
Mining Multi-Relational Gradual Patterns

NhatHai Phan∗ Dino Ienco† Donato Malerba‡ Pascal Poncelet§

Maguelonne Teisseire¶

Abstract

Gradual patterns highlight covariations of attributes of

the form “The more/less X, the more/less Y”. Their

usefulness in several applications has recently stimulated

the synthesis of several algorithms for their automated

discovery from large datasets. However, existing techniques

require all the interesting data to be in a single database

relation or table. This paper extends the notion of gradual

pattern to the case in which the co-variations are possibly

expressed between attributes of different database relations.

The interestingness measure for this class of “relational

gradual patterns” is defined on the basis of both Kendall’s

τ and gradual supports. Moreover, this paper proposes

two algorithms, named τRGP Miner and gRGP Miner,

for the discovery of relational gradual rules. Three pruning

strategies to reduce the search space are proposed. The

efficiency of the algorithms is empirically validated, and the

usefulness of relational gradual patterns is proved on some

real-world databases.

1 Introduction

Nowadays, most of information systems are based on
the relational database technology. The logical models
of the data are sets of relations or tables possibly linked
by foreign key constraints. This contrasts with the
usual practice in Data Mining of organizing data in a
single relation when they are analyzed. Relational data
mining approaches [6] are characterized by both their
direct applicability to “multi-relational data” (MRD)
and their capability of looking for patterns which involve
multiple database relations.

Most of the studies on relational data mining focus
on relational patterns at the tuple level, i.e., they ex-
press relationships between tuples of different database
relations. Relational association rules [4], relational
näıve Bayesian classifiers [7], relational regression mod-
els [1] and relational subgroups [17], all express patterns

∗University of Oregon. haiphan@cs.uoregon.edu
†Irstea Montpellier, France. dino.ienco@teledetection.fr
‡University of Bari, Italy. donato.malerba@uniba.it
§University of Montpellier 2, France. pascal.poncelet@lirmm.fr
¶Irstea Montpellier, France. teisseire@teledetection.fr

as either SQL queries or first-order logic clauses with
constraints between tuples or facts. Similarly, the prob-
abilistic relational models [8] define a distribution over a
set of instances of a schema, and consider the structure
at the level of attribute values.

In this paper, we focus on patterns expressing
the relational structure at the attribute level. We
consider relational extensions of the class of gradual
dependencies which express covariations of attributes
of the form “The more/less X, the more/less Y” [10].
This class of patterns has a wide range of applications
[3, 5, 18, 19, 20]. For instance, with reference to the
financial database in Figure 1, the gradual pattern “the
higher the average salary in a district, the bigger the
deals made by inhabitants living in the district” could
be useful for business planning. While the pattern “the
smaller the district, the longer the duration of the loans”
provides financial promoters with some useful insights.
These two examples show gradual dependencies between
attributes from different relations (i.e., the average
salary, the size of districts, the deal, and the loan).
Hence they could be discovered only in a MRD setting.

To discover this kind of patterns, we first intro-
duce the concept of multi-relational gradual pattern
(multi-rgp), and its associated support measures based
on Kendall’s τ [3] and gradual support [5]. Then we
propose an algorithm, named RGP -Miner, to discover
multi-rgps directly from MRDs. Mining the complete
set of multi-rgps is a non-trivial task since the size
of the search space is exponential in the number of
numerical attributes of the multi-relational database.
To tame computational complexity, we design three ef-
ficient rules named Complementary Pruning, Apriori
Pruning, and Backward Pruning to shrink the search
space and prevent unnecessary computations. Experi-
ments conducted on real datasets demonstrate the pat-
tern meaning, effectiveness, and efficiency of our pro-
posed approaches.

2 Problem Statement

In this section, we formalize the data model, the notion
of relational gradual patterns, and its examples.

2.1 Multi-Relational Data. In this work, we as-
sume that a database db consists of a set of tables,
db = {T 1, . . . , Tn}, each of which has a schema S(T i) =
(PKi,FKi,Ai) consisting of a primary key PKi, pos-
sibly some foreign keys (set FKi), and at least one at-
tribute (set Ai). For instance, with reference to Fig-
ure 1, the Loan table has a key loan-ID, a foreign key
account-ID and attributes date, amount, duration, etc.

Foreign keys define the only possible joins between
two tables. Without loss of generality, we assume
that any pair of tables has at most one foreign key
linking them. Indeed, databases can always be losslessly
recoded such that this assumption holds.

Moreover, we assume that all attributes have a nu-
merical domain, since we are not interested in find-
ing patterns among categorical attributes. The nu-
merical domain of the attribute Aij is denoted as

Dom(Aij). Similarly, the domain of table T i is denoted

by Dom(T i), and corresponds to the Cartesian product
of all domains involved, i.e.,
(2.1)

Dom(T i) = Dom(PKi)
∏

FKij∈FK
i

Dom(FKij)
∏

Aij∈A
i

Dom(Aij)

Each table is also associated with a set of tuples
which also called the table extension. Henceforth,
the distinction between the table and its extension is
blurred, and we use the notation t ∈ T i to indicate that
a tuple t is in extension of table T i.

