
the incorrect value of the set-point and invokes Handlerl. Consequently the set-point is very quickly
corrected, and the impact on system behaviour and on the other variables is greatly reduced. From the
two charts in Fig. 7 we see that although there are some alterations to the variables when the error
occurs, the changes are actually quite minor, and lie within the range of the specifications for the
system.
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Fig. 6. Erroneous pressure set-point — boiler system with no wrapper. Drum level and feed water
flow are outside permitted ranges: steam pressure rises to an excessive level.
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7 Discussion and Conclusion

7.1 Generic Error Recovery Strategy

Since an OTS item that has been integrated into a system is treated as a black box, only the inputs to
and outputs from the OTS are available to be monitored for error detection. The inputs in a control
system can be partitioned into two groups, where the first group consists of configuration variables
(often under operator control as set-points), while the second group provides dynamic status
information from the system under control. A wrapper providing protection in the system can monitor
these two groups of inputs, and the outputs, and can attempt to distinguish different categories of
erroneous behaviour. As three simple base categories we proposed: missing value, out of range value,
and oscillating value.

In response to a detected error situation, over these groups of variables and categories of error, the
protective wrapper can apply an exception handling framework to attempt to recover from the error.
Simplistic generic recovery strategies that we have considered are: do nothing, alert the human
operators, change variables to normal values, and stop the system. In our boiler system example we
decided that erroneous outputs from the OTS could be over-ridden by the wrapper; in effect, the
wrapper will take over the role of the OTS in erroneous situations, but can only provide a standard set
of normative outputs. In the same way, the wrapper can over-ride configuration variable inputs to the
OTS, particularly when these are input set-points. Our Handler! is used to over-ride erroneous values.

We need to analyse in more detail the other input variables delivered to the OTS by the ROS, since
forcing a change here could only have a very indirect influence on the variable itself, via the OTS and
its outputs back to the controlled system. One important aspect is with respect to safety and we used
this to apply a hierarchy of recovery. For variables with a direct impact on safety we “recover” by
shutting the system down (Handler3); for other variables, not in the safety loop, we first wait to see if
the error is transient, then to see if human intervention will achieve recovery, and if that too is
unsuccessful then the system must be shut down in any case (Handler2).

Wrapper design in any specific case would proceed by analysis of the state space of variables, the
errors that could be detected, the damage assessment that could be conducted, and the recovery
strategies that could be devised, bearing in mind the implications on system operations from both a
mission (economic) and a safety perspective.

7.2 Scope of the Wrapper

The essential characteristic of a protective wrapper is that a// inputs to and outputs from the wrapped
component are accessible to and modifiable by the wrapper. It might be argued that no other system
variables should be accessible to the wrapper, since otherwise the intuitive image of “wrapping the
component” would be distorted. We feel this is unnecessarily restrictive. If the system designer
believes that improved performance of the wrapper can be achieved by utilising information from
elsewhere in the system this should not be prohibited by an artificial limitation. When the wrapped
component is an OTS item it may be very unlikely that the wrapper could make any effective use of
internal state information within the OTS component, but valuable insight may perhaps be gleaned
from variables in the ROS that are not visible to the component. An example of this is present in our
case study. The drum steam pressure is not actually utilised by the PID controller (although it is made
available), so it is debateable whether or not it constitutes an input. We gave the wrapper access to this
variable without hesitation, since we suspect that any practising engineer would do the same.

7.3 Complexity of the Wrapper

A wrapper inserted into a system as a protective component performs an important role in improving
the reliability of the integrated system. In discharging this role it is clearly essential that the wrapper
does not itself contribute to an increase in failing behaviour from the overall system. Ideally, the
wrapper should introduce no faulty behaviour itself, and should capture and rectify all faulty behaviour
it encounters. Perhaps the best general guidance here is that the most reliable designs will usually be
those that are simplest. The OTS PID controllers may, of necessity, involve highly complex algorithms
to achieve the optimised boiler performance that is their goal. But in designing an effective wrapper we
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are likely to find that a simple and effective recovery strategy will outperform something overly
sophisticated. First, a simple design is more likely to be implemented correctly, and second, a more
complex strategy may have unforeseen interactions with the control environment and these could
detract from effectiveness.
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Fig. 8. Comparison of effects on performance of boiler system with two kinds of wrapper designs

Fig. 8 shows a comparison of the impact on two of the variables in the safety loop for the boiler
system, with two different wrapper designs responding to the situation described in section 6 (the
pressure set-point changed from 9.4 to 94 at step 5000). One wrapper applies recovery by using
Handler1 to reset all three PID outputs to standard values, while the other wrapper only resets the feed
water flow and air flow, leaving the coal feeder rate at its computed value. We can see from Fig. 8 that
the more simplistic strategy of only changing two of the variables leads to a swifter and more stable
recovery.

