
HAL Id: lirmm-01237174
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237174

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fully Object-Oriented Exception Handling System:
Rationale and Smalltalk Implementation

Christophe Dony

To cite this version:
Christophe Dony. A Fully Object-Oriented Exception Handling System: Rationale and Smalltalk
Implementation. Alexander B. Romanovsky; Anand Tripathi; Jörgen Lindskov Knudsen; Christophe
Dony. Advances in Exception Handling Techniques, 2022, Springer-Verlag, pp.18-38, 2001, Lecture
Notes in Computer Science, 3-540-41952-7. �10.1007/3-540-45407-1_2�. �lirmm-01237174�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01237174
https://hal.archives-ouvertes.fr

A Fully Object-Oriented Exception Handling System:
Rationale and Smalltalk Implementation

Christophe Dony

Montpellier-II University - LIRMM Laboratory
161 rue ADA, 34392.Montpellier Cedex 05.

dony@lirmm.fr
http://www.lirmm.fr/~dony

Abstract . This paper motivates and presents the specification and the
implementation of an exception handling system for an dynamically typed
object-oriented language. A full object-oriented representation of
exceptions and handlers, a meta-object protocol to handle using either
termination or resumption makes the system powerful as well as extendible
and solves various exception handling issues. Three kind of dynamic scope
handlers (expression handlers, class handlers and default ones) make it
possible to define reusable and fault-tolerant software modules. The
implementation of the system is readable and simple to understand because
achieved entirely in Objectworks Smalltalk, thanks to the reflective
facilities of this language.

1 Introduction

The program structures for handling exceptional events [7] [12] [13] [2] [24] [9] have
been designed to implement software entities able to return well defined and foreseen
answers, whatever may happen while they are active, even though an exceptional
situation occurs. The end of the 1970s saw the development of exception handling
systems dedicated to procedural programming. All specifications have all been
influenced by Goodenough's seminal paper [7]. Well known implementations include
MESA [15], CLU [13] or ADA [8]. Exception handling systems have later been
integrated into object-oriented languages at the end of the 1980s (Zetalisp+Flavors
[17], CommonLisp(+CLOS) [19], Eiffel [14], Objectworks Smalltalk [21], C++ [11],
or more recently in Java.

This papers presents an overview of the specification and implementation of an
exception handling system initially conceived [3] for the Lore Object-Oriented
Language and adapted to Smalltalk [4]. The key-ideas of this system are (1) to apply
object-oriented design to the whole system, to define a reusable and open class library
for exception handling allowing systems designers to reuse it to produce dedicated
exception handling systems and (2) to take into account the specificity of object-
oriented programming by integrating expression and class handlers allowing users to
define functional, class-based or even component-based fault tolerant modules.

Implementations of exception handling systems are rarely presented because they
are generally done at a low level (compilers, virtual machines) and hard to describe in
the context of a paper. The implementation of this system is reasonably readable and

simple to understand because achieved entirely in Objectworks Smalltalk, thanks to
the reflective facilities of this language. The main implementation issues detailed in
the paper are: the internal representation of handlers, the algorithm for searching them
- knowing that both resumption and termination are allowed, the achievement of
termination and resumption, which takes into account some possible user-defined
unwind protections. Our EHS has been specified and implemented as the same period
than Objectworks Smalltalk’s one and both share many similarities (except for class
and default handlers) but none of their implementations have been published yet.

Section 2 recalls some definitions and introduces our notations. Section 3 presents
our EHS specification and motivates the main choices. Section 4 presents the
implementation. Point to point comparison with related works is scattered in the
different sections. Sections 3 require that readers have a minimal knowledge of the
Smalltalk syntax. Section 4 supposes a higher knowledge of that system but should
be globally readable by anyone knowing object-oriented languages.

2 Definitions, Terminology, Notation

Software failures reveal either programming errors or the application of correct
programs to an ill-formed set of data. An exception can be defined as a situation
leading to an impossibility of finishing an operation. The problem of handling
exceptions is to provide materials allowing to establish communication between a
function or procedure which detects an exceptional condition, while performing an
operation, and those functions or objects or modules that are clients of this operation
(or have something to do with it) and wish to dynamically handle the situation. An
exception handling system (EHS) allow users to signal exceptions and to associate
handlers to entities (according to the language, an entity may be a program, a class, an
object, a procedure, a statement or an expression). To signal an exception amounts to
identify the exceptional situation, to interrupt the usual sequence of operations, to
look for a relevant handler, to invoke it and to pass it relevant information about the
exceptional situation, such as the context in which the situation arose. To handle
means to set the system back to a coherent state. Handlers can usually choose,
knowing about their definition context and using arguments provided by the signaler,
whether to (1) transfer control to the statement following the signaling one
(resumption), (2) discard the execution context between the signaling statement and
the one to which the handler is attached (termination) or (3) signal the same or a new
exception, which is generally called propagation and should be interpreted as a
delegation of responsibility to a more general handler.

For the examples in this paper, we use two different syntax (cf. Figure 1) for
handlers declaration and definitions: firstly a general one inspired of what can be found
in procedural languages, secondly the Smalltalk syntax used in our system.

“General Syntax”:
{protected-instruction1; ...; protected-instructionN;

{when exception (parameter) do
{handling-instruction1; ...; handling-instructionN;}}}

“Smalltalk Syntax”:
[protected-expression1 ... protected-expressionN]

when: exception:
do: [parameter | handling-instruction1 ... handling-instructionN]

F i g . 1 . Syntax for associating handlers to instructions.

3 Specifications

This section discusses the main issues related to the design of an EHS in a non
concurrent context, explains our choices and presents the specifications of our system.