The database as whole should satisfy referential in-
tegrity, i.e., foreign-key values in a tuple refer to exist-
ing tuples in the table for which this foreign key refers
to. In formal, if t ∈ T i and S(T i) = (PKi,FKi,Ai),
then for each FKij ∈ FK

i whose domain is Dom(PKl),
the following condition must hold: there exists a tuple
t′ ∈ T l such that πFKij (t) = πPKl(t′), where π is the

usual projection operator of relational algebra.

2.2 Multi-Relational Gradual Pattern. In the
case of a (single) table, an itemset boils down to
a selection [11] [15]. However, in relational gradual
pattern context, a selection on an attribute cannot
reflect the attribute graduality. The main reason is
that the value of a specific attribute Ail (resp. set
of attributes) must change following a regular rule
(e.g., “Ail is increasing or decreasing”) over the tuples.
Therefore, a common selection in which attribute values
are selected by some simple operations (e.g., >,<,=)
cannot present the attribute graduality in our context.

To address the issue, we propose the definition of
relational gradual patterns in which the graduality is
covered. Let us denote the increase and decrease of an
attribute Aij as Aij

>
and Aij

<
. Let Ei is the set of

all single gradual attributes which are generated by Ai

from table T i, Ei can be defined as follows:

(2.2) Ei =

|Ai|⋃
j=1

{Aij
<} ∪ {Aij

>}

In a single table T i, a relational gradual pattern
qi is a combination of gradual attributes in Ei. The
set of all potential gradual patterns qi are called Qi.
In addition, “proper” relational gradual patterns could
be generated from gradual attributes which are from
different tables. If the gradual attributes in a pattern
are from a single table T i, then the pattern is called a
mono-rgp. If the gradual attributes are from two tables
T i and T j then the pattern is called a bi-rgp. Finally, a
multi-rgp can contain gradual attributes from multiple
tables in MRDs. The definition of relational gradual
patterns can be defined as follows:

Definition 2.1. (Relational Gradual Pattern). Let
db = {T 1, . . . , Tn} be a database for which each table
T i has a schema S(T i) = (PKi,FKi,Ai).

1. Mono-relational gradual pattern (mono-rgp):
p = qi where qi ∈ Qi

2. Bi-relational gradual pattern (bi-rgp) between T i, T j:

a. if T i:T j is a 1:N relation then
p = qiqj where qi ∈ Qi, qj ∈ Qj and PKi ⊆ FKj

b. if T i:T j is a M:N relation then
p = qiqj where qi ∈ Qi, qj ∈ Qj and ∃T c ∈ db
s.t.

(
PKi ⊆ PKc, PKj ⊆ PKc

)
or
(
PKi ⊆ FKc,

PKj ⊆ FKc
)

3. Multi-relational gradual pattern (multi-rgp). p =
qiqi+1 . . . qm where ∀j ∈ {i, . . . ,m − 1} : qj ∈ Qj

and qjqj+1 is a bi-rgp

In the Definition 2.1, we define the patterns that
can be extracted in a single relation, in two relations,
and in multi-relations. The combination of two mono-
rgps from two relations become a bi-rgp. The relations
from T i to T j in 2.a and 2.b respectively are 1:N and
M:N relationships. Note that, in 2.b, the table T c is
a connection relation between T i and T j . Finally, a
multi-rgp is a generalization of the bi-rgp so that every
consecutive pairs of mono-rgps is a bi-rgp.

For instance, in Figures 1 and 2, potential interest-
ing multi-rgps are as follows:

Bi-rgp from a 1:N relation. In table Loan, we
have a mono-rgp such as q2 = {Amount>, Duration>}.
Additionally, we can have a bi-rgp by connecting table
Loan to table Account over the foreign key accountID
(i.e. Account.PK = Loan.FK). A potential bi-rgp is p
= q1q2 = {Frequency>, Amount>, Duration>} where

Figure 1: A Financial database (from PKDD CUP 99).

Figure 2: An example database.

q1 = {Frequency>} ∈ QAccount. The pattern can be
explained as “the more frequently the accounts are used,
the more amount and the longer duration loans are”.

Bi-rgp from a M:N relation. We have
PKClient ⊆ FKDisposition and PKAccount ⊆
FKDisposition. Thus, the relation between table Client
and table Account is M:N. In addition, the table Dispo-
sition is a connection table between them. A a result,
a potential bi-rgp is p = {Birthdate<, F requency>}
where Birthdate< ∈ QClient and Frequency> ∈
QAccount. The pattern can be explained as “the older
clients are, the more frequently they use their accounts”.

Multi-rgp. A potential multi-rgp which could
cross the three tables District, Account, and Loan
is p = {#People>, F requency>, Amount>} where
#People> ∈ QDistrict, F requency> ∈ QAccount, and
Amount> ∈ QLoan. The pattern can be explained as
“for the habitants living in the districts which have more
inhabitants, the more frequently their accounts are used,
and the more amount of loans they have”.