This paper has summarised our recent work in the development of protective wrappers as a structured
approach to providing error detection and recovery in systems utilising OTS items. This approach
embodies error classification and corresponding recovery strategies implemented within an exception
handling framework, building on the structure and error detection issues considered in earlier papers
[1,7].
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Abstract Reliability and fault-tolerance raise new issues in modern software architectures
(such as component based architectures or multi-agent systems) as they aim at integrating
separately developed software entities to build large-scale systems. In this paper, we study
existing exception handling systems associated to the various component models that can
be found in java-based platforms. This includes components having contract-based or event-
based interaction schemes and synchronous or asynchronous communication schemes. We
then focus on what we consider to be the most problematic issue: exception handling for
asynchronously communicating components. We then present four qualities we think an
EHS for a CBP should have and that we will consider as requirements for future work on
designing an EHS that fulfill them.

1 Introduction

Modern ways of building applications require new means of software engineering: it is now easier
to reuse existing pieces of software and integrate them to build complete applications. Component-
based platforms (CBPs) [24,11,15] or multi-agents systems (MAS) [4] allow to build such appli-
cations with separately developed software entities. We believe that this reuse and integration
process raises new reliability issues and that reliability becomes a more and more critical as sys-
tems get larger. In our previous work, we have studied exception handling in MASs and have
proposed an exception handling system (EHS) dedicated to MASs [19]. In this paper, we address
exception handling in CBPs and focus on what we consider to be the most problematic issue:
exception handling for contract-based, asynchronously communicating components.

The remainder of this paper is organized as follows. Section 2 presents our study of exception
handling in various existing CBPs. It introduces three categories of components and examines their
particularities regarding exception handling. Section 3 focuses on a particular category of compo-
nents (contract-based asynchronously communicating components) for which exception handling
is particularly difficult and presents what we think to be the requirements that an EHS dedicated
to such components should fulfill. Section 4 concludes and presents work in progress: how we are
transposing and adapting our previous work on exception handling in MASs to provide a fully
functional EHS for J2EE message-driven beans.

2 Exception handling in component-based platforms

Our study of exception handling is based on three kind of components that can be found in Java-
based platforms (session or entity beans, message-driven beans and JavaBeans). They are well
known, globally representative of the various kind of components available in existing operational
platforms, and their open implementation makes it possible to freely experiment.

2.1 Component categories

Components can be distinguished by (among other criteria non meaningful here) the way they
interact and communicate.
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Interaction schemes: main interaction modes are “Contract-based” and “Event-based”.

— With Contract-based interactions (cf. Fig. 1a,b), components send requests to other compo-
nents (acting as service providers) and expect answers in return as specified by component
software contracts [13,12]. In this paper, we consider that requesting a service from a com-
ponent triggers the execution of the corresponding activity in the concerned component.

— With Event-based interactions, components are more loosely coupled and interact via an event
dispatcher that communicate events emitted by a component to those registered as its listeners.
(cf. Fig. 1c). In this context, the emitting component does not know which components listen
to its emitted events and does not expect any answer.

Communication schemes: components may communicate synchronously or asynchronously.

— With synchronous communications, service callers are blocked until callees reply. Only a single
execution flow is executed at a given time: there is no concurrency (Fig. 1a,c).

— With asynchronous communications, request emission is non-blocking. Thus each service re-
quest triggers this creation of a new thread to run the corresponding activity (cf. Fig. 1b).
This communication means is very flexible and suits particularly well applications in which
QoS policies have to be implemented (eg. «provide a result once a certain QoS [6,26] level has
been reached» or «providing the best result obtained before a specified delayy).