3 .1 Resumption and Termination: a Dual Model

Choosing which control structures are available to write handlers bodies is one of the
first crucial decision to be taken when designing an EHS and impacts the whole
specification and implementation. Most exception handling systems only propose the
termination model, others propose both termination and resumption (let us call this
the dual model) and a few ones only propose resumption [12]. The respective merits
of termination and resumption have already been widely discussed in many papers, e.g.
[7, 13]. Let us just recall that to forbid termination is a very specific choice because
many exceptions are really fatal. To forbid resumption is a way to produce EHS
simple to use and to implement, although reducing the expressive power since some
exceptions are really proceedable in some contexts. The resumption model is indeed
more expensive in computation time and space, more complex to implement (see
section 4) and also makes program static analysis more complex. It is however useful
and time-saving in any application in which proceedable exceptions are raised,
especially in interactive application in which users or operators, can choose a solution
to recover from an exceptional situation. For example, interactive WEB applications
can take benefit of resumption to restart calculus after a network interruption.

3 .2 Handlers Scope and Fault-Tolerant Encapsulations

The scope of handlers, and as a consequence the way they are searched when an
exception is signaled, determines what kinds of fault tolerant modules are offered by a
system. The issue is the same whatever kind of modules are considered, classes,
methods, etc.

Lexical Scope Handlers. Lexical scope handlers are by definition accessible when
located in the program textual part in which they are lexically visible. A handler for an

exception raised within an inner module, if not found locally, is searched in a lexically
englobing one. Lexical scope handlers allow users to define modules that handle all
exceptions raised within their scope, they allow to check statically which handler will
be invoked for each exception signaled within the module. Their main drawback is that
exceptions are never propagated to modules clients.

Various systems (e.g. Beta [9] or Smalltalk-80 [6, p.102]) provide lexical scope
handlers. As an example, let us consider the standard Smalltalk-80 ones (cf. Figure 2).
The Smalltalk historical EHS specification only uses the language standard
constructions; this is the same for Beta and this is one of the great advantages of this
static approach. Exceptions are signaled within methods by sending to self, a message
(e.g. error:). Handlers are standard methods defined on classes (let us call them class
handlers) and are invoked by a standard message sending: they can only be found in the
class (or one of its super-classes, they are of course inherited) in which the signaling
method is defined. This means that, as far as exceptions are never propagated to
operations callers, a method has no way to regain control, either to hide the occurrence
of an exception (modularity) or to execute some recovery actions, when one of the
methods it has invoked failed. We come back in section 3.5 on the potential interest
of class handlers in term of expressive power and reusability.

object

method error
method doesNotUnderstand
... .

application1

method error

application2
method doesNotUnderstand

"default handlers"

"user-defined handlers"

class

subclass

F i g . 2 . Smalltalk-80 lexical scope class handlers

Dynamic Scope Handlers. On the other hand, dynamic scope handlers are
searched in the execution stack when an exception is raised. They allow standard and
exceptional responses to be specified in software modules interfaces. For a given
module, internal exceptions are those handled internally, and external exceptions
(sometimes called failures) those propagated to the module’s clients. Dynamic scope
handlers allow clients to retrieve control when the modules they use fail and to give
execution context dependent answers to these failures. The semantic of the signaling
process is then to transfer the problem from a place where it can only be noted to a
place where it could be interpreted. The following example illustrates the first idea: the
client module, a procedure process-yield correctly encapsulates its private's use of its a
list by trapping the exceptions possibly raised by the list manipulation and by
propagating an exception (InactiveProcess) of the same conceptual level than the
achieved service. The second idea (giving caller context dependent answers) is
illustrated the pgcd example. This is just a toy example, more expensive than the
standard version without exception handling, but short enough to be presented here.

procedure process-yeld (a-process)
{remove(Active-process-list, a-process);

{when itemNotFound(e) do
{signal (InactiveProcess)}}}

function pgcd (int a, b)
{loop {aux := a; a := b ; b := modulo(aux, b)};

{when division-by-zero(e) do {exit(aux)}}}

All handlers in our system have a dynamic scope. Most of earlier EHS for
procedural languages such as PL/I, Clu, or Mesa, and recent ones, for object oriented
languages (Clos, C++, Java) are based on a stack-oriented research of dynamic scope
handlers (limited to one stack level in CLU). New evolution of the Beta EHS
integrates such handlers [10].

3 .3 Status of Exceptions

The next issue to be discussed is the status of exceptions and of exceptional events.
How are exceptions represented and referenced? How can they be manipulated or
inspected?

Exceptional Events as First-Class Objects. The idea that consists in
representing each conceptual exception by a class and each of its concrete occurrences
(what we call exceptional events) as an instance (an exception object) of that class can
initially be found in Taxis [18], Zetalisp [17] or [1] and is now almost a consensus;
all todays object oriented systems have integrated it. Let us shortly recall its main
interests.
- Exceptions can be organized into a knowledge sharing inheritance hierarchy.
- It is possible trap different events with a single handler.
- Signalers can communicate with handlers [16] pass to handlers the instance of the

signaled exception which holds in its slots all the information about the
exceptional situation.

- New user-defined exceptions can be created as subclasses of existing ones. There is
no distinction between system and user-defined ones, all can be signaled and handled
in the same way.

ExceptionalEventExceptionClass

Class Object

class instance subclassclass

F i g . 3 . Kernel exception classes.

Exceptions as First Class Entities. The systems that pioneered the above idea
did not brought it to its limits; for example in Zetalisp, signaling and handling
primitive are not standard methods invocable by sending messages to exceptions

objects. We have extended the above idea towards a complete object-oriented
representation of all entities composing the EHS and towards an EH meta-object
protocol to handle exceptions. Another language in which similar ideas can be found
is Objectworks Smalltalk. The first step in that direction has led us to make
conceptual exception first class entities by defining exception classes as instances of a
metaclass. The Figure 3 shows the two kernel classes of our specification for what
concerns exceptions representation. Each occurrence of an exception is an instance of a
subclass of the class ExceptionalEvent that holds basic protocols for handling All
exceptions classes are instances of the meta-class ExceptionClass1 that holds basic
protocols for signaling and are subclass of ExceptionalEvent. The next sections detail
the advantages of that organization.

method:
resume

Event WarningError

ProceedableEvent

exit, retry

FatalEvent

propositions: abort propositions: proceed
method:

ExceptionalEvent

signal, handlesByDefault, lookForAndInvoke Handlers
…

methods:
signalingContextslots:

protocolsForResumptionslot:

F i g . 4 . Basic exception classes, associated attributes and methods.