3 Pattern Occurrences

The occurrences of common relational patterns can be a
set of tuples (e.g., as in [15]) or a set of sets of sets of ...
of tuples (e.g., as in [11]). However, defining occurrences
of the multi-rgp can become more challenging. In
essence, a single tuple cannot reflect the graduality of
the patterns. It requires at least two tuples together
to evaluate the graduality of the attributes. A gradual
tuple pair can be defined as follows:

Definition 3.1. (Gradual Tuple Pair). Given a
mono-rgp qi = {Aij

∗j , . . . , Ain
∗n} ∈ Qi with ∗j , . . . , ∗n ∈

{<,>}. A pair of distinct tuples (t, t′) s.t. t, t′ ∈ T i, is
gradual in respect to qi if:

(3.3) ∀Ail
∗l ∈ qi : πAil (t) ∗l πAil (t

′)

Given a multi-rgp p = qiqi+1 . . . qm, a pair of tuples
(t, t′) s.t. t, t′ ∈ (T i ./ T i+1 .// Tm), is gradual in
respect to p if:

(3.4) ∀ql ∈ p :
(
πT l(t), πT l(t

′)
)

respects ql

The occurrences of relational gradual patterns can
thus contain sets of gradual tuple pairs.

Definition 3.2. (Pattern Occurrence). Let db =
{T 1, . . . , Tn} be a MRD. Given a pattern p =
qiqi+1 . . . qm, the occurrence of p, denoted occ(p), is a
set of gradual tuple pairs (t, t′) in respect to p. Note that
t, t′ ∈ (T i ./ T i+1 .// Tm).

It is illustrative to consider what the domain of such
patterns is. That is, “what does an instance look like?”
In essence, the definition of these domains follows the
structure of the pattern occurrence.

Definition 3.3. (Pattern Occurrence Domain). Let
db = {T 1, . . . , Tn} be a database. Given a multi-
rgp p = qiqi+1 . . . qm, the domain of p’s occurrences,
denoted DomOcc(p), is given by
(3.5) DomOcc(p) = (T i ./ T i+1 .// Tm)2

For brevity, we only report the primary key and
foreign keys in a pattern occurrence. For instance,
given a mono-rgp q1={Frequency>} ∈ Qaccount (Fig-
ure 3). One of the occurrences of q1 is (accountID,
accountID)={10, 11}. The occurrences of q1, de-
noted occ(Frequency>), are illustrated in Figure
3. In similar, we have the occurrences of q2 =
{Amount>} ∈ QLoan, denoted occ(Amount>). If
we have a bi-rgp p = q1q2 then an occurrence
of p is

(
(t1, t2)=(10, 11), (t′1, t

′
2)=(30, 32)

)
where

(t1, t2)=(10, 11)∈occ(q1), (t′1, t
′
2)=(30, 32)∈occ(q2)

and πaccountID (t1)=πaccountID (t′1)=10, πaccountID
(t2)=πaccountID (t′2)=11. Obviously, we can compute
the occurrences of p which are illustrated as the links
between occ(Frequency>) and occ(Amount>).

4 Pattern Supports

There are different support definitions (i.e., Kendall’s
τ support [3], and gradual support [5]) for mono-rgps.
In spite of differences, they share the same hypothesis
which is pattern support, denoted σ, is the number of
pattern occurrences over all possible cases:

(4.6) σ(p) =
|occ(p)|

|all possible cases|

Figure 3: A 1:N relation example. (Best view in color)

Fortunately, the support measure for multi-rgps is
not different from this point of view. Since we have al-
ready presented the pattern occurrences, the challeng-
ing becomes how we identify the “|all possible cases|”
given a multi-rgp. Given a bi-rgp, the number of
|all possible cases| depends on the types of the relations
(i.e., 1:N or M:N). It becomes even more complicated
for multi-rgps which contain a series of bi-rgps.

To breakthrough the challenge, we propose a novel
Kendall’s τ -based support to measure the graduality of
multi-rgps. Let us first propose a set of operations which
will be used to define the support measure.

• distinct(PKi, T j)

Given two tables T i and T j s.t. PKi ⊆ FKj : 1)
distinct(PKi, T j) returns a set of “distinct” values
pk ∈ PKi s.t. ∃t′ ∈ T j : pk ⊆ πFKj (t′).

• count(pk, T j) returns the number of tuples t′ ∈ T j
s.t. pk ⊆ πFKj (t′).
• distinct(PKm, p)

Given a multi-rgp p = qi . . . qm, distinct(PKm, p) is
a set of “distinct” PKm values which are involved
in the occurrence domain of p.