Event

Client Callee Client Middleware MDB JavaBeanl . JavaBean2
Component Dispatcher
RMI m() Event
T = return [—
Co ! ! Event
Standard L - T retum
response [:l return
L Shared
Object
(a) Contract-based interactions (b) Contract-based interactions (c) Event-based interactions _
using synchronous communications using asynchronous communications using synchronous communications

Figure 1. Java components interaction and communication Schemes

Regarding this classification, we found three kinds of existing components:

— CS components: contract-based interactions with synchronous communications,
— CA components: contract-based interactions with asynchronous communications,
— E components: event-based interactions with synchronous communications.

2.2 Examples of Java components

Java Beans [23] are E components (cf. Fig. 1c) and are conceptually similar to Microsoft Active/X.

Other examples come with J2EE:

Session and entity beans are CS components which communicate via middlewares (RMI or
CORBA). The middleware ensures packaging, transport and unpackaging of both method calls
and results exchanged between remote components.

Finally, message-driven beans (MDBs) are CA components which communicate via messaging
protocol called JMS (Java Messaging Service)[21,22]. A MDB which receives a JMS message
executes the corresponding activity in a dedicated thread: this allows MDBs to concurrently pro-
cess various activities. When a callee needs to return something to its caller, if the caller is not
a component that can receive JMS messages, they have to use a shared object (cf. Fig. 1b) as a
temporary repository. Otherwise, the callee can send a new JMS message to give the answer, thus
implying the creation of a new thread.

JMS also allows to broadcast messages to a set of components thanks to the notion of topic
(to be compared to object groups [14] which allow to gather a group of objects which can be seen
and addressed as a unique entity). In JMS, a message sent to a topic is broadcasted to all MDBs
which subscribed to the given topic but the sender is aware of neither the identity nor the number
of receivers.

85



ECOOP'2003 - EHOOS workshop

Contract-based interactions Event-based execution interactions
Synchronous communications J2EE (RMI, Corba) JavaBeans, ActiveX

| Asynchrnous communications | J2EE (JMS) none identified

Figure 2. Categories of components

2.3 Exception handling

This subsection describes how exceptions can today be signaled and handled for the three com-
ponent models. Let us briefly recall that exception signaling [5], is a mechanism used to notify
undesirable situations that hamper the standard execution of a program to continue. When an
exception occurs, reliable software is able to react appropriately in order to continue its execution
or, at least, to interrupt it properly while preserving data integrity as much as possible. An ex-
ception handling system (EHS) [3,5,10,13,27] offers control structures enabling developers to
define program units (e.g. the source code of a procedure[10], a class definition [3]...) as protected
by a set of exception handlers in order to capture exceptional situations that may be signaled
in these protected regions. Each handler is defined to capture occurrences of a given exception
type. The signal of an exception provokes the interruption of what is currently being executed and
the search for an adequate handler. Handler search mechanisms are mostly based on Goodenough
proposal [5] (eg. in C++ and Java) in which exceptions are propagated through the execution
history. From a component point of view, such a mechanism would propagate exceptions signaled
by component activities to their corresponding clients which would therefore be able to handle
exceptions in the context of the failed service calls.

Exception handling for CS components (eg. session beans): their specification [20] and
our experiments on the JOnAS platform [1] show that exception handling is achieved through
standard Java control structures (¢ry/catch, throw. ..). The middleware (RMI or CORBA) enables
to transparently use server components as Java objects: the middleware abstracts distribution (cf.
section 2.2) for standard execution as well as for exception handling as components use a proxy
representation of remote components. This EHS seems to satisfy developers needs as it adopts the
behavior of standard C++/Java languages EHSs which propagate exceptions through execution
history. Thus, context-sensitive exception handling is possible as shown in figures 3 and 4a.

// A component invoking the buy method // Remote Business method implementation.
through RMI public void buy (int s) {
try { if (stock>=s) {
utx.begin(); // Starts a first transaction newtotal = newtotal + s;
tl.buy(10); //request on the bean return;
utx.commit (); //Commits the transaction }
} else
catch (LimitedStockException exc) { throw (new LimitedStockException (stock);)
int n = exc.getMessage(); }
println("Buying only" + n + "units");
tl.buy(n);

}

Figure 3. Example of method invocation with RMI

Exception handling for E components (eg. Javabeans): If an event emitted by a component
(Javabeanl) leads to the signal of an exception in another component that cannot catch it, the
exception is signaled to the event dispatcher (cf. Figure 4c). This event dispatcher can only gener-
ically handle the exception without propagating it to Javabean! (it just prints a stack trace) [23].
Thus, the exception cannot be propagated to the emitter’s context. Such isolation of components
concerning exception handling is coherent with the interaction scheme of these components: when
notifying an event E components expect no response, either normal or exceptional (cf. subsection
2.1).