3 .4 Basic Primitives

The dual model of exception handling imposes that primitives for termination and
resumption be available to write handler bodies. All our basic primitives to handle
exceptions (exit and retry for termination, resume for resumption and signal for
propagation) are implemented by standard methods defined on a set of kernel exception
classes (cf. Figure 4) and constitute a meta-object protocol (following the CLos
definition of term) for exception handling.

Kernel Exception Classes and Basic Handling Primitives.
ExceptionalEvent is then divided into FatalEvent, to which are attached termination
primitives, and ProceedableEvent to which are attached those for resumption. The slot
signalingContext is to be dynamically bound at each occurrence of an exception to the
signaling context. The slot propositions (instance variable of the meta-class) is used
to store for each exception some propositions for interactive handling as initially

1 When explicitly manipulated, meta-classes are Class subclasses. In our Smalltalk-80

implementation, ExceptionClass is implemented by the automatically created meta-
class ExceptionalEvent class. Each exception class has its own (automatically created)
meta-class subclass of ExceptionalEvent class.

proposed in Zetalisp. From the user's viewpoint, the system is then based on three
predefined exception classes.
- Error is the class of exceptional events for which resumption is never possible

whatever the context in which the event is signaled.
- Warning is the class of exceptional events for which the termination is impossible.
- Finally, multiple inheritance is simulated to create the exception-class Event in

order to allow both capabilities.

Basic Signaling Primitive. Within EHSs supporting the dual model, a set of
primitives is generally provided to support the various signaling cases. E.g., in
Goodenough's proposal, signaling with escape states that termination is mandatory,
notify forces resumption and signal lets the handler responsible for the decision. In our
system, signal is the single basic signaling primitive because knowing whether the
signaled exception is proceedable or not only depends of its type (its position in the
exception hierarchy). To signal an exception amounts to send the exception class the
message signal whose corresponding method is defined on ExceptionClass (i.e. on
ExceptionalEvent class in the Smalltalk implementation). Signal creates the
"exception object" and assigns its slots with, on the one hand values given by the
signaler and on the other hand, values owned by the system (e.g. signalingContext),
cf. Figure 5 for an example. Signal finally sends to the initialized instance the
message lookForAndInvokeHandler (cf. Figure 4), which will find and invoke a
handler.

3 .5 Additional Primitives and Control Structures

Unconditional Restorations. The dual model raises various issues that require
additional primitives. The first issue is the restoration of coherent program states. Any
method has to ensure that it will leave data, memory and resources in a coherent state
whatever happens during its execution. A first solution to that problem, found in
many systems is to give programmers the ability to define handlers that trap all
exceptions to re-signal (propagate) the trapped one. The following example illustrates
that solution, in a procedural-like syntax with the classical file example. It also
highlights the fact that this solutions forces programmers to write restoration actions
twice, once for normal and once for exceptional exit.

File f;.
{open(f); workOn(f);. close(f);

{when any-exception (e) do
{close(f); signal(e);}}}

However, that solution does not work properly in the dual model because a later
handler may entail resumption and put the system back into an incoherent state in
which f would be closed but should not be. To avoid writing more complex handlers
and the duplication of the close instruction, an ad-hoc. primitive (cf. cleanup handlers
in [7] or Lisp's unwind-protect) is necessary to allow users to write unconditional
restoration statements executed whenever the procedure’s related stack frame is really
discarded. The exception handling system has to take this primitive into account while
performing termination, by executing in the right order and in the right environment
the restorations (cf. Section 4.5). In our system, the file example can thus be written
as follows:

f := File new.
[f.open. f.workOn.]

unwindProtect: [f.close]]

Cooperation for Resumption. Resumption raises another important issue: it
should not be achieved without the agreement of both the signaler and the handler
when, although the handler is responsible for saying what to do, the effective
computation restart is performed by the signaler in its environment. In any cases, the
signaler should be able to predict which kind of restarts he is ready to achieve. A slot
named protocolForResumption, defined on ProceedableEvent provides a basic solution
to this problem2. The signaler can use it to indicate, at signaling time, the options
among which a handler can choose in order to achieve resumption. Assigning it to nil
means that resumption is impossible. In conjunction, a handler wanting to entail
resumption has to indicate which protocols it has chosen. In the figure 5 example,
handlers can for example use the message messageValue: which itself entails
resumption by using the correct protocol.

Event subclass: #DoesNotUnderstand
instanceVariableNames: 'messageReceiver messageSelector messageArgs '
methodsFor: ‘handling’

messageValue: "resume with a message value ..."
newSelector: "resume with a new selector ..."
newReceiver: "resume with a new receiver ..."

..
Signaling the exception with propositions for resumption
result :=

DoesNotUnderstand
signalWith ProtocolsForResumption:

 #(supplyValue newReceiver newSelector)
messageReceiver: anObject
messageSelector: aSymbol
messageArgs: anArray.

“if control returns here, result is tested and the corresponding actions performed”

F i g . 5 . Example of definition of a new exception, to represent runtime message sending
failure. Its occurrences are either proceedable or fatal; thus it is a subclass of Event. While
signaling it, the signaler can pass arguments to handlers to indicate which kind of
resumption it is ready to achieve.