In a single table context, |all possible cases| of a
mono-rgp p = qi actually is the number of ran-
domly chosen pairs of tuples (t, t′) s.t. t, t′ ∈ T i

and (t, t′) possibly respects the pattern p. Indeed, the

|all possible cases| =
(|T i|

2

)
and not |T i|(|T i| − 1) since

it is not possible that (t, t′) and (t′, t) support p at the
same time. The support of mono-rgps can be defined as
follows:

Definition 4.1. (Kendall’s τ support of mono-rgps).
Given a MRD db = {T 1, . . . , Tn}, and a mono-rgp
p = qi. The pattern support can be defined as follows:

(4.7) στ (p) =
|occ(p)|(|T i|

2

)

Regarding to bi-rgp p = qiqj with the rela-
tion T i:T j is 1:N, the |all possible cases| intuitively is(|distinct(PKi,T j)|

2

)
. This is because we need to join two

tables via PKi. In addition, only the values of PKi

which exist in table T j can support p by respecting the
mono-rgp qj . The number of these primary key values is
|distinct(PKi, T j)|. However, it is different from mono-
rgps, there are some cases needed to be eliminated from(|distinct(PKi,T j)|

2

)
. In mono-rgps, the values of PKi

are distinct meanwhile they are not distinct after join-
ing two tables T i and T j in bi-rgps. If two tuples in
T i ./ T j have the same value of PKi then the com-
binations of them cannot respect the mono-rgp qi in
p. Therefore, we need to eliminate these combinations
from the |all possible cases|. All of these combinations

can be computed as
∑
pk∈distinct(PKi,T j)

(count(pk,T j)
2

)
.

Definition 4.2. (Kendall’s τ support of bi-rgps for
1:N relations). Given a MRD db = {T 1, . . . , Tn}, and
a bi-rgp p = qiqj s.t. T i:T j is 1:N. The pattern support
can be defined as follows:
(4.8)

στ (p) =
|occ(p)|(|distinct(PKi,T j)|

2

)
−

∑
pk∈distinct(PKi,T j)

(count(pk,T j)
2

)
Regarding to bi-rgp p = qiqj with the relation T i:T j

is M:N, the |all possible cases| can be simply computed

as
(|distinct(PKi,T c)|

2

)
×
(|distinct(PKj ,T c)|

2

)
which is total

possible combinations of the values of PKi and PKj .
T c is the connection table between T i and T j .

Definition 4.3. (Kendall’s τ support of bi-rgps for
M:N relations). Given a MRD db = {T 1, . . . , Tn}, and
a bi-rgp p = qiqj s.t. T i:T j is M:N. The pattern support
can be defined as follows:

(4.9) στ (p) =
|occ(p)|(|distinct(PKi,Tc)|

2

)
×
(|distinct(PKj ,Tc)|

2

)

The support of multi-rgps can be considered as
a generalization of bi-rgps. Given a multi-rgp p =
qi . . . qm, p can be rewrote as p = (qi . . . qm−1)qm.
In fact, (qi . . . qm−1) can be considered as a mono-rgp
whose domain is T i .// Tm−1 and qm is another
mono-rgp. So, the |all possible cases| clearly depends
on the relationship between two tables Tm−1 and Tm.
As a result, the Definitions 4.2, 4.3 can be utilized to
compute the support for multi-rgps. What we need is to
identify values of the primary key PKm−1 which exist in
the occ(qi . . . qm−1). The set of these values are denoted
as PKp′= distinct(PKm−1, p′) where p′ = qi . . . qm−1.
The support of multi-rgps can be defined as follows:

Definition 4.4. (Kendall’s τ support of multi-rgps).
Let db = {T 1, . . . , Tn} be a database, the support of
multi-rgps p = qi . . . qm−1qm can be defined as follows:

1) if Tm−1:Tm is 1:N

στ (p) =
|occ(p)|(|distinct(PKp′ ,Tm)|

2

)
−
∑
pk∈distinct(PKp′ ,Tm)

(count(pk,Tm)

2

)
2) if Tm−1:Tm is M:N and T c is the connection table

στ (p) = |occ(p)|(|distinct(PKp′ ,Tc)|
2

)
×
(|distinct(PKm,Tc)|

2

)
In practice, to reduce the memory consumption

we index only the tuples exist in the occurrences of
(qi . . . qm−1). The following theorem gives the expected
στ , denoted E[στ], in the case of statistically indepen-
dent attributes. This expected support can be used as
a reference point to assess the quality of a multi-rgp.

Theorem 4.1. (E[στ]). Given a set of statistically
independent gradual attributes s = {A1, A2, . . . , An},
Ps = {p1, . . . , pm} is the set of all possible independent
multi-rgps generated from s. The expected suppτ of a
pattern p ∈ Ps is E[στ](p) = 1

(2n−1+n(3n−1−1)+1) .

where p and p′ are independent multi-rgps if
(DomOcc(p) = DomOcc(p′)) ∧ (occ(p) ∩ occ(p′) = ∅).

The proof of Theorem 4.1 is available at https:

//sites.google.com/site/ihaiphan/. Until now, we
have proposed the definition of Kendall’s τ support of
multi-rgps. In [5], Di-Jorio et. al. propose a gradual
support measure to emphasize the consecutiveness in
changing of attributes over the values. Instead of a pair
of tuples, the gradual support concerns on a list of tuples
L = {ti, ti+1, . . . , tk} in which ∀tj , tj+1 ∈ L : (tj , tj+1)
is a gradual tuple pair (Def. 3.1). In the gradual
support, |occ(p)| becomes the size of the maximal list
of tuples L which supports p in the MRD db. The
|all possible cases| becomes the possible longest L in the
db. Based on this idea, we also propose the gradual
support, denoted σg(p), for multi-rgps.