Exception handling for CA components (eg. MDBs): According to JMS specification [20]
and to our experiments on the JOnAS platform, exception handling support in MDBs is limited:
an error during a JMS message send can be notified to the sender but an exception signaled
during the execution of the corresponding activity cannot be propagated to its caller. Indeed, an
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Figure 4. Communications in presence of exceptions

exception signaled in one the activity of a MDB without being handled locally is not propagated
to the calling context. The only mechanism provided to allow the programmer to detect these
situations is that the message that initiated the activity is redelivered (with a flag set to true)
to the MDB in which it is executed (cf. Fig. 4b). Thus, to differentiate received messages from
exception notifications, the developer has to test (for each message delivery) if the message is
redelivered or not (cf. Figure 5). From our point of view, the handling of exceptions in the CA
components we studied is too poor because:

1. Exceptions are not propagated through the execution history. It is therefore not possible to
define context-sensitive treatments in handlers. Handler can only be generic and be used, for

example, to display error messages (cf. Fig. 5). This issue will be developed in section 3.1.

2. There is no means to coordinate concurrent activities of components, and, thus, no exception
coordination. For example, when an activity which requested services signals an exception, it
should be possible to terminate the pending services it requested. This issue will be developed

in section 3.2.

3. There is no means to concert exceptions that occur concurrently. This lack makes it impossible
to correctly manage situations where multiple exception signals reveal a unique problem. It
also hampers the programmer’s capability to provide QoS policies (for example, he/she cannot
distinguish under critical from critical exceptions). This issue will be developed in section 3.3.

public void onMessage (Message message) {

// Exceptional execution

try |

// The programmer tests if the message has been redelivered
if (message.getJMSRedelivered()) {
// The programmer handles the exception without information
// about the execution context in which the exception has been signaled
System.out.println("Error while handling" + message);

return;
}
}

catch (Exception ex)

//Standard execution

try { ...}

catch (HandledExceptionType ex)

}

{ System.err.println(ex.toString());}

{ System.err.println(ex.toString());}

Figure 5. Example of exception handling in a MDB

Synchronous communications

Contract-based interactions

Event-based execution interactions

Typical EHS : satisfying

Generic EHS: isolated components

| Asynchrnous communications |

dedicated EHS : unsatisfying

none identified

Figure 6. The 3 components categories
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3 Requirements for exception handling in CA components

As shown in the previous section (cf. Fig 6) CA components (such as MDBs) are the most prob-
lematic when exception handling is concerned because of asynchronous calls. This section aims at
presenting the requirements concerning what we think should happen (and which extra concepts
will have to be correctly managed) in situations in which an asynchronously invoked service cannot
be fulfilled because of the occurrence of an exception.

3.1 Need for contextualization respect

When a called activity signals an exception it cannot handle, its calling activity is the best
place where to handle this exception properly: it is the only place where the objective
targeted by the corresponding service call is known and thus the best place to program what
should be done in case of a defect. We thus believe that the software contract is to be respected
in the case of exceptional responses as it is for normal ones in order to enable context-sensitive
treatments of exceptions. Unfortunately, this behavior is not always adopted for CA components
(cf. section 2.3) even if CBPs provide dedicated EHSs.

Alternative propositions[25,9] exist that do not address this problematic because of their cen-
tralized aspects. For example, [2] proposes a transposition of the supervisor model which its authors
previously proposed in the framework of MASs [8,9]: it suggests the use of an EHS using sentinel
components to detect and handle components failures. Propagating exceptions to such dedicated
entities does not provide the capability to the write context-sensitive handlers and, thus, limits
treatments in handlers to generic context-independent reactions (eg. error message display). More-
over, the centralization of the handling of exceptional events may affect QoS because it may cause
bottlenecks which can slow down the whole system and decrease its reliability [19].

3.2 Need for coordination tools

Efficiently handling exceptions in systems that use asynchronous communications implies the
definition of means to manage activities cooperation. [18,16] provides a classification of three
types of concurrency and studies their impact on exception handling:

— Disjoint concurrency appears in systems that provide no coordination of concurrent activities.
For example, there is no system level means to coordinate MDB activities when exceptions
occur (no global activity is considered for such components).