3 .6 Various Kind of Handlers

This section deals with issues related to handler definition and shows how to create
various kind of handlers in our system. It is first classical to associate handlers to
pieces of code (expressions, blocks, procedure or programs). Besides, different
researches have investigated the idea of associating handlers with data structures [12]

2[19] has proposed for this problem a more sophisticated solution: some new dedicated

control structures (e.g. restart-case) provide a user-friendly way (with a case-like syntax)
of writing code such as the one in the example and allow users to dynamically create new
options for proceeding.

thus controlling exceptional situations arising when manipulating them. Within an
object-oriented language, it is also natural to wonder whether it is interesting to
associate handlers to objects or to classes and with which semantics Finally many
solutions have been proposed in existing systems to store the most general, execution
context independent, default handlers

Expression handlers. For what concerns pieces of code, we offer the possibility to
associate handlers to any kind of Smalltalk expressions. This is done by grouping the
expressions into a lexical closure3 (a block in Smalltalk) and by sending this block
the message when:do. The first argument <exception-name> is the exception to be
trapped and the second one is the handler. Handlers have one parameter bound at
handling-time to the current exception object.

[<protected expression>]
 when: <exception-name>
 do: [<handler parameter> | <handler body>]

Class Handlers. To associate handlers with individual objects is not compatible
with the class-based model in which all instances of a class have to share the same
behavior. Besides, we have quoted in section 3.2 the existence of handlers associated
with classes in Smalltalk-80 and in Beta. We propose to define equivalent handlers but
to give them a dynamic scope. A class handler associated with a class C for an
exception E will thus be able to trap all occurrences of E raised anywhere during the
execution of any method of C or of C’s subclasses. Such class-handlers allow
programmers to control which exceptions can be propagated outside of any methods of
a class, to control for example, that overflow and EmptyStack are the only exceptions
that can be propagated outside of any method defined on the class Stack. These class
handlers also induce original reusability schemes based on inheritance. Consider again
the class Stack. Now suppose that a class of stacks that are able to grow is needed. A
simple solution to this consists is creating a Stack subclass named GrowingStack, on
which is defined a handler for overflow and a method grow, this handler can resume the
interrupted method, whatever its name and its location, after having grown the stack
buffer. Class-handlers have been widely used in this way in Smalltalk-80 extensions
to modify message sending, e.g. to implement Encapsulator or to implement
asynchronous message sending in the Briot’s Actalk System.

A few systems provide dynamic scope class handlers (see. e.g. [22]). In our system,
class handlers can be attached to any class by using the method when:do:, defined on
ClassDescription, with the following syntax:

<protected class>
 when : <exception-name>
 do : '<handler parameter> | <handler body>'

The first argument is the exception to be trapped and the second one is a string.
This method when:do: first calls the Smalltalk compiler to compile the handler string
in the environment of the protected class so that instance and class variables defined on
the class can be accessed. Then it inserts the created handler in the handler collection of
the class and of its subclasses. For each class, class-handlers are ordered compared to

3This is the price to pay to implement handler definition by a message sending.

the exceptions they are defined for. Class-handlers cost nothing while exceptions are
not signaled; they only are taken into account at signaling time.

Default Handers. Interesting but somehow semantically complex propositions to
define default handlers at various program levels can be found e.g. in [20]. We have
chosen a simpler point of view in which default handlers are considered as the place
where the most general information regarding how to handle an occurrence of an
exception, independently of any execution context, should be stored. We propose to
associate them to exceptions by defining them as methods (named defaultHandle)
defined on exception classes. The system most general default handler is defined on
ExceptionalEvent and can be overridden in subclasses, each exception can thus own its
specific default handler. Default handlers are invoked by sending the message
defaultHandle to the exception object as shown in the top-level loop example (cf.
Section 3.7). We have integrated the idea of interactive propositions found in Zetalisp,
which exploits exception hierarchies. A proposition is a couple of two method names,
one to display a string and one to execute a corresponding action. Propositions are
stored for each exception in the slot named propositions defined on ExceptionClass
and displayed when the most general default handler is invoked.

3 .7 Writing Handlers Bodies in a Generic Way

All kind of handlers can use the same primitives in the same generic way to put the
program execution back into a coherent state. Genericity first means that neither
programmers nor implementors have to perform tests to ensure that operations
incompatible with the signaled exception will not be invoked - Note that his rule is
violated for resumption where the slot protocolForResumption is tested by the
system. For example, any attempt to send the message exit: to an object which is not
a FatalEvent will fail. Genericity also means that the operations relevant to the current
exception object will automatically be selected even though an abstract (multiple)
exception has been caught.

Termination Examples. Sending to the exception object the message
exitWith: entails termination. The execution stack frames located between the signaler
and the handler are discarded while recovery blocks are executed. The argument's value
becomes the value returned by the expressions to which the handler is attached. Here is
our system’s version of the above function pgcd, now defined on class Integer, that
uses termination.

“computes the pgcd of a and b”
[[true] whiletrue: [aux := a. a := b. b := aux modulo: b]]

when: division-by-zero
do: [:e | e exitWith: aux]

For what concerns a class-handler, which is invoked when an exception is about to
be propagated outside of a method C defined on a protected class, termination ends C’s
execution and the exit value becomes the value returned by C’s invocation. The
following example is an implementation of the growing stack example described in
Section 3.6, it highlights the interest of the retry primitive.

GrowingStack
when: Overflow
do: [:anOverflow | self grow.

anOverflow retry].

Finally, default-handlers are conceptually attached to the program main procedure
(or to the top-level loop in an interpreted environment), thus termination in a default-
handler ends the program execution (or returns to the top-level). Here is an example of
applying termination that uses both exit and retry , to implement a top-level loop.
The only way to exit the loop is to signal the exception LoopExit. If any other
exception is trapped, its default handler is invoked and finally, whatever it does, the
loop is re-entered.

[[true] whileTrue: [((aStream.read).eval).print]]
when: LoopExit
do: [aLoopExit: | aLoopExit exitWith: #bye]
when: ExceptionalEvent
do: [anExcEvent: | anExcEvent defaultHandle.

anExcEvent retry]

Resumption Example. Sending to the exception object the message
"resumeWith: <aResumptionOption> with: <aValue>" entails resumption. The
couple <option, value> becomes the value returned by the method signal provided that
the option belongs to the protocolsForResumption collection of the signaled
exception.