5 Multi-Relational Gradual Pattern Miner

Extracting the complete set of multi-rgps is a non-trivial
task. At first glance, the number of potential multi-rgps
is exponential, i.e., approximately 22×|Adb| where Adb is
a set of all numerical attributes in the MRD db.

Key idea. Facing the huge potential search space,
we propose an approach, named RGP Miner. In RGP
Miner, we first extract mono-rgps from single tables by
applying GRITE algorithm [5]. Then the MRD db is
transformed into a graph G = (V,E) where V is a set of
vertices and E is a set of edges (Figure 4). Each vertex
vi ∈ V stands for T i ∈ db and each edge eij can be
considered as a relationship between two tables T i and
T j . Next, we apply a depth-first search on the set of
vertices V following E to combine mono-rgps together
to be multi-rgps. To avoid unnecessary computations
and searches, we propose three pruning rules which
are Complementary Pruning, Apriori Pruning, and
Backward Pruning. Complementary Pruning is used to
avoid the support computation for complement patterns.
Then, Apriori Pruning is used to eliminate infrequent
patterns. Finally, Backward Pruning avoids computing
redundant patterns which have been traversed before.

Before presenting our algorithm, we first give def-
initions of complement and frequent patterns. Given
two gradual attributes Aij

>
and Aij

<
which are from ta-

ble T i, we have στ (Aij
>

) = στ (Aij
<

). This is because

∀t, t′ : if (t, t′) ∈ occ(Aij
>

) then (t′, t) ∈ occ(Aij
<

) and

vice versa. Aij
>

and Aij
<

are called complement each
other. Two patterns p and p′ are called complement
each other if for all gradual attributes Aij

∗
in p there is

a complement attribute of Aij
∗

in p′ and vice versa. We
also have στ (p) = στ (p′). Therefore, we can infer the
support of a pattern from its complement.

In fact, the number of multi-rgps is exponential. So
we only focus on frequent multi-rgps and not all of them.
Let us define the frequent multi-rgps as follows:

Definition 5.1. (Frequent Pattern). Given a prede-
fined minimal support threshold σmin, and a multi-rgp
p = qiqi+1 . . . qm. p is an frequent pattern if:

(5.10) ∀j ∈ {i, . . . ,m} : στ (qi . . . qj) ≥ σmin

In order to start the depth-first search process,
vertices in V are collected into two different categories,
source vertices and leaf vertices. The source vertices
are not pointed from the other vertices while the leaf
vertices do not point to any other nodes. The search
process is started with source vertices. Note that
the vertex vm+1 can be added into the node r =
{vi, . . . , vm} if there is an edge from vm to vm+1.

Let us define some useful notations which will be
used in our proposed algorithm as follows:

Figure 4: Graph of the Financial MRD in Fig 1.

• A set of frequent multi-rgps Qr:

Given a current node r = {vi, vi+1, . . . , vn}, Qr

returns the set of all frequent multi-rgps which are
extracted from combining frequent mono-rgps in
Qvi , . . . , Qvn .

• Merging two nodes, Cr∪r
′

= (Qr ./ Qr
′
)∪Qr ∪Qr′ :

Given two nodes r and r′, Cr∪r
′
=(Qr ./ Qr

′
)∪Qr ∪

Qr
′

contains all potential multi-rgps by merging r
and r′.

• Attaching two multi-rgps, p • p′:
Given two multi-rgps p = qi, . . . , qm and p′ =
qj , . . . , qn, we have p • p′ = qi, . . . , qmqj , . . . , qn.

Property 5.1. (Complementary Pruning). Given two
complement patterns p and p′, we have: σ(p) = σ(p′).

Proof. We have ∀(t1, t2) ∈ occ(p) then (t2, t1) ∈ occ(p′).
Thus, |occ(p)| = |occ(p′)|. In addition, DomOcc(p) =
DomOcc(p′). So the |all the cases|s of p and p′ are the
same. Consequently, στ (p) = στ (p′).

By applying Complementary Pruning, we can avoid
computing the supports of complement patterns. Even
though Complementary Pruning rule can eliminate the
computation of a large number of candidates, there are
many other candidates need to be ignored to shrink the
search space. In essence, if a multi-rgp is not frequent
then its extensions are not frequent as well. Therefore,
we can eliminate those extensions. Apriori Pruning rule
can be defined as follows:

Property 5.2. (Apriori Pruning). Given two multi-
rgps p and p′, the following holds: if p is not frequent
then p • p′ is not frequent as well.

Proof. We have if p = {qi, . . . , qm} is not frequent
then ∃j ∈ {i, . . . ,m} s.t. στ (qi . . . qj) < σmin. In
addition, p ⊆ p • p′ and thus qi . . . qj ⊆ p • p′. So,
∃j ∈ {i, . . . , |p • p′|} s.t. στ (qi . . . qj) < σmin. As a
result, p • p′ is not frequent (Definition 5.1).

For instance, when we add new vertex loan into a
current route {district, account} (e.g., step 4th in our
depth-first search algorithm, Figure 5) we apply Com-
plementary Pruning and Apriori Pruning to avoid un-
necessary computations and infrequent patterns. Re-
garding to the route, there could be redundant routes in

the search space. For instance, at step 10th, the multi-
rgp candidates in Qdistrict ./ Qaccount ./ Qdisposition

had been evaluated in step 7th. So they are redundant.
Let us define Backward Pruning rule to ignore this type
of redundant patterns.