— Competitive concurrency appears in systems that provide mechanisms to avoid inconsistencies
caused by concurrent uses of system resources (generally thanks to lock-based mechanisms).
Such mechanisms exist and can optionally be used with MDBs if JTA (Java Transaction API)
or JTS (Java Transaction Service) is used to delimit distributed transactions.

— Cooperative concurrency is the kind of concurrency used by systems that provide some support
to manage collaborations between active entities. For example, when an activity terminates,
either normally or exceptionally, it must be possible to kill all non-terminated pending activities
it initiated. [17] claims that such a cooperative concurrency management requires an execution
model that enables collective activities to be explicitly represented. From our point of view,
such a representation would make it possible to associate handlers to the representants
of such collective activities. It would therefore be possible to globally manage the impact
of the failure of either a single participant or a set of them.

To summarize, CBPs should provide support for cooperative concurrency in order to enable the
coordination of components activities.

3.3 Need for exception concertation support

Once activity coordination is supported and integrates an exception handling mechanism, a means
to collect exceptions occurring concurrently among participants of a collective activity must be
provided. An activity which concurrently sends requests to a set of components and which receives
one or more exceptional responses from them:
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— must not react immediately when under-critical exceptions (which do not hamper its standard
execution) are signaled,

— must be able to take into account that exceptions received concurrently may have no pertinence
individually but may be meaningful collectively (result from an unique problem or a poor QoS
level).

Based on these ideas, [7] suggests the use of a concertation mechanism: when entities which par-
ticipate to a collective activity concurrently signal exceptions to their caller, a resolution function
considers the set of signaled exceptions in order to evaluate a unique exception (a concerted ex-
ception) which reflects the global state of the collective activity. This concerted exception is
used in place of the whole set of individual exceptions signaled by requested services
to search for handlers in the collective activity.

3.4 Need for a specific exception handling policy for broadcasted requests

In section 3.2, we noticed the need to coordinate collective concurrent activities to properly handle
exceptions. In JMS (cf. section 2.2), such a quality can partially be reached by activity coordination
and must be completed by a proper handling of broadcasted requests. It must therefore be possible,
for the programmer, to associate handlers to topics. As topics are not components (they are implicit
notions hidden in the J2EE container), we propose to embody them in a dedicated component
to which programmers can associate handlers and where they can configure concertation. This
component is used to broadcast received requests to its registered components (just like topics
did) and has the additional capability to aggregate standard and exceptional responses in
an unique meaningful response transmitted to the service caller.

3.5 Synthesis

Figure 7 synthesizes what are the capabilities and the needs, in terms of exception handling, of the
three categories of components we studied in this paper. It focuses on the four qualities presented
in sections 3.1, 3.2, 3.3 and 3.4. It shows that exception handling in CS and E components is
adequate as the EHS capabilities match the qualities needed. On the contrary, the analysis of
exception handling in CA components shows that work must be done to match EHS capabilities
and programmers expectations.

CS components CA components E components
Quality Exist ? Needed ? Exist ? Needed ? Exist ? Needed ?
Contextualisation respect yes yes no yes no no
Coordination support yes yes partial: transactions yes no no
Exceptions concertation support no no no yes no no
Support for collective requests no no partial: forwarding yes artial: event dispatcher| no

Figure 7. Potential improvements

4 Conclusion and further work

In this paper, we studied available categories of components and their EHSs. On the one hand, we
believe that two out of three categories of components have adequate EHSs. On the other hand,
we highlighted lacks in EHSs provided with the third components category (components which
interact using a contract-based scheme and asynchronous communications).

In particular, we think that an EHS for such components must have these four qualities:

— Contextualization must be respected in order to enable the writing of context-sensitive handlers
because a service demander is the best entity to handle an exception that occurred in a
requested service.
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— Coordination of components activities must be achieved by enabling their explicit representa-

tion and by defining means to control their execution.

— Programmers must be able to configure the exception propagation policy by defining resolution

functions to immediately handle exceptions that are really critical for the execution while
logging under-critical exceptions until their conjunction enables to diagnose a unique problem
represented by a concerted exception.

— The EHS must manage broadcasted requests in a pertinent way.

In previous work, we designed and implemented an EHS providing these qualities for MASs (the
SaGE EHS[19]). The study presented in this paper is our first step towards the adaptation of the
design and implementation of this work in the context of CBPs which we plan to integrate to the
JOnAS platform.
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