[anObject aMessage]
when: DoesNotUnderstand
do: [e: | e resumeWith: #SupplyValue with: 33]

Propagation Example. Signaling a new exception or propagating the trapped one
can be done by sending the message signal either to a new exception (a class), or to
the exception object. Here is an illustration with the previously described stack
examples (cf. Section 3.5) which shows how to control, with class handlers, which
exceptions will be propagated outside of any methods defined on Stack or on its
subclasses. The second handler for ExceptionalEvent traps all exceptions, except
Overflow and EmptyStack, and propagates StackInternalException.

Stack
when: #(Overflow EmptyStack)
do: ‘:exceptionObject | exceptionObject signal’ “propagation”
when: ExceptionalEvent
do: 'exceptObject: | StackInternalException signal’ “new exception signaled”

4 Implementation

This section describes some key-points of the above specification implementation
which is entirely achieved in Objectworks Smalltalk without any modification to the
virtual machine. This has been possible thanks to the reflective capabilities offered by
this programming environment, particularly because methods, lexical closures and the

execution stack are or can be made first class objects. The main focus is put on the
representation of exceptions, of handlers and on the signaling algorithm taking into
account expression, class and default handlers within a context in which both
resumption and termination are allowed. The interest of this section is to describe this
algorithm in its real implantation context.

Objectworks Smalltalk EHS specification has considerably evolved since the blue
book specification and share many common points with our specification, except for
what concerns class handlers and less importantly interactive propositions. The
implementation of Objectworks EHS, as far as I know never described in any paper,
also shares common point with ours but is more efficient because part of it have been
moved to the virtual machine. In particular, stack frames are no more reified but are
accessed at the virtual machine level.

4 .1 Exception Classes

The class ExceptionalEvent (cf. Figure 6), the root of our exception classes hierarchy,
declares four instance variables, three of them are of interest here. SignalingContext is
used to store the stack frame (we will frequently call stack frame “contexts” because
Smalltalk objects that represent them are called “contexts objects”) in which the
exception has been signaled. HandlerContext is used to store the context in which a
handler is found. ErrorString allows users to pass a string argument to handlers.
ExceptionalEvent also declares different class variables, four of which
(BottomStackMethod , HandleMethod, InvokeHandlerMethod and UnwindMethod)
designed to store references to particular methods addresses that will be used during
handler research and invocation.

Object subclass: #Except ionalEvent
instanceVariableNames: 'errorString signalingContext handlerContext private '
classVariableNames: 'BottomStackMethod HandleMethod InvokeHandlerMethod

RetryMark UnwindMethod '

initialize “defined on ExceptionalEvent class”
HandleMethod := BlockClosure compiledMethodAt: #when:do:.
UnwindMethod := BlockClosure compiledMethodAt: #unwindProtect:.
BottomStackMethod

:= SmalltalkCompiler compiledMethodAt: #evaluate:in:to:notifying:ifFail:.
InvokeHandlerMethod := ExceptionalEvent compiledMethodAt: #invokeHandler:with:.
RetryMark := #().

F i g . 6 . ExceptionalEvent class (detail)

Note for example that the method when:do: allowing users to define expression
handlers is represented by a Smalltalk object that can be retrieved by sending to the
class BlockClosure, on which the method is defined, the message compiledMethodAt:.
SpecialMark contains a unique mark used to implement the retry method Finally, this
class also defines an interactive proposition named askForRetry.

4 .2 Status and Storage of Handlers

Default handlers are standard methods defined on exceptions classes under the selector
handlesDefault. They do not raise any structure or storage problems.

Handlers associated to expressions. Handlers associated to expressions have to
be executed in the environment in which they have been created. The resumption
model forbids destroying the stack frames located between the signaler frame and the
handler frame in order to allow the calculus to be eventually restarted. To invoke a
handler thus supposes to go back to a previously defined environment without
destroying the execution stack. A first solutions to this problem is to copy the stack
at signaling time (e.g. with an equivalent of the scheme call-cc primitive), to
destructively search a handler, to execute the handler in its context, now located on top
of the stack, and finally to replace the current stack by the copy made at signaling
time. We have neither implemented this solution nor seen it implemented. A second
solution is to execute the handler on top of the stack but in its definition context, i.e.
in such a way that free variables of the handler get their value and are assigned in the
handler definition context. This supposes that handlers be lexical closures.

The method when:do: to associate handlers to expressions is defined (cf. below) on
the class BlockClosure that represents lexical closures in Smalltalk. The receiver (self)
is a block containing the protected expressions. The method simply sends self the
message value, which entails the execution of the protected expressions. If an
exception is raised during this execution, the system will find the handler as the
second argument (handlerBlock) stored in the stack frame created by the method
when:do:.

when: exception do: handlerBlock “Defined on BlockClosure”
^self value

Handlers Associated to Classes. Handlers associated to classes are some kind of
compiled methods, of which they inherit the basic structure, the specific part of their
structure being described by the ClassHandler class (see below). The instance variable
domain stores the class on which the class handler has been defined, for example, the
class GrowingStack for our Section 3.6 example. The event instance variable stores
the exception for which the class is protected (Overflow in our example). The instance
variable receiver is to be bound at handler invocation time to the object that is active
when the trapped exception is raised.

CompiledMethod subclass: #ClassHandler
instanceVariableNames: 'event domain receiver '
classVariableNames: 'SortBlock '

Class-handlers are stored for each class into a sorted collection from the most
specific to the most general. For that purpose, we have added an instance variable
named classHandlerSet to the kernel class ClassDescription with defines the basic
structure of all Smalltalk classes. Albeit they have a compiled method status, class-
handlers are not stored in the classes method dictionary for three reasons: they should
not to be directly invoked by users, they are not connected to external selectors and
they have to be stored in a specific order.