Property 5.3. (Backward Pruning). Given a current
node r = {vi, . . . , vn}, ra = r \ {vn} is called ancestor
of r, an already traversed node r′. A set of pattern
candidates we need to evaluated Fr at the step r can
be computed as follows:

if dest(r′) = dest(r) ∧ comm(ra, r
′) 6= ∅

then Fr = (Qra∩r
′
./ Qra\r

′ ∪Qra\r′) ./ Qvn

Proof. We have Cr=(Qra ./ Qvn) ∪ Qra ∪ Qvn . Since
Qra and Qvn had been evaluated at previous steps, the
candidates now become Fr=Qra ./ Qvn=

(
(Qra∩r

′
./

Qra\r
′
)∪(Qra∩r

′ ∪Qra\r′)
)
./ Qvn = (Qra∩r

′
./ Qra\r

′∪
Qra\r

′
) ./ Qvn ∪ (Qra∩r

′
./ Qvn). We have ra∩r′∪vn ⊆

r′, thus Qra∩r
′
./ Qvn had been evaluated at the step r′.

Consequently, Fr = (Qra∩r
′
./ Qra\r

′ ∪Qra\r′) ./ Qvn .

In the Backward Pruning rule, the first part of Fr
(i.e., Qra∩r

′
./ Qra\r

′ ∪ Qra\r′) had been evaluated
as the steps ra and r′. Therefore, we do not need to
reevaluated them at the step r.

By applying Backward Pruning, we can discard a
number of redundant patterns when there is another
route passing the same destination with the current
route. For instance, at step 10th, we have the cur-
rent node r = {district, account, client, disposition}.
In essence, Q{district,account,disposition} has been evalu-
ated before at the node labeled (7). Thus the pattern
candidates in Q{district,account} ./ Qdisposition are re-
dundant. Therefore, these patterns need to be pruned.

Backward Pruning is efficient in the sense that we
only need to do the pruning once at the step r and
not for its subtrees. This is because all the redundant
patterns have been discarded from Qra and thus Qr-
based Cartesian product can be applied for all the
subtrees of r. To obtain the patterns, at each node
r = {vi, . . . , vn}, the set of frequent patterns in Qr

which includes mono-rgps from Qvn will be reported.
For instance, at the step 3rd, only frequent patterns
which contain mono-rgps fromQaccount will be reported.

All the Theorems are still true for the σg measure.
We will omit the proofs for σg since they are very
similar to the reported ones. In addition, the RGP
Miner algorithm has two instances, i.e. τRGP Miner
and gRGP Miner. The pseudo code of τRGP Miner
is presented in Algorithm 5.1. The main difference in
gRGP Miner is that we need to navigate a binary matrix
of orders for each pattern to obtain the longest list of
gradual tuples. In fact, we apply the matrix navigation
function presented in the GRITE algorithm [5].

Algorithm 5.1. τRGP Miner
Input: MRD db, source nodes S, G={V,E}, σmin
Output: all frequent multi-rgps

1 begin
2 R := ∅;
foreach v ∈ S do

3 r := {v};
RGpattern(db, r, v,G, σmin);

4 RGpattern(db, r, v,G, σmin)
begin

5 foreach node l ∈ v.edges do
6 combining(r, v, l);
7 output Qv ; delete Qv; R := R ∪ r;
8 combining(route r, node v, node l)

begin
9 if type(v, l) = 1 : N then

10 denom := (
|join(PKv,l)|

2);
11 else

12 denom := (
|distinct(PKv,k)|

2)× (
|distinct(PKl,k)|

2);
13 temp = ∅;

foreach pattern qi ∈ Qv do
14 if Backward(qi, l, r, R) = true then
15 if exist(db, qi) = false then
16 create(db, qi);

17 foreach pattern qj ∈ Ql do
18 if complement(qiqj , temp) = false then
19 create(db, qj);

occ := |qi ./ qj |;
στ (q

iqj) := occ
denom ;

if στ (q
iqj) ≥ σmin then

20 temp := temp ∪ qiqj ;
21 delete qj ;

22 else
23 temp := temp ∪ qiqj ;
24 delete qi;

25 Ql := Ql ∪ temp;
RGpattern(db, r ∪ l, l, G, σmin);

26 type(v, l) is the connection type v:l, exist(db, qi) returns true

if qi exists in db, return false otherwise, complement(qiqj , temp)

returns false if there is no complement of qiqj in temp.

6 Experimental Results

A comprehensive experiment study has been conducted
on real datasets which are the Financial data1 (PKDD
Cup 99) and the Thrombosis data1 (PKDD Cup 2001).
The Financial database scheme corresponds to the one
given in Figure 1. There are 4,500 accounts, 5,369
clients, 5,369 objects in disposition, 6,471 objects in
order, 2,500 objects in transaction, 682 objects in loan,
892 cards, and 77 districts. The experiments are carried
out on a 2.8GHz Intel Core i7 cpu, 4GB memory.

