Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape

Abstract : The main use of satellite imagery concerns the process of the spectral and spatial dimensions of the data. However, to extract useful information, the temporal dimension also has to be accounted for which increases the complexity of the problem. For this reason, there is a need for suitable data mining techniques for this source of data. In this work, we developed a data mining methodology to extract multidimensional sequential patterns to characterize temporal behaviors. We then used the extracted multidimensional sequences to build a classifier, and show how the patterns help to distinguish between the classes. We evaluated our technique using a real-world dataset containing information about land use in Mali (West Africa) to automatically recognize if an area is cultivated or not.
Type de document :
Article dans une revue
Engineering Applications of Artificial Intelligence, Elsevier, 2015, 37, pp.91-102. 〈10.1016/j.engappai.2014.09.001〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01239175
Contributeur : Dino Ienco <>
Soumis le : lundi 7 décembre 2015 - 14:52:57
Dernière modification le : jeudi 24 mai 2018 - 15:59:25
Document(s) archivé(s) le : samedi 29 avril 2017 - 10:21:09

Fichier

EAAI_Pitarch.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yoann Pitarch, Dino Ienco, Elodie Vintrou, Agnès Bégué, Anne Laurent, et al.. Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape. Engineering Applications of Artificial Intelligence, Elsevier, 2015, 37, pp.91-102. 〈10.1016/j.engappai.2014.09.001〉. 〈lirmm-01239175〉

Partager

Métriques

Consultations de la notice

402

Téléchargements de fichiers

215