4 .3 Signaling

In its simplest form, signaling simply consists in creating the exception object, an
instance of the class that receives the signal message, in initializing its fields and in
sending to the exception object a message to look for handlers. See next section for an
explanation about the thisContext variable.

signal “defined on ExceptionalEvent class”
^self new initialize signal

signal “defined on ExceptionalEvent ”
signalingContext := thisContext.
^self lookForAndInvokeHandler

4 .4 Handler Search

This section describes the method that looks for a handler after an exception has been
raised. A simplified version is primarily presented. The complete version is described
afterwards.

Accessing the Stack. As far as handlers are searched into the stack, the first issue
is to access it. The Objectworks environment is able, when asked, to represent the
execution stack frames as first-class objects, instances of various subclasses of the
Context class. This is powerful example of reflection because that object can not only
be viewed but also modified. Modifying the slot sender of such an object effectively
produces a non local jump when returning from the method in which the modification
is done. At any time during a computation, creating the object representing the current
stack frame can be done by accessing the read-only variable called thisContext. Its
slots contain all the information needed to implement our system:
- the receiver of the message the execution of which has created the frame,
- the method that has been invoked as a consequence of this message,
- the sender of the current frame, i.e. the calling frame lower in the stack.

A simplified Algorithm for Finding Handlers. Figure 7 describes a
simplified algorithm that search a handler without taking into account exceptions
signaled within handlers. When a handler is found, it is immediately invoked.

The implementation of the simplified algorithm. Figure 8 shows the
method implementing this simplified algorithm. The lookForAndInvokeHandler
method is defined on ExceptionalEvent and invoked while signaling by sending this
message to the exception object. Within this method, self is the current exception
object for which a handler is searched.

- The search starts at the signaling context sender. The signaling context is
retrieved in the signalingContext instance variable of the exception object (Figure 8,
line 1). UnwindContexts is a local variable used to monitor the collection of recovery
actions found while going down the stack.

- A loop is entered (2) and will be exited, by returning ("^" is the smalltalk's return
instruction.) the value of the method invokeHandler:with:; control never returns to the
instruction following the invokeHandler:with: message sending.

Let E be the signaled exception,
Let F initially be the sender of the stack frame in which the message signal has been sent,
Let UnwindContexts be an empty ordered collection.

L: If F is the bottom of the stack frame
then invoke default handler for E
e l s e If the frame F has been established by an invocation of the method when:do:

and if the associated handler H traps the exception E,
then invoke H.
e l s e let C be the class of the receiver of the current frame method.

If a handler H for the exception E is defined on C,
then invoke H.
e l s e i f F has been established by an invocation of unwindProtect:,

 then append the argument to UnwindContexts end-if
 let F be F 's sender (stack previous frame) and goto L.

end-if
end-if

end-if

F i g . 7 . A simplified version of the algorithm to search a handler.

lookForAndInvokeHandler
“defined on ExceptionalEvent”

| currentContext classHandler method | "local variables"
currentContext := signalingContext sender. (1)
unwindContexts := OrderedCollection new.
[true] whileTrue: (2)

[method := currentContext method.
"if the bottom of the stack is reached, invoke default handlers"
(method == BottomStackMethod) (3)

ifTrue: [handlerContext := currentContext sender. (4)
 ^self invokeHandler: [:e | e handlesDefault] with: unwindContexts] (5)

ifFalse: [
"looking for an expression handler"

(method == HandleMethod and:
[self isKindOf: (currentContext localAt: 1)]) (6)

ifTrue:
[handlerContext := currentContext. (7)
 ^self invokeHandler: (currentContext localAt: 2)

with: unwindContexts] (8)
"looking for a class handler in the class of the current context receiver"

classHandler := currentContext receiver class isProtectedFor: self. (9)
classHandler isNil ifFalse: [

handlerContext := currentContext. (10)
classHandler receiver: currentContext receiver. (11)
^self invokeHandler: classHandler with: unwindContexts] (12)

"no handler here, but check if this context contains an unwind blocks"
(method == UnwindMethod) (13)

ifTrue: [unwindContexts addLast: (currentContext localAt: 1)]. (14)
"no handler here, going down one frame"

currentContext := currentContext sender (15)
] "end of ifFalse: method == BottomStackMethod"

] "end of the while loop

F i g . 8 . An implementation of the simplified algorithm in Fifure 7.

- When a handler is found, this method (cf. section 4.5) is called (lines 5,8,12) with
the handler as first argument and the unwind blocks collection monitored during the
search as second argument. The handler is either a block or a kind of compiled method.
The stack frame in which it is located is stored in the handlerContext slot of the
exception object (4, 7, 10) and will be used to achieve handling.

- The test in (3) is true when the bottom of the stack is reached. This means that
no expression or class handler has been found. A default handler is invoked by sending
the message handlesDefault to the exception object (5).

- The test in (6) is true if the current frame method is when:do: and if the exception
object is an element of the class a reference to which is stored in the first argument of
the method (arguments of the current frame method can be accessed by sending the
message localAt: to the context object). This means that an expression handler has
been found. Its body is stored in the second argument of the when:do: method(8).

- The method isProtectedFor: sent to the class C of the receiver of the current frame
method, returns either a class-handler for the current exception if one is present on C
or nil. In the first case, the handler is invoked (12). Before that, the receiver in the
method that raised the exception is stored in the class handler's receiver slot (11).

- Lines 13 and 14 deal with unconditional recovery actions defined in unwind
blocks. If only termination was supported, this would be the place to execute these
actions. Supporting the dual model (termination and resumption) imposes to monitor
all unwind blocks found between the signaling context and the handler context, to pass
that collection to the handler and to execute them if the handler entails termination.

- In (15), no handler has been found in the current frame, the loop’s body is entered
again with the variable currentContext pointing to the previous stack frame.