6.1 Patterns. Interesting multi-rgps were discovered
in the Financial database and Table 1 illustrates top
strongest and longest patterns. We discuss some of them
in the following.

Bases on στ . The τRGP Miner returns the
pattern p = {district.Unemploy96<, order.Amount>}
with στ (p) = 58.32%. The pattern could be explained
as: “the less unemployed ratio districts are, the more
expensive orders the habitants, who live in the districts,

1http://lisp.vse.cz/challenge/.

(a) (b)

(c) (d)
Figure 6: (a)(b)-Running time and #patterns on the
Financial MRD. (c)(d)-Running time and #patterns on
the Thrombosis MRD.

do”. This pattern is very useful to recommend for
business men that the bigger deals are from the less
unemployed ratio districts. In addition, by applying
the Theorem 4.1, the E[στ](p) only is 14.3%. Thus, the
pattern has an attractive support value.

Another pattern related to the average salary is
p = {district.Avg-Salary<, orders.Amount<} with
στ (p) = 52.98%. The pattern can be explained as: “the
lower average salary the districts are, the less expensive
orders the habitants, who live in the districts, do”.

Bases on σg. The gRGP Miner also re-
turns many interesting multi-rgps. Interestingly, the
top strongest patterns based on στ and σg are
very different. For instance, the pattern p =
{district.#It-500>, loan.Payment<} with σg(p) =
44.444%. The pattern means: “the more number
of municipalities with inhabitants < 499 the districts
have, the less the monthly payment is per inhabitant”.
This pattern is very interesting since it reveals un-
known/unpublished loan policies.

Another interesting pattern is p = {district.
#It-500>, loan.Duration>} with σg(p) = 60%. The
pattern means: “the more number of municipalities with
inhabitants < 499 the districts have, the longer debts the
habitants have”. This pattern shows that the habitants
who are from the districts which have more number of
municipalities with inhabitants < 499 are interested in
borrowing money in longer time. Therefore, it could be
useful to manage business strategies.

6.2 Efficiency and Pattern Distribution. To the
best of our knowledge, there is no previous work which
addresses multi-rgp issue. Therefore, in the efficiency
experiments, we examine the proposed algorithms by
varying the support threshold.

Figure 5: Multi-RGP search space of the graph in Figure 4.

Table 1: Frequent Multi-RGPs.
στ (%) σg (%)

account.Date<, loan.Date< 63.97 district.#It-500>, loan.Duration> 60
district.Unemploy96<, orders.Amount> 58.32 district.#It-500>, loan.Date< 55.556
district.Avg-Salary<, loan.Amount> 55.76 district.#People<, loan.Duration> 50
district.#Crime95<, loan.Amount> 54.42 district.Unemploy95>, loan.Payment> 50
district.#People>, loan.Payment< 54.23 district.#Crime95<, loan.Duration> 50
district.#Crime96<, loan.Amount> 53.97 district.#Crime96<, loan.Duration> 50
district.Unemploy95<, loan.Payment< 53.42 district.Unemploy96<, loan.Date> 45.455
district.Avg-Salary<, orders.Amount< 52.98 district.#It-500>, loan.Payment< 44.444

district.#Entrepreneur<, loan.Payment> 52.31 district.Ratio-urban<, loan.Payment> 44.444

Some of long patterns στ (%)
district.{#It-2000<,#Crime95<}, account.Date>, loan.Date< 36.91

district.{#It-2000<,#Crime95<,#Crime96<}, account.Date>, loan.Date< 36.53

Figure 7: #Redundant patterns in Financial database.

For Financial database, Figure 6a shows that τRGP
Miner seems linear in terms of executing time. Fur-
thermore, with the same support value, gRGP Miner
is more efficient than τRGP Miner. This is because, by
applying σg, there are less number of extracted patterns
than στ (Figure 6b). In essence, σg is tighter than στ
since the gradual tuple pairs are required to satisfy the
consecutiveness constraint. However, there are differ-
ences in Thrombosis database. In most of cases, gRGP
Miner is slower than τRGP Miner (Figure 6c). Since
the matrix size (i.e., 32, 935 × 32, 935) which we need
to navigate is significantly larger compare with the ones
in Financial database (i.e., 6, 471× 6, 471). The matrix
navigation for computing the longest route is expensive.

Figure 8: Multi-rgp distribution with σmin ≥ 0.15.

However, with low support values (i.e., σ=0.1), gRGP
Miner is faster than τRGP Miner. This is because there
are many patterns extracted by applying στ (Figure 6d).

Let us consider the effectiveness of Backward Prun-
ing rule (Figure 7). By applying the Backward Pruning,
a large number of redundant patterns can be ignored in
Financial database. In fact, the number of redundant
patterns is much larger than the number of extracted
ones. As a result, the process speeds up.

The distribution of multi-rgps extracted in Finan-
cial database is illustrated in Figure 8. We can con-
sider that στ and σg are converged at low value area
(στ , σg ≤ 0.3). However, they are diverse at the high
value areas. It means the two support measures illus-
trate the graduality in different angles. They offer us a

powerful tool to discover more number of useful patterns
which could benefit different real world applications. As
a result, both σg and στ are useful in mining multi-rgps.