The complete version taking into account exceptions signaled within
handlers. The real algorithm is more complex since it supports the dual model
(termination and resumption) which imposes that handlers be executed while the
signaling context has not been destroyed. The algorithm has thus to ensure that, when
an exception is signaled within a handler (either an expression, class or default one),
the new search starts just below the frame in which the current handler has been found,
thus preventing its recursive invocation. Signaling the exception InactiveProcess in
the handler for ItemNotFound is an example of such as situation as shown in Section
3.2. Figure 9 presents the complete version of the method that looks for and invoke
handlers.

- The test in line 9 determines whether the current frame has been created by the
invocation of invokeHandler:with:. If true, this means that the current exception has
been raised within a handler and execution continues in line 9. Otherwise the standard
algorithm described in the previous section is executed (line 21).

- In line 9, let e2 be the current exception object and h1 be the handler that as been
invoked to trap the first exception e1. The current context objet represents the frame
created by the invocation of h1; its receiver slot contains the exception object e1.

- It is first necessary to update the unwindContexts collection by concatenating (","
is the concatenation operation) (lines 11 and 12) the current recovery action collection
to the collection collected during the search for h1 which is stored in the stack as the
second argument of the current context method. When found, the handler h2 for e2
will have in hand the whole set of recovery actions found between e1 signaling frame
and h2 definition frame, to be executed if h2 entails a termination.

lookForAndInvokeHandler “defined on ExceptionalEvent”
| currentContext classHandler method unwindContexts dejaVus |
unwindContexts := OrderedCollection new. (2)
currentContext := signalingContext. (3)
[true] whileTrue: [(4)

method := currentContext method. (5)
(method == BottomStackMethod) (6)

ifTrue: [handlerContext := currentContext sender. (7)
 ^self invokeHandler: [:e | e handlesDefault] with: unwindContexts.]. (8)

"Detection of exceptions signaled within handlers"
[method == InvokeHandlerMethod (9)

ifTrue: ["The current exception has been raised within a handler" (10)
"a) dealing with unwind-protections"
dejaVus := (currentContext localAt: 2) copy. (11)
dejaVus isNil ifFalse: [unwindContexts := unwindContexts , dejaVus]. (12)
"b) jump to the handler context"
currentContext := currentContext receiver handlerContext. (13)
"c) Was the exception signaled within a default handler?"
currentContext method == BottomStackMethod (14)

 ifTrue: ["Direct invocation of the most general default handler" (15)
handlerContext := currentContext. (17)
^self invokeHandler:

[:e | e basicHandlesDefault] with: unwindContexts] (18)
ifFalse: ["search will continue at the handler context sender" (19)

currentContext := currentContext sender]] (20)
ifFalse: [(21)

"same code than lines 6 to 15 in Figure 8”

F i g . 9 . The complete version of handler search.

- The handler for e2 now has to be searched below the frame in which h1 has been
defined and which is stored in e1's handlerContext slot. As specified by the instruction
in line 13, the currentContext is assigned to h1 definition context.

- Before continuing the search in the previous frame (line 20) a special case has to
be handled. If h1 is a default handler, its definition context is the bottom of the stack
frame and in such a case, tested in line 14, the search is stopped and the most general
default handler has to be invoked (line 18).

4 .5 Handler invocation

The method to invoke handlers is shown in Figure 10. All handlers (either lexical
closure or class-handlers) are invoked by receiving the value: message with argument
the current exception objet (cf. Figure 10, line 5). Two marks are stored in the stack
(lines 3 and 5) just below that invocation point using the method mark:catch: which
is an equivalent of the classical lisp catch function.

Termination will be implemented by a non local exit to the mark named #exit and
resumption by a non local exit to the mark named #resume (see next section). If
termination is ordered, control reaches line 7. There, all unconditional restorations
monitored during the handler search are executed by the method fastUnwind:. Then the
current execution frame is assigned to the handler context (line 8); this effectively
discards all stack frames between the signaling and the handling point. Finally, the

given exit value is tested (line 9). If this value equals the retry dedicated special mark,
a retry has been ordered and the expressions to which the handler were associated are
executed again (line 10), otherwise the exit value is simply returned as the value of
these expressions (line 11). If resumption is ordered, control reaches line (12) and the
resume value is simply returned as the value of the handler invocation. It is the
responsibility of the signaler to examine the returned value and to achieve the selected
solution to restart the standard execution.

invokeHandler: aHandler with: unwindContexts
“defined on ExceptionalEvent”
| exitValue resumeValue |
"local variables" (1)
resumeValue := (2)

self mark: #resume catch: (3)
[exitValue := (4)

self mark: #exit catch: (5)
[aHandler value: self]. (6)

self fastUnwind: unwindContexts. (7)
thisContext sender: handlerContext (8)
exitValue == SpecialMark (9)

ifTrue: [handlerContext restart] (10)
ifFalse: [^exitValue]]. (11)

"control reaches that point if resumption has been ordered."
^resumeValue (12)

F i g . 1 0 . Handler Invocation.

Termination. Termination is simply implemented within the exit primitive (cf.
Figure 11) by a destructive non local exit down to the #exit mark previously stored in
the stack. The method mark:exit: is an equivalent of the throw classical lisp function.
If the retry protocol is chosen, the value passed to throw is our registered special
mark.

“Methods defined on FatalEvent class”
retry

"exit and execute protected operation again."
self mark: #exit throw: SpecialMark.

e x i t
self exitWith: nil.!

ex i tWith : aValue
self mark: #exit throw: aValue.

F i g . 1 1 . Implementing Termination

Resumption. Resumption (cf. Figure 12) is simply implemented by a destructive
non local exit towards the #resume mark previously stored in the stack at handler
invocation time. The resumeWith:with: primitive checks that the handler has chosen a
protocol for resumption effectively proposed by the signaler before entailing the non
local exit.

“Methods defined on ProceedableEvent class”
resume

self resumeWith: #resume with: nil!
resumeWith: aSymbol with: aValue

(protocolForResumption indexOf: aSymbol) == 0
ifTrue: [Error signal:

The proposed option for proceeding is not valid ...']
ifFalse: [self mark: #resume

 throw: (Association key: aSymbol value: aValue)]

F i g . 1 2 . Implementing resumption.

There is no room to present other aspects of the system such as interactive
propositions; however, their implementation does not raise any problem. The
complete implementation can be downloaded from the author WEB page.

5 Conclusion

We have presented a specification and implementation of an open and expressive
exception handling system for a dynamically typed object-oriented language. It
provides a full object-oriented representation of exceptions and handlers. This now
classical organization allows users to organize exceptions in an inheritance hierarchy
reflecting the possible sharing of structures and behavior, and to trap any subset of
exceptions with a single handler. The ability to define handling primitive on classes
and to invoke them via message sending to the exception object makes it impossible
to perform an inappropriate action for a given exception. The distribution of handling
primitives on various abstract exception classes simplifies the signaling process by
restricting the number of signaling primitives. Handlers can be associated to
expressions and classes. We have shown the interest of associating dynamic scope
handlers with classes. Class handlers are more than a powerful shorthand, they induce
original ways to use inclusion polymorphism reusability.

This system architecture can also be considered as a framework for developing
dedicated exception handling systems. It is for example very easy to use it to generate,
by subclassing, other systems in which, for example, resumption or termination are
forbidden. Its meta-object protocol for handing, made of a set of methods defined on
exception classes, can be used as a basis to add new and dedicated EH control
structures. We can see today a renewest interest for open, reflective and dynamically
typed languages used for example to assemble components (cf. [5]) or to develop WEB
applications that require powerful and flexible exception handling systems similar to
the one presented here.

We finally have presented the key issues of the implementation of the dual model
of exception handling in the context of a reflective, dynamically.typed object-oriented
langage.

References

1. A.Borgida: Language Features for Flexible Handling of Exceptions in Information
Systems. ACM Transactions on Database Systems, Vol. 10, No. 4, pp. 565-603,
December 1985.

2. F.Christian: Exception Handling and Software Fault-Tolerance. IEEE Trans. on
Computers, Vol. C-31, No. 6, pp. 531-540, June 1982.

3. C.Dony: An Exception Handling System for an Object-Oriented Language. Procs
of.ECOOP'88, 1988; Lectures Notes in Comp. Sci. 322, pp. 146-161.

4. C.Dony: Exception handling & Object-Oriented Programming: Towards a Synthesis.
Proceedings of the Joint conference ECOOP-OOPSLA'90, Ottawa, Oct. 1990. Special
issue of Sigplan Notices, Vol. 25, No 10, pp. 322-330.

5. A.F. Garcia, C.M.F.Rubira; Architectural-based Reflective Approach to Incorporating
Exception Handling into Dependable Software. In [23].

6. A. Goldberg, D. Robson: SMALLTALK 80, the language and its implementation.
Addison Wesley 1983.

7. J.B.Goodenough: Exception Handling: Issues and a Proposed Notation. Communication
of the ACM, Vol. 18, No. 12, pp. 683-696, December 1975.

8. J.Ichbiah & al: Preliminary ADA Reference Manual. Rationale for the Design of the ADA
Programming Language. Sigplan Notices Vol. 14, No. 6, June 1979.

9. J.L.Knudsen: Better Exception Handling in Block Structured Systems. IEEE Software, pp
40-49, May 1987.

10. J.L.Knudsen: Exception Handling and Fault Tolerance in Beta. In [23].
11. A. Koenig, B. Stroustrup: Exception Handling for C++. Proceedings of Usenix'90, pp.

149--176, San Francisco, USA, April 1990.
12. R.Levin: Program structures for exceptional condition handling. Ph.D. dissertation,

Dept. Comp. Sci., Carnegie-Mellon University Pittsburg, June 1977.
13. B.Liskov, A.Snyder: Exception Handling in CLU. IEEE Trans. on Software

Engineering, Vol. SE-5, No. 6, pp. 546-558, Nov 1979.
14. B.Meyer: Disciplined exceptions. Interactive Software Engineering, TR-EI-22/EX,

1988.
15. J.G.Mitchell, W.Maybury, R.Sweet: MESA Language Manual. Xerox Research Center,

Palo Alto, California, Mars 1979.
16. R. Miller, A. Tripathi: Issues with Exception Handling in Object-Oriented Systems.

ECOOP '97 proceedings, Lecture Notes in Computer Science", Vol. 1241, pp. 85--103,
Mehmet Aksit and Satoshi Matsuoka editors, Springer-Verlag 1997.

17. D. Moon, D. Weinreb: Signaling and Handling Conditions. LISP Machine Manual, MIT
AI-Lab., Cambridge, Massachussets, 1983.

18. B.A.Nixon: A Taxis Compiler. Tech. Report 33, Comp. Sci. Dept., Univ. of Toronto,
April 83.

19. K.Pitman: Error/Condition Handling. Contribution to WG16. Revision
18.Propositions pour ISO-LISP. AFNOR, ISO/IEC JTC1/SC 22/WG 16N15, April 1988.

20. K.Pitman: Condition Handling in the Lisp Language Family. In [23].
21. Objectworks for Smalltalk-80, version 2.5. Advanced User's Guide - Exception

Handling. ParcPlace systems, 1989.
22. Jan Purchase, Russel Winder: Message Pattern Specifications: A New Technique for

Handling Bugs in Parallel Object Oriented Systems. ACM SIGPLAN Notices, vol. 25,
no. 10, pp. 116--125, October 1990.

23. Advances in Exception Handling Techniques, Alexander Romanovsky, Christophe
Dony, Jorgen Knudsen, Anand Tripathy Editors, Springer-Verlag, 2001.

24. S.Yemini, D.M.Berry: A Modular Verifiable Exception-Handling Mechanism. ACM
Trans. on Progr. Languages and Systems, Vol. 7, No. 2, pp. 213-243, April 1985