7 Related Work

Most previous work on relational pattern mining can
be categorized into methods that generalize ideas from
frequent itemset mining to the relational setting and
methods that are based on Inductive Logic Program-
ming (ILP). In this section we discuss the differences
between these approaches and our approach as well as
other works that do not fall into these two categories.

Well known ideas and algorithms from frequent
itemset mining can be used for multi-relational data if
applied on the join of all tables. This kind of patterns
essentially is itemsets such that items are attribute
values and transactions are the tuples of the join table
[9, 12, 13]. A different approach is taken by Smurfig [15]
where the support is measured with respect to every
table, as the relative number of keys that the items
correspond to. Warmr [4] and Farmer [14] are ILP-based
methods. The patterns are logic rules which can be
regarded as local models of the database. The support
is defined as the relative number of key values of one
target table that satisfy the rule. The purpose of these
methods is to extract the most frequent rules.

R-KRIMP [12] patterns are similar to the work of
[2], who define these patterns as simple conjunctive
queries of the form: [p0, . . . , pn]. RDB-Krimp [11] is
an improvement of R-KRIMP. RDB-Krimp and RMiner
[16] are methods for mining relational databases by us-
ing information theoretic ideas for the assessment of
patterns. RDB-Krimp focus on the total description
length of the database joint with the patterns, and pat-
terns are deemed more interesting if they are better at
compressing this description length. RMiner insteads
deem patterns more interesting if they describe surpris-
ing aspects of the database in a concise way.

Compare with the previous work, we are interested
in mining patterns at a higher level. This type of
patterns is the correlation between attributes from a
graduality point of view.

8 Conclusion and Future Directions

In this paper, we propose the relational gradual pattern
concept which enables us to examine the correlations
between attributes from a graduality point of view
in MRDs. To efficiently mine frequent patterns, we
also define its associated support measures based on
Kendall′s τ and gradual supports in MRD context.
Then, τRGP and gRGP Miner algorithms are proposed
to extract all the frequent patterns. One of the future
directions is to investigate top-k representative multi-

rgp mining approach to avoid extracting huge amount
of patterns. Another work is to define relational gradual
pattern at tuple level. That helps us better understand
the structure of MRDs from a graduality point of view.

References
[1] A. Appice, M. Ceci, and D. Malerba. Mining model

trees: A multi-relational approach. In ILP’03, pages
4–21.

[2] H. Mannila B. Goethals, and W. L. Page. Mining
association rules of simple conjunctive queries. In
SDM’08, pages 96–107.

[3] T. Calders, B. Goethals, and S. Jaroszewicz. Min-
ing rank-correlated sets of numerical attributes. In
KDD’06, pages 96–105.

[4] L. Dehaspe and H. Toivonen. Discovery of frequent
datalog patterns. DMKD., 3(1):7–36, 1999.

[5] L. Di-Jorio, A. Laurent, and M. Teisseire. Mining
frequent gradual itemsets from large databases. In
IDA’09, pages 297–308.

[6] L. Džeroski and N. Lavrač. Relational data mining.
Springer-Verlag, Berlin, 2001.

[7] P.A. Flach and N. Lachiche. Naive bayesian classifica-
tion of structured data. ML, 57(3):233–269, 2004.

[8] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI’99,
pages 1300–1309.

[9] B. Goethals, W. L. Page, and M. Mampaey. Mining
interesting sets and rules in relational databases. In
SAC’10, pages 997–1001.

[10] E. Hüllermeier. Association rules for expressing grad-
ual dependencies. DMKD, volume 2431, pages 200–
211, 2002.

[11] A. Koopman and A. Siebes. Characteristic relational
patterns. In KDD’09, pages 437–446.

[12] A. Koopman and A. Siebes. Discovering relational item
sets efficiently. In SDM’08, pages 108–119.

[13] E.K.K. Ng, A.W.-C. Fu, and K. Wang. Mining
association rules from stars. In ICDM’02, pages 322–
329.

[14] S. Nijssen and J. Kok. Efficient frequent query discov-
ery in farmer. In PKDD’03, pages 350–362.

[15] W.L. Page. Mining patterns in relational databases.
In PhD Thesis, Universiteit Antwerpen, 2009.

[16] E. Spyropoulou and T.D. Bie. Interesting multi-
relational patterns. In ICDM’11, pages 675–684.

[17] F. Zelezný and N. Lavrac. Propositionalization-based
relational subgroup discovery with rsd. ML, 62(1-
2):33–63, 2006.

[18] N. Phan, D. Ienco, P. Poncelet, and M. Teisseire.
Mining time relaxed gradual moving object clusters.
In ACM SIGSPATIAL’12, pages 478–481.

[19] N. Phan, D. Ienco, P. Poncelet, and M. Teisseire.
Mining Representative Movement Patterns through
Compression. In PAKDD’13, pages 341–326.

[20] J. Nin, A. Laurent, and P. Poncelet. Speed Up Gradual
Rule Mining from Stream Data! A B-Tree and OWA-
based Approach. JIIS, 35.3: 447-463, 2010